PDCP PDUs. This includes:
- Modifying the byte_buffer_t to include PDCP SN meta-data. This way,
the RLC can keep track of the ack'ed bytes for a specific PDCP PDU.
- Added in the RLC an `undelivered_sdu_info queue`, to keep track of the
amount of ack'ed bytes and the total size of the PDCP PDU,
so the RLC can know when delivery is finished.
- Added an interface between the PDCP and the RLC so that the RLC can
notify the PDCP when it receives an ack from the status PDUs. The RLC
passes to the PDCP a vector of all the ack'ed pdus in a rx'ed status PDU.
- Added some tests to the notify functionality. This includes some tests
where the PDUs are acked imediatly, and one test where the PDU is
retx'ed.
after adding the thread-safe PCAP writer functionality to the EUTRA
MAC object it became clear that we don't wont to replicate the
same for the NR object.
This patch therefore refactors the class that now supports both EUTRA and
NR rats. The old mac_nr_pcap.[h/cc] has been deleted. All test-cases
and usages now use the new object that needs to pass the RAT type in
the ctor.
this patch addresses the last open point of #2160
* Match hex dump indentation with srslog.
* Port asn1 utils to use srslog. Converted logging functions from taking varargs to variadic template functions.
* Remove trailing new lines in log lines from asn1 utils.
* First round of upgrades to srslog to asn1 tests.
* Second round of porting asn1 tests to srslog.
- multiple tunnels per E-RAB
- data forwarding between connected GTPU tunnels
- forwarding GTPU End Marker between connected tunnels
- TeNB GTPU handles in-sequence delivery when multiple tunnels for the same ERAB exist.
* - Started porting the enb PHY layer to use srslog loggers.
- Updated srslog to manage the none level.
* Finished porting enb phy layer including the NR part.
* Ported MAC, GTPU, PDCP, RLC and S1AP enb classes to use srslog.
* Use new stack logger.
* Ported the enb RRC clases to use srslog.
* Remove unused log macros.
* Replace loggers in sched, sched_carrier, sched_helpers.
* Replaced loggers in sched grid.
* Replaced loggers in sched harq.
* Replaced loggers in sched ue.
* Replaced loggers in sched ue ctrl.
* Replace loggers in sched ue ctrl TPC.
* Replaced loggers in sched subclasses.
* Replaced loggers in rrc_meascfg_test
* Configure loggers in rrc_mobility_test.
* Fix compilation errors left out after the rebase.
* - Implement a custom log sink that will serve as a test spy to intercept and count the number of error and warning log entries.
- Adapt the erab_test_setup and rrc_mobility tests to use this new class and make them pass again.
* - Remove trailing new lines introduced in the rebase.
- Ported the sched_ue_cell class to srslog.
* Remove unused log member.
* Ported mac tests to srslog.
* - Removed remaining trailing newlines from log entries.
* Fix compiler errors detected in CI.
* Fix another static variable without definition passed to log lines.
* Fixed a bug in srslog::flush that would never end when the backend queue is full.
* Fetch the RRC logger instead of injecting it in the constructor.
* Refactor NR resource allocation classes. Use DCI instead of grant for dummy PDSCH UE/eNB test
* Minor refactors in NR workers and ue_dl
* Fix include issues
* fix compilation issues
we've checked the same when unpacking the subheaders but missed the
case where the payload was read beyond the PDU length, as has been
seen with a malformed RAR PDU.
the previous patch only introduced a thread-safe queue between
PHY workers (writers) and PCAP writer thread (consumer).
However, it is also required to protect the ctor (and close()) to
prevent corrupted PCAP files.
The patch also correctly handles the case where the PCAP couldn't
be openend for writing and doesn't start the thread.
* offload PCAP writing to background thread
* use blocking_queue between writer and clients to make it thread-safe
* add basic test case
this fixes point 1-3 of #2161
detected with ASAN trying to write negative number of padding bytes.
The patch checks the calculated length and returns with an error
if the length is negative.
=================================================================
==5759==AddressSanitizer: while reporting a bug found another one. Ignoring.
m==5759==ERROR: AddressSanitizer: negative-size-param: (size=-6)
- Handle received E-RAB S1AP at s1ap.cc.
- Added methods to rrc.cc, rrc_ue.cc and rrc_bearer_cfg.cc to handle erab modify request.
- Made RLC add_bearer() function capable of re-creating the RLC entity.
- Send RRC reconfiguration to the UE and reply to the EPC with S1AP
modify bearer response.
This commit also adds support to srsEPC to send S1AP modify bearer request for
testing purposes.
this patch adds support for measuring the:
* SDU rx latency (Average time in ms from first RLC segment to full SDU)
* amount of buffered bytes (sum of payload of PDUs buffered in rx_window)
the implementation is using std::chrono
* Reorder DCI FORMAT enum
* Fix endianness issue
* Fix return codes in phy_ue_db
* Log members should be destructed after the layers.
* Add JSON metrics and Events. Add Alarm log channel. Simplify MAC metrics struct.
* Restore metrics_stdout change
RLC TM can't be segmented so it may happen that a PDU
cannot be sent because the grant is too small. That is not
an error and should only be logged in info.
when retrieving the RLC metrics, the number of TTIs since the last
call are passed. This allows to calculate the actual rate
based on the LTE timing rather than only the system timing.
we've only incremented the retx when retransmitting a full PDU,
but not when only retransmitting segments.
This might lead to many more retx than allowed.
Before this PR, the eNB was not activating UL-64QAM if the UE release was below 12,
due to an erroneous convertion of the ASN1 EUTRA Capabilities struct into the flattened
srslte::ue_capabilities_t.
With this PR, the eNB activates UL-64QAM for the following cases:
- UE category 5
- UE category 8 and release >= 10
- UE category UL 8 and release >= 12
the RLC bearer name was empty after reestablishing a UM bearer.
we need to pass the RLF config and RB name to the internal configure()
call of the Rx entity, like we already do for the Tx side
when EVM measurements are enabled, instead of only logging them for
each decoded codeword, we also calculate the average.
this is useful for calibration.
hard killing of AGC thread causes issue on some RF devices,
such as the N310. The thread still seemed to access the device while
the radio was already killed (or the streamer object deleted).
It's unclear why this isn't causing similar issues on B210 or X310,
at least not visible, but it is obviously not the correct way to stop a thread.
The patch now correctly sets the stop flag for the AGC thread, wakes it
it up and waits until it has terminated.
the Lime has better performance when using the default LTE sample
rates due to filterering being done in the LMS RF chip.
Print a warning when using the Lime with the non-default LTE rates.
the bug causes the BSR to return a bsr_idx of 0, i.e. no data
pending, when the buff_size was reported to be 1 B only.
Instead, the UE should return BSR idx 1, i.e. between 0 < BSR <= 10.
LBSR packing is fine but this makes the eNB do wrong things
because it thinkgs LCG2 has no or too much data to send.
LCG2 is our default LCG for DRB1. One occasion we saw the issue
is doing full rate TCP DL which requires quite a bit of ACK traffic
back to the sender. With the BSR for LCG2 being wrong, providing
UL grants was delayed and so the TCP DL throuhgput was very low.
In the log below we see that the buff_size[2]=1 so there is data to send.
Interestingly, the packing was correct so Wireshark displays it correctly.
But the unpacking not, as can be seen in the MAC log below which reports
0 buffer state for all LCGs
22:08:54.804792 [MAC ] [I] [ 5084] pdu_get: sdu_len=1212, channel.sched_len=1213, bsr.buff_size[2]=1
22:08:54.804840 [MAC ] [I] [ 5084] UL LCID=3 len=1212 LBSR: b=0 0 0 0
* rlc_am: add TC for pollRetx timer handling
* rlc_am: fix stopping of pollRetx timer
stopping the pollRetx timer when receiving a status PDU
without checking the acknowledged PDUs is wrong.
if an ACK for another PDU, for which the polling bit has been set,
is still pending, it won't be rescheduled until another
PDU is transmitted that again starts the pollRetx timer.
this fixes the issue with missing RLC AM segment retx in #1992,
and #2003
* mac_test: add extended TBSR unit test
unit test to MAC UL packing after sending a TBSR
this fixes the MAC issues described in issue #2002
* mux: fix updating of LCG buffer state after packing PDU
we've previously lowered the buffer state of the LCG according
to the bytes that have been scheduled, but not according to
those that have been actually included in the PDU.
* proc_bsr: fix LCG buffer state updating for TBSR
when sending a TBSR do not update the internal buffer
state of the BSR proc.
This caused issues because the buffer state for all LCG that
are not included in the TBSR are set to zero, although at least
one LCG does have data to transmit.
* rlc_am: include LCID when logging retx of SN
I noticed that the app didn't configure the process with
RT thread prio. But it then turned out that in order to do
that we need to actually spawn a new thread. Also a few other things
didn't work out of the box.
In summary the changes are:
* fix duration to support more than 120s
* move main functionality in thread
* set high priority for radio thread
* only return success if no radio errors occured
this makes sure that the reconstructed RLC AM header
has the poll bit set when any of its segments had it set.
this triggered a bug in RLC AM because the Status PDU
isn't transmitted for a RLC PDU that was segmented and
only the first segment had the P flag set.
reported/provided by user softdev86 in https://github.com/srsLTE/srsLTE/issues/566
author tested with local 4 port cell. I am not able to verify locally but
it looks ok, we'll revise later if needed.
When using srsLTE with Lime devices, calibration was performed before any configuration steps have happened, thus making calibration values invalid. Removing Lime specific calibration step from rf_soapy_imp makes so that devices will be automatically calibrated by SoapyLMS on rf_soapy_start_stream call.
Tested and working with srsENB using LimeSDR-USB v1.4 and LimeSDR-Mini v1.2 boards.