Added Polar RM and removed vectors with malloc from FEC NR

master
Xavier Arteaga 4 years ago committed by Andre Puschmann
parent 2b59e90304
commit bde1fa703d

@ -0,0 +1,76 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/*!
* \file polar_chanalloc.h
* \brief Declaration of the subchannel allocation block.
* \author Jesus Gomez (CTTC)
* \date 2020
*
* \copyright Software Radio Systems Limited
*
*
*/
#ifndef SRSLTE_CHANALLOC_H
#define SRSLTE_CHANALLOC_H
#include "srslte/config.h"
#include "stdint.h"
/*!
* Allocates message bits (data + CRC) to the encoder input bit vector at the
* positions specified in \a K_set\\PC_set, computes and allocates the PC bits and
* zeros to the remaining positions.
* \param[in] message A pointer to the vector with the message bits (data and CRC).
* \param[out] input_encoder A pointer to the encoder input bit vector.
* \param[in] N The codeword length.
* \param[in] K Number of data + CRC bits.
* \param[in] nPC Number of parity check (PC) bits.
* \param[in] K_set Pointer to the indices of the encoder input vector containing.
* \param[in] PC_set Pointer to the indices of the parity check bits.
*/
void srslte_polar_chanalloc_tx(const uint8_t* message,
uint8_t* input_encoder,
const uint16_t N,
const uint16_t K,
const uint8_t nPC,
const uint16_t* K_set,
const uint16_t* PC_set);
/*!
* Extracts message bits (data + CRC) from the decoder output vector
* according to the positions specified in \a K_set\\PC_set.
* \param[in] output_decoder A pointer to the decoder output bit vector.
* \param[out] message A pointer to the vector with the message bits (data and CRC).
* \param[in] K Number of data + CRC bits.
* \param[in] nPC Number of parity check (PC) bits.
* \param[in] K_set Pointer to the indices of the encoder input vector containing.
* \param[in] PC_set Pointer to the indices of the parity check bits.
*/
void srslte_polar_chanalloc_rx(const uint8_t* output_decoder,
uint8_t* message,
const uint16_t K,
const uint8_t nPC,
const uint16_t* K_set,
const uint16_t* PC_set);
#endif // SRSLTE_CHANALLOC_H

@ -0,0 +1,417 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/*!
* \file polar_code.h
* \brief Declaration of the function that obtains
* the polar code parameters.
* \author Jesus Gomez (CTTC)
* \date 2020
*
* \copyright Software Radio Systems Limited
*
* The message and parity check sets provided by this functions are needed by
* the subchannel allocation block.
* The frozen bit set provided by this function is used by the polar decoder.
*
*/
#ifndef SRSLTE_POLAR_CODE_H
#define SRSLTE_POLAR_CODE_H
#include "srslte/config.h"
#include "srslte/phy/utils/debug.h"
#include <stdint.h>
//#define debug
/*!
* \brief Maximum rate-matched codeword length
*/
static const uint16_t EMAX = 8192;
/*!
* \brief Maximum codeword length
*/
static const uint16_t NMAX = 1024;
/*!
* \brief \f$log_2(EMAX)\f$
*/
static const uint16_t eMAX = 13; // log2(EMAX);
/*!
* \brief Look-up table for the mother code with code_size_log = 5.
*/
static const uint16_t mother_code_5[32] = {0, 1, 2, 4, 8, 16, 3, 5, 9, 6, 17, 10, 18, 12, 20, 24,
7, 11, 19, 13, 14, 21, 26, 25, 22, 28, 15, 23, 27, 29, 30, 31};
/*!
* \brief Look-up table for the mother code with code_size_log = 6.
*/
static const uint16_t mother_code_6[64] = {0, 1, 2, 4, 8, 16, 32, 3, 5, 9, 6, 17, 10, 18, 12, 33,
20, 34, 24, 36, 7, 11, 40, 19, 13, 48, 14, 21, 35, 26, 37, 25,
22, 38, 41, 28, 42, 49, 44, 50, 15, 52, 23, 56, 27, 39, 29, 43,
30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63};
/*!
* \brief Look-up table for the mother code with code_size_log = 7.
*/
static const uint16_t mother_code_7[128] = {
0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 12, 33, 65, 20, 34, 24, 36,
7, 66, 11, 40, 68, 19, 13, 48, 14, 72, 21, 35, 26, 80, 37, 25, 22, 38, 96, 67, 41, 28,
69, 42, 49, 74, 70, 44, 81, 50, 73, 15, 52, 23, 76, 82, 56, 27, 97, 39, 84, 29, 43, 98,
88, 30, 71, 45, 100, 51, 46, 75, 104, 53, 77, 54, 83, 57, 112, 78, 85, 58, 99, 86, 60, 89,
101, 31, 90, 102, 105, 92, 47, 106, 55, 113, 79, 108, 59, 114, 87, 116, 61, 91, 120, 62, 103, 93,
107, 94, 109, 115, 110, 117, 118, 121, 122, 63, 124, 95, 111, 119, 123, 125, 126, 127};
/*!
* \brief Look-up table for the mother code with code_size_log = 8.
*/
static const uint16_t mother_code_8[256] = {
0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 34, 24,
36, 7, 129, 66, 11, 40, 68, 130, 19, 13, 48, 14, 72, 21, 132, 35, 26, 80, 37, 25, 22, 136,
38, 96, 67, 41, 144, 28, 69, 42, 49, 74, 160, 192, 70, 44, 131, 81, 50, 73, 15, 133, 52, 23,
134, 76, 137, 82, 56, 27, 97, 39, 84, 138, 145, 29, 43, 98, 88, 140, 30, 146, 71, 161, 45, 100,
51, 148, 46, 75, 104, 162, 53, 193, 152, 77, 164, 54, 83, 57, 112, 135, 78, 194, 85, 58, 168, 139,
99, 86, 60, 89, 196, 141, 101, 147, 176, 142, 31, 200, 90, 149, 102, 105, 163, 92, 47, 208, 150, 153,
165, 106, 55, 113, 154, 79, 108, 224, 166, 195, 59, 169, 114, 156, 87, 197, 116, 170, 61, 177, 91, 198,
172, 120, 201, 62, 143, 103, 178, 93, 202, 107, 180, 151, 209, 94, 204, 155, 210, 109, 184, 115, 167, 225,
157, 110, 117, 212, 171, 226, 216, 158, 118, 173, 121, 199, 179, 228, 174, 122, 203, 63, 181, 232, 124, 205,
182, 211, 185, 240, 206, 95, 213, 186, 227, 111, 214, 188, 217, 229, 159, 119, 218, 230, 233, 175, 123, 220,
183, 234, 125, 241, 207, 187, 236, 126, 242, 244, 189, 215, 219, 231, 248, 190, 221, 235, 222, 237, 243, 238,
245, 127, 191, 246, 249, 250, 252, 223, 239, 251, 247, 253, 254, 255};
/*!
* \brief Look-up table for the mother code with code_size_log = 9.
*/
static const uint16_t mother_code_9[512] = {
0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 256, 34, 24,
36, 7, 129, 66, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132, 35, 258, 26, 80, 37, 25, 22,
136, 260, 264, 38, 96, 67, 41, 144, 28, 69, 42, 49, 74, 272, 160, 288, 192, 70, 44, 131, 81, 50, 73,
15, 320, 133, 52, 23, 134, 384, 76, 137, 82, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 88,
140, 30, 146, 71, 262, 265, 161, 45, 100, 51, 148, 46, 75, 266, 273, 104, 162, 53, 193, 152, 77, 164, 268,
274, 54, 83, 57, 112, 135, 78, 289, 194, 85, 276, 58, 168, 139, 99, 86, 60, 280, 89, 290, 196, 141, 101,
147, 176, 142, 321, 31, 200, 90, 292, 322, 263, 149, 102, 105, 304, 296, 163, 92, 47, 267, 385, 324, 208, 386,
150, 153, 165, 106, 55, 328, 113, 154, 79, 269, 108, 224, 166, 195, 270, 275, 291, 59, 169, 114, 277, 156, 87,
197, 116, 170, 61, 281, 278, 177, 293, 388, 91, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 202,
323, 392, 297, 107, 180, 151, 209, 284, 94, 204, 298, 400, 352, 325, 155, 210, 305, 300, 109, 184, 115, 167, 225,
326, 306, 157, 329, 110, 117, 212, 171, 330, 226, 387, 308, 216, 416, 271, 279, 158, 337, 118, 332, 389, 173, 121,
199, 179, 228, 338, 312, 390, 174, 393, 283, 122, 448, 353, 203, 63, 340, 394, 181, 295, 285, 232, 124, 205, 182,
286, 299, 354, 211, 401, 185, 396, 344, 240, 206, 95, 327, 402, 356, 307, 301, 417, 213, 186, 404, 227, 418, 302,
360, 111, 331, 214, 309, 188, 449, 217, 408, 229, 159, 420, 310, 333, 119, 339, 218, 368, 230, 391, 313, 450, 334,
233, 175, 123, 341, 220, 314, 424, 395, 355, 287, 183, 234, 125, 342, 316, 241, 345, 452, 397, 403, 207, 432, 357,
187, 236, 126, 242, 398, 346, 456, 358, 405, 303, 244, 189, 361, 215, 348, 419, 406, 464, 362, 409, 219, 311, 421,
410, 231, 248, 369, 190, 364, 335, 480, 315, 221, 370, 422, 425, 451, 235, 412, 343, 372, 317, 222, 426, 453, 237,
433, 347, 243, 454, 318, 376, 428, 238, 359, 457, 399, 434, 349, 245, 458, 363, 127, 191, 407, 436, 465, 246, 350,
460, 249, 411, 365, 440, 374, 423, 466, 250, 371, 481, 413, 366, 468, 429, 252, 373, 482, 427, 414, 223, 472, 455,
377, 435, 319, 484, 430, 488, 239, 378, 459, 437, 380, 461, 496, 351, 467, 438, 251, 462, 442, 441, 469, 247, 367,
253, 375, 444, 470, 483, 415, 485, 473, 474, 254, 379, 431, 489, 486, 476, 439, 490, 463, 381, 497, 492, 443, 382,
498, 445, 471, 500, 446, 475, 487, 504, 255, 477, 491, 478, 383, 493, 499, 502, 494, 501, 447, 505, 506, 479, 508,
495, 503, 507, 509, 510, 511};
/*!
* \brief Look-up table for the mother code with code_size_log = 10.
*/
static const uint16_t mother_code_10[1024] = {
0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20,
256, 34, 24, 36, 7, 129, 66, 512, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132,
35, 258, 26, 513, 80, 37, 25, 22, 136, 260, 264, 38, 514, 96, 67, 41, 144, 28, 69, 42,
516, 49, 74, 272, 160, 520, 288, 528, 192, 544, 70, 44, 131, 81, 50, 73, 15, 320, 133, 52,
23, 134, 384, 76, 137, 82, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 515, 88,
140, 30, 146, 71, 262, 265, 161, 576, 45, 100, 640, 51, 148, 46, 75, 266, 273, 517, 104, 162,
53, 193, 152, 77, 164, 768, 268, 274, 518, 54, 83, 57, 521, 112, 135, 78, 289, 194, 85, 276,
522, 58, 168, 139, 99, 86, 60, 280, 89, 290, 529, 524, 196, 141, 101, 147, 176, 142, 530, 321,
31, 200, 90, 545, 292, 322, 532, 263, 149, 102, 105, 304, 296, 163, 92, 47, 267, 385, 546, 324,
208, 386, 150, 153, 165, 106, 55, 328, 536, 577, 548, 113, 154, 79, 269, 108, 578, 224, 166, 519,
552, 195, 270, 641, 523, 275, 580, 291, 59, 169, 560, 114, 277, 156, 87, 197, 116, 170, 61, 531,
525, 642, 281, 278, 526, 177, 293, 388, 91, 584, 769, 198, 172, 120, 201, 336, 62, 282, 143, 103,
178, 294, 93, 644, 202, 592, 323, 392, 297, 770, 107, 180, 151, 209, 284, 648, 94, 204, 298, 400,
608, 352, 325, 533, 155, 210, 305, 547, 300, 109, 184, 534, 537, 115, 167, 225, 326, 306, 772, 157,
656, 329, 110, 117, 212, 171, 776, 330, 226, 549, 538, 387, 308, 216, 416, 271, 279, 158, 337, 550,
672, 118, 332, 579, 540, 389, 173, 121, 553, 199, 784, 179, 228, 338, 312, 704, 390, 174, 554, 581,
393, 283, 122, 448, 353, 561, 203, 63, 340, 394, 527, 582, 556, 181, 295, 285, 232, 124, 205, 182,
643, 562, 286, 585, 299, 354, 211, 401, 185, 396, 344, 586, 645, 593, 535, 240, 206, 95, 327, 564,
800, 402, 356, 307, 301, 417, 213, 568, 832, 588, 186, 646, 404, 227, 896, 594, 418, 302, 649, 771,
360, 539, 111, 331, 214, 309, 188, 449, 217, 408, 609, 596, 551, 650, 229, 159, 420, 310, 541, 773,
610, 657, 333, 119, 600, 339, 218, 368, 652, 230, 391, 313, 450, 542, 334, 233, 555, 774, 175, 123,
658, 612, 341, 777, 220, 314, 424, 395, 673, 583, 355, 287, 183, 234, 125, 557, 660, 616, 342, 316,
241, 778, 563, 345, 452, 397, 403, 207, 674, 558, 785, 432, 357, 187, 236, 664, 624, 587, 780, 705,
126, 242, 565, 398, 346, 456, 358, 405, 303, 569, 244, 595, 189, 566, 676, 361, 706, 589, 215, 786,
647, 348, 419, 406, 464, 680, 801, 362, 590, 409, 570, 788, 597, 572, 219, 311, 708, 598, 601, 651,
421, 792, 802, 611, 602, 410, 231, 688, 653, 248, 369, 190, 364, 654, 659, 335, 480, 315, 221, 370,
613, 422, 425, 451, 614, 543, 235, 412, 343, 372, 775, 317, 222, 426, 453, 237, 559, 833, 804, 712,
834, 661, 808, 779, 617, 604, 433, 720, 816, 836, 347, 897, 243, 662, 454, 318, 675, 618, 898, 781,
376, 428, 665, 736, 567, 840, 625, 238, 359, 457, 399, 787, 591, 678, 434, 677, 349, 245, 458, 666,
620, 363, 127, 191, 782, 407, 436, 626, 571, 465, 681, 246, 707, 350, 599, 668, 790, 460, 249, 682,
573, 411, 803, 789, 709, 365, 440, 628, 689, 374, 423, 466, 793, 250, 371, 481, 574, 413, 603, 366,
468, 655, 900, 805, 615, 684, 710, 429, 794, 252, 373, 605, 848, 690, 713, 632, 482, 806, 427, 904,
414, 223, 663, 692, 835, 619, 472, 455, 796, 809, 714, 721, 837, 716, 864, 810, 606, 912, 722, 696,
377, 435, 817, 319, 621, 812, 484, 430, 838, 667, 488, 239, 378, 459, 622, 627, 437, 380, 818, 461,
496, 669, 679, 724, 841, 629, 351, 467, 438, 737, 251, 462, 442, 441, 469, 247, 683, 842, 738, 899,
670, 783, 849, 820, 728, 928, 791, 367, 901, 630, 685, 844, 633, 711, 253, 691, 824, 902, 686, 740,
850, 375, 444, 470, 483, 415, 485, 905, 795, 473, 634, 744, 852, 960, 865, 693, 797, 906, 715, 807,
474, 636, 694, 254, 717, 575, 913, 798, 811, 379, 697, 431, 607, 489, 866, 723, 486, 908, 718, 813,
476, 856, 839, 725, 698, 914, 752, 868, 819, 814, 439, 929, 490, 623, 671, 739, 916, 463, 843, 381,
497, 930, 821, 726, 961, 872, 492, 631, 729, 700, 443, 741, 845, 920, 382, 822, 851, 730, 498, 880,
742, 445, 471, 635, 932, 687, 903, 825, 500, 846, 745, 826, 732, 446, 962, 936, 475, 853, 867, 637,
907, 487, 695, 746, 828, 753, 854, 857, 504, 799, 255, 964, 909, 719, 477, 915, 638, 748, 944, 869,
491, 699, 754, 858, 478, 968, 383, 910, 815, 976, 870, 917, 727, 493, 873, 701, 931, 756, 860, 499,
731, 823, 922, 874, 918, 502, 933, 743, 760, 881, 494, 702, 921, 501, 876, 847, 992, 447, 733, 827,
934, 882, 937, 963, 747, 505, 855, 924, 734, 829, 965, 938, 884, 506, 749, 945, 966, 755, 859, 940,
830, 911, 871, 639, 888, 479, 946, 750, 969, 508, 861, 757, 970, 919, 875, 862, 758, 948, 977, 923,
972, 761, 877, 952, 495, 703, 935, 978, 883, 762, 503, 925, 878, 735, 993, 885, 939, 994, 980, 926,
764, 941, 967, 886, 831, 947, 507, 889, 984, 751, 942, 996, 971, 890, 509, 949, 973, 1000, 892, 950,
863, 759, 1008, 510, 979, 953, 763, 974, 954, 879, 981, 982, 927, 995, 765, 956, 887, 985, 997, 986,
943, 891, 998, 766, 511, 988, 1001, 951, 1002, 893, 975, 894, 1009, 955, 1004, 1010, 957, 983, 958, 987,
1012, 999, 1016, 767, 989, 1003, 990, 1005, 959, 1011, 1013, 895, 1006, 1014, 1017, 1018, 991, 1020, 1007, 1015,
1019, 1021, 1022, 1023};
/*!
* \brief Look-up table for the block interleaver for code_size_log = 5.
*/
static const uint16_t blk_interleaver_5[32] = {0, 1, 2, 4, 3, 5, 6, 7, 8, 16, 9, 17, 10, 18, 11, 19,
12, 20, 13, 21, 14, 22, 15, 23, 24, 25, 26, 28, 27, 29, 30, 31};
/*!
* \brief Look-up table for the block interleaver for code_size_log = 6.
*/
static const uint16_t blk_interleaver_6[64] = {0, 1, 2, 3, 4, 5, 8, 9, 6, 7, 10, 11, 12, 13, 14, 15,
16, 17, 32, 33, 18, 19, 34, 35, 20, 21, 36, 37, 22, 23, 38, 39,
24, 25, 40, 41, 26, 27, 42, 43, 28, 29, 44, 45, 30, 31, 46, 47,
48, 49, 50, 51, 52, 53, 56, 57, 54, 55, 58, 59, 60, 61, 62, 63};
/*!
* \brief Look-up table for the block interleaver for code_size_log = 7.
*/
static const uint16_t blk_interleaver_7[128] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 12, 13, 14, 15, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 64, 65, 66, 67, 36, 37, 38, 39,
68, 69, 70, 71, 40, 41, 42, 43, 72, 73, 74, 75, 44, 45, 46, 47, 76, 77, 78, 79, 48, 49,
50, 51, 80, 81, 82, 83, 52, 53, 54, 55, 84, 85, 86, 87, 56, 57, 58, 59, 88, 89, 90, 91,
60, 61, 62, 63, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 112, 113,
114, 115, 108, 109, 110, 111, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127};
/*!
* \brief Look-up table for the block interleaver for code_size_log = 8.
*/
static const uint16_t blk_interleaver_8[256] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 24, 25, 26, 27, 28, 29, 30, 31, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 128, 129, 130, 131, 132, 133, 134, 135, 72, 73, 74, 75, 76, 77, 78, 79,
136, 137, 138, 139, 140, 141, 142, 143, 80, 81, 82, 83, 84, 85, 86, 87, 144, 145, 146, 147, 148, 149,
150, 151, 88, 89, 90, 91, 92, 93, 94, 95, 152, 153, 154, 155, 156, 157, 158, 159, 96, 97, 98, 99,
100, 101, 102, 103, 160, 161, 162, 163, 164, 165, 166, 167, 104, 105, 106, 107, 108, 109, 110, 111, 168, 169,
170, 171, 172, 173, 174, 175, 112, 113, 114, 115, 116, 117, 118, 119, 176, 177, 178, 179, 180, 181, 182, 183,
120, 121, 122, 123, 124, 125, 126, 127, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197,
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 224, 225, 226, 227,
228, 229, 230, 231, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255};
/*!
* \brief Look-up table for the block interleaver for code_size_log = 9.
*/
static const uint16_t blk_interleaver_9[512] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 272, 273, 274, 275, 276, 277, 278, 279,
280, 281, 282, 283, 284, 285, 286, 287, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,
175, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 176, 177, 178, 179, 180, 181,
182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316,
317, 318, 319, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 320, 321, 322, 323,
324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218,
219, 220, 221, 222, 223, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 224, 225,
226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 352, 353, 354, 355, 356, 357, 358, 359, 360,
361, 362, 363, 364, 365, 366, 367, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390,
391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413,
414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 448, 449, 450, 451, 452,
453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443,
444, 445, 446, 447, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482,
483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505,
506, 507, 508, 509, 510, 511};
/*!
* \brief Look-up table for the block interleaver for code_size_log = 10.
*/
static const uint16_t blk_interleaver_10[1024] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265,
266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284,
285, 286, 287, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527,
528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 288, 289, 290,
291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309,
310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 544, 545, 546, 547, 548, 549, 550, 551, 552,
553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571,
572, 573, 574, 575, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334,
335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 576, 577,
578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596,
597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 352, 353, 354, 355, 356, 357, 358, 359,
360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378,
379, 380, 381, 382, 383, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621,
622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 384,
385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403,
404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 640, 641, 642, 643, 644, 645, 646,
647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665,
666, 667, 668, 669, 670, 671, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428,
429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447,
672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690,
691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 448, 449, 450, 451, 452, 453,
454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472,
473, 474, 475, 476, 477, 478, 479, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715,
716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734,
735, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497,
498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 736, 737, 738, 739, 740,
741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759,
760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778,
779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797,
798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816,
817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835,
836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854,
855, 856, 857, 858, 859, 860, 861, 862, 863, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905,
906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924,
925, 926, 927, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879,
880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 928, 929, 930,
931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949,
950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968,
969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987,
988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006,
1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023};
/*!
* \brief Describes a polar set.
*/
typedef struct {
uint16_t N; /*!< \brief Number of coded bits (N). */
uint8_t n; /*!< \brief \f$ log_2(N)\f$.*/
uint16_t K; /*!< \brief Number of message bits (data and CRC). */
uint16_t nPC; /*!< \brief Number of parity check bits. */
uint16_t nWmPC; /*!< \brief Number of parity bits of minimum bandwidth type. */
uint16_t F_set_size; /*!< \brief Number of frozen bits. */
uint16_t* K_set; /*!< \brief Pointer to the indices of the encoder input vector containing data and CRC bits. */
uint16_t* tmp_K_set; /*!< \brief Temporal Pointer. */
uint16_t PC_set[4]; /*!< \brief Pointer to the indices of the encoder input vector containing the parity bits.*/
uint16_t* F_set; /*!< \brief Pointer to the indices of the encoder input vector containing frozen bits.*/
} srslte_polar_code_t;
/*!
* Returns a pointer to the desired mother code.
*/
static inline const uint16_t* get_mother_code(uint8_t n)
{
switch (n) {
case 5:
return mother_code_5;
break;
case 6:
return mother_code_6;
break;
case 7:
return mother_code_7;
break;
case 8:
return mother_code_8;
break;
case 9:
return mother_code_9;
break;
case 10:
return mother_code_10;
break;
default:
ERROR("Wrong code_size_log\n");
return NULL;
}
}
/*!
* Returns a pointer to the desired blk_interleaver.
*/
static inline const uint16_t* get_blk_interleaver(uint8_t n)
{
switch (n) {
case 5:
return blk_interleaver_5;
break;
case 6:
return blk_interleaver_6;
break;
case 7:
return blk_interleaver_7;
break;
case 8:
return blk_interleaver_8;
break;
case 9:
return blk_interleaver_9;
break;
case 10:
return blk_interleaver_10;
break;
default:
ERROR("Wrong code_size_log\n");
return NULL;
}
}
/*!
* Allocates resources for the message set, frozen set and parity set of any polar code.
* \param[out] c A pointer to the initialized polar code.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
int srslte_polar_code_init(srslte_polar_code_t* c);
/*!
* Initializes the different index sets as needed by the subchannel allocation block and/or by the polar decoder.
* \param[out] c A pointer to the initialized polar code.
* \param[in] K Number of data + CRC bits.
* \param[in] E Number of bits of the codeword after rate matching.
* \param[in] nMax Maximum \f$log_2(N)\f$, where \f$N\f$ is the codeword size, nMax = 9 for downlink and nMax = 10, for
* uplink.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
int srslte_polar_code_get(srslte_polar_code_t* c, const uint16_t K, const uint16_t E, const uint8_t nMax);
/*!
* The polar code "destructor": it frees all the resources.
* \param[in] c A pointer to the dismantled polar code.
*/
void srslte_polar_code_free(srslte_polar_code_t* c);
#endif // SRSLTE_POLAR_CODE_H

@ -31,7 +31,7 @@
/*!
* Lists the different types of polar decoder.
*/
typedef enum {
typedef enum SRSLTE_API {
SRSLTE_POLAR_DECODER_SSC_F = 0, /*!< \brief Floating-point Simplified Successive Cancellation (SSC) decoder. */
SRSLTE_POLAR_DECODER_SSC_S = 1, /*!< \brief Fixed-point (16 bit) Simplified Successive Cancellation (SSC) decoder. */
SRSLTE_POLAR_DECODER_SSC_C = 2, /*!< \brief Fixed-point (8 bit) Simplified Successive Cancellation (SSC) decoder. */
@ -43,17 +43,27 @@ typedef enum {
* \brief Describes a polar decoder.
*/
typedef struct SRSLTE_API {
void* ptr; /*!< \brief Pointer to the actual polar decoder structure. */
int (*decode_f)(void* ptr,
const float* symbols,
uint8_t* data_decoded); /*!< \brief Pointer to the decoder function (float version). */
int (*decode_s)(void* ptr,
const int16_t* symbols,
uint8_t* data_decoded); /*!< \brief Pointer to the decoder function (16-bit version). */
int (*decode_c)(void* ptr,
const int8_t* symbols,
uint8_t* data_decoded); /*!< \brief Pointer to the decoder function (8-bit version). */
void (*free)(void*); /*!< \brief Pointer to a "destructor". */
void* ptr; /*!< \brief Pointer to the actual polar decoder structure. */
uint8_t nMax; /*!< \brief Maximum \f$log_2(code_size)\f$. */
int (*decode_f)(void* ptr,
const float* symbols,
uint8_t* data_decoded,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size); /*!< \brief Pointer to the decoder function (float version). */
int (*decode_s)(void* ptr,
const int16_t* symbols,
uint8_t* data_decoded,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size); /*!< \brief Pointer to the decoder function (16-bit version). */
int (*decode_c)(void* ptr,
const int8_t* symbols,
uint8_t* data_decoded,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size); /*!< \brief Pointer to the decoder function (8-bit version). */
void (*free)(void*); /*!< \brief Pointer to a "destructor". */
} srslte_polar_decoder_t;
/*!
@ -62,15 +72,11 @@ typedef struct SRSLTE_API {
* \param[out] q A pointer to the initialized polar decoder.
* \param[in] polar_decoder_type Polar decoder type.
* \param[in] code_size_log The \f$ log_2\f$ of the number of bits of the decoder input/output vector.
* \param[in] frozen_set A pointer to the frozenbit set (array of indices).
* \param[in] frozen_set_size Number of frozen bits.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_decoder_init(srslte_polar_decoder_t* q,
srslte_polar_decoder_type_t polar_decoder_type,
uint16_t code_size_log,
uint16_t* frozen_set,
uint16_t frozen_set_size);
const uint8_t code_size_log);
/*!
* The polar decoder "destructor": it frees all the resources.
@ -83,27 +89,51 @@ SRSLTE_API void srslte_polar_decoder_free(srslte_polar_decoder_t* q);
* \param[in] q A pointer to the desired polar decoder.
* \param[in] input_llr The decoder LLR input vector.
* \param[out] data_decoded The decoder output vector.
* \param[in] code_size_log The \f$ log_2\f$ of the number of bits of the decoder input/output vector.
* \param[in] frozen_set The position of the frozen bits in increasing order.
* \param[in] frozen_set_size The size of the frozen_set.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_decoder_decode_f(srslte_polar_decoder_t* q, const float* input_llr, uint8_t* data_decoded);
SRSLTE_API int srslte_polar_decoder_decode_f(srslte_polar_decoder_t* q,
const float* input_llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size);
/*!
* Decodes the input (int16_t) codeword with the specified polar decoder.
* \param[in] q A pointer to the desired polar decoder.
* \param[in] input_llr The decoder LLR input vector.
* \param[out] data_decoded The decoder output vector.
* \param[in] code_size_log The \f$ log_2\f$ of the number of bits of the decoder input/output vector.
* \param[in] frozen_set The position of the frozen bits in increasing order.
* \param[in] frozen_set_size The size of the frozen_set.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int
srslte_polar_decoder_decode_s(srslte_polar_decoder_t* q, const int16_t* input_llr, uint8_t* data_decoded);
SRSLTE_API int srslte_polar_decoder_decode_s(srslte_polar_decoder_t* q,
const int16_t* input_llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size);
/*!
* Decodes the input (int8_t) codeword with the specified polar decoder.
* \param[in] q A pointer to the desired polar decoder.
* \param[in] input_llr The decoder LLR input vector.
* \param[out] data_decoded The decoder output vector.
* \param[in] code_size_log The \f$ log_2\f$ of the number of bits of the decoder input/output vector.
* \param[in] frozen_set The position of the frozen bits in increasing order.
* \param[in] frozen_set_size The size of the frozen_set.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_decoder_decode_c(srslte_polar_decoder_t* q, const int8_t* input_llr, uint8_t* data_decoded);
SRSLTE_API int srslte_polar_decoder_decode_c(srslte_polar_decoder_t* q,
const int8_t* input_llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size);
#endif // SRSLTE_POLARDECODER_H

@ -31,7 +31,7 @@
/*!
* Lists the different types of polar decoder.
*/
typedef enum SRSLTE_API {
typedef enum {
SRSLTE_POLAR_ENCODER_PIPELINED = 0, /*!< \brief Non-optimized version of the pipelined polar encoder*/
SRSLTE_POLAR_ENCODER_AVX2 = 1, /*!< \brief SIMD implementation of the polar encoder */
} srslte_polar_encoder_type_t;
@ -39,7 +39,7 @@ typedef enum SRSLTE_API {
/*!
* \brief Describes a polar encoder.
*/
typedef struct srslte_polar_encoder_t {
typedef struct SRSLTE_API {
void* ptr; /*!< \brief Pointer to the actual polar encoder structure. */
int (*encode)(void* ptr,
const uint8_t* input,

@ -0,0 +1,181 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/*!
* \file polar_rm.h
* \brief Declaration of the polar RateMatcher and RateDematcher.
* \author Jesus Gomez (CTTC)
* \date 2020
*
* \copyright Software Radio Systems Limited
*
*/
#ifndef SRSLTE_POLARRM_H
#define SRSLTE_POLARRM_H
/*!
* \brief Describes a polar rate matcher or rate dematcher
*/
typedef struct SRSLTE_API {
void* ptr; /*!< \brief Rate Matcher auxiliary registers. */
} srslte_polar_rm_t;
/*!
* Initializes the Rate Matcher for the maximum rate-matched codeword length
* \param[out] q A pointer to a srslte_polar_rm_t structure.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_rm_tx_init(srslte_polar_rm_t* q);
/*!
* Carries out the actual rate-matching.
* \param[in] q A pointer to the Rate-Matcher (a srslte_polar_rm_t structure
* instance) that carries out the rate matching.
* \param[in] input The codeword obtained from the polar encoder.
* \param[out] output The rate-matched codeword resulting from the rate-matching
* operation.
* \param[in] n \f$log_2\f$ of the codeword length.
* \param[in] E Rate-matched codeword length.
* \param[in] K Message size (including CRC).
* \param[in] ibil Indicator of bit interliaver (set to 0 to disable).
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_rm_tx(srslte_polar_rm_t* q,
const uint8_t* input,
uint8_t* output,
const uint8_t n,
const uint32_t E,
const uint32_t K,
const uint8_t ibil);
/*!
* Initializes all the Rate DeMatcher variables.
* \param[out] q A pointer to a srslte_polar_rm_t structure.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_rm_rx_init_f(srslte_polar_rm_t* q);
/*!
* Carries out the actual rate-dematching.
* \param[in] q A pointer to the Rate-DeMatcher (a srslte_polar_rm_t structure
* instance) that carries out the rate matching.
* \param[in] input The LLRs obtained from the channel samples that correspond to
* the codeword to be first, rate-dematched and then decoded.
* \param[out] output The rate-dematched codeword resulting from the rate-dematching
* operation.
* \param[in] E Rate-matched codeword length.
* \param[in] n \f$log_2\f$ of the codeword length.
* \param[in] K Message size (including CRC).
* \param[in] ibil Indicator of bit interliaver (set to 0 to disable).
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_rm_rx_f(srslte_polar_rm_t* q,
const float* input,
float* output,
const uint32_t E,
const uint8_t n,
const uint32_t K,
const uint8_t ibil);
/*!
* Initializes all the Rate DeMatcher variables (int16_t inputs).
* \param[out] q A pointer to a srslte_polar_rm_t structure.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_rm_rx_init_s(srslte_polar_rm_t* q);
/*!
* Carries out the actual rate-dematching (in16_t inputs)
* \param[in] q A pointer to the Rate-DeMatcher (a srslte_polar_rm_t structure
* instance) that carries out the rate matching.
* \param[in] input The LLRs obtained from the channel samples that correspond to
* the codeword to be first, rate-dematched and then decoded.
* \param[out] output The rate-dematched codeword resulting from the rate-dematching
* operation.
* \param[in] E Rate-matched codeword length.
* \param[in] n \f$log_2\f$ of the codeword length.
* \param[in] K Message size (including CRC).
* \param[in] ibil Indicator of bit interliaver (set to 0 to disable).
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_rm_rx_s(srslte_polar_rm_t* q,
const int16_t* input,
int16_t* output,
const uint32_t E,
const uint8_t n,
const uint32_t K,
const uint8_t ibil);
/*!
* Initializes all the Rate DeMatcher variables (int8_t inputs).
* \param[out] q A pointer to a srslte_polar_rm_t structure.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_rm_rx_init_c(srslte_polar_rm_t* q);
/*!
* Carries out the actual rate-dematching (int8_t inputs).
* \param[in] q A pointer to the Rate-DeMatcher (a srslte_polar_rm_t structure
* instance) that carries out the rate matching.
* \param[in] input The LLRs obtained from the channel samples that correspond to
* the codeword to be first, rate-dematched and then decoded.
* \param[out] output The rate-dematched codeword resulting from the rate-dematching
* operation.
* \param[in] E Rate-matched codeword length.
* \param[in] n \f$log_2\f$ of the codeword length.
* \param[in] K Message size (including CRC).
* \param[in] ibil Indicator of bit interliaver (set to 0 to disable).
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
SRSLTE_API int srslte_polar_rm_rx_c(srslte_polar_rm_t* q,
const int8_t* input,
int8_t* output,
const uint32_t E,
const uint8_t n,
const uint32_t K,
const uint8_t ibil);
/*!
* The Rate Matcher "destructor": it frees all the resources allocated to the rate-matcher.
* \param[in] q A pointer to the dismantled rate-matcher.
*/
SRSLTE_API void srslte_polar_rm_tx_free(srslte_polar_rm_t* q);
/*!
* The Rate Matcher "destructor": it frees all the resources allocated to the rate-dematcher.
* \param[in] q A pointer to the dismantled rate-dematcher.
*/
SRSLTE_API void srslte_polar_rm_rx_free_f(srslte_polar_rm_t* q);
/*!
* The Rate Matcher "destructor" for short symbols: it frees all the resources allocated to the rate-dematcher.
* \param[in] q A pointer to the dismantled rate-dematcher.
*/
SRSLTE_API void srslte_polar_rm_rx_free_s(srslte_polar_rm_t* q);
/*!
* The Rate Matcher "destructor" for int8_t symbols: it frees all the resources allocated to the rate-dematcher.
* \param[in] q A pointer to the dismantled rate-dematcher.
*/
SRSLTE_API void srslte_polar_rm_rx_free_c(srslte_polar_rm_t* q);
#endif // SRSLTE_POLARRM_H

@ -88,18 +88,18 @@ void* create_ldpc_dec_s(uint8_t bgN, uint8_t bgM, uint16_t ls, float scaling_fct
return NULL;
}
if ((vp->soft_bits = malloc(liftN * sizeof(int16_t))) == NULL) {
if ((vp->soft_bits = srslte_vec_i16_malloc(liftN)) == NULL) {
free(vp);
return NULL;
}
if ((vp->check_to_var = malloc((hrrN + ls) * bgM * sizeof(int16_t))) == NULL) {
if ((vp->check_to_var = srslte_vec_i16_malloc((hrrN + ls) * bgM)) == NULL) {
free(vp->soft_bits);
free(vp);
return NULL;
}
if ((vp->var_to_check = malloc((hrrN + ls) * sizeof(int16_t))) == NULL) {
if ((vp->var_to_check = srslte_vec_i16_malloc(hrrN + ls)) == NULL) {
free(vp->check_to_var);
free(vp->soft_bits);
free(vp);

@ -694,7 +694,7 @@ int srslte_ldpc_decoder_init(srslte_ldpc_decoder_t* q,
q->liftM = ls * q->bgM;
q->liftN = ls * q->bgN;
q->pcm = srslte_vec_malloc(q->bgM * q->bgN * sizeof(uint16_t));
q->pcm = srslte_vec_u16_malloc(q->bgM * q->bgN);
if (!q->pcm) {
perror("malloc");
return -1;

@ -111,7 +111,7 @@ static int init_c(srslte_ldpc_encoder_t* q)
q->free = free_enc_c;
q->ptr = srslte_vec_malloc(q->bgM * q->ls * sizeof(uint8_t));
q->ptr = srslte_vec_u8_malloc(q->bgM * q->ls);
if (!q->ptr) {
perror("malloc");
free_enc_c(q);
@ -337,7 +337,7 @@ int srslte_ldpc_encoder_init(srslte_ldpc_encoder_t* q,
q->liftM = ls * q->bgM;
q->liftN = ls * q->bgN;
q->pcm = srslte_vec_malloc(q->bgM * q->bgN * sizeof(uint16_t));
q->pcm = srslte_vec_u16_malloc(q->bgM * q->bgN);
if (!q->pcm) {
perror("malloc");
return -1;

@ -205,9 +205,6 @@ int main(int argc, char** argv)
uint32_t F = encoder.bgK - 5; // This value is arbitrary
finalK = encoder.liftK;
finalN = encoder.liftN - 2 * lift_size;
if (rm_length == 0) {
rm_length = finalN - F;
}
@ -229,18 +226,21 @@ int main(int argc, char** argv)
1.0 * (encoder.liftK - F) / rm_length);
printf("\n Signal-to-Noise Ratio -> %.2f dB\n", snr);
messages_true = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_f = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_s = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_c = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_c_flood = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_avx = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_avx_flood = malloc(finalK * batch_size * sizeof(uint8_t));
codewords = malloc(finalN * batch_size * sizeof(uint8_t));
symbols_rm = malloc((rm_length + F) * batch_size * sizeof(float));
symbols = malloc(finalN * batch_size * sizeof(float));
symbols_s = malloc(finalN * batch_size * sizeof(int16_t));
symbols_c = malloc(finalN * batch_size * sizeof(int8_t));
finalK = encoder.liftK;
finalN = encoder.liftN - 2 * lift_size;
messages_true = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_f = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_s = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_c = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_c_flood = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_avx = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_avx_flood = srslte_vec_u8_malloc(finalK * batch_size);
codewords = srslte_vec_u8_malloc(finalN * batch_size);
symbols_rm = srslte_vec_f_malloc((rm_length + F) * batch_size);
symbols = srslte_vec_f_malloc(finalN * batch_size);
symbols_s = srslte_vec_i16_malloc(finalN * batch_size);
symbols_c = srslte_vec_i8_malloc(finalN * batch_size);
if (!messages_true || !messages_sim_f || !messages_sim_s || !messages_sim_c || //
!messages_sim_avx || !messages_sim_c_flood || !messages_sim_avx_flood || //
!codewords || !symbols || !symbols_s || !symbols_c) {

@ -25,6 +25,7 @@
* - **-l \<number\>** Lifting Size (according to 5GNR standard. Default 2).
*/
#include "srslte/phy/utils/vector.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -167,10 +168,10 @@ int main(int argc, char** argv)
finalK = decoder.liftK;
finalN = decoder.liftN - 2 * lift_size;
messages_true = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
messages_sim = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
codewords = malloc(finalN * NOF_MESSAGES * sizeof(uint8_t));
symbols = malloc(finalN * NOF_MESSAGES * sizeof(int8_t));
messages_true = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
messages_sim = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
codewords = srslte_vec_u8_malloc(finalN * NOF_MESSAGES);
symbols = srslte_vec_i8_malloc(finalN * NOF_MESSAGES);
if (!messages_true || !messages_sim || !codewords || !symbols) {
perror("malloc");
exit(-1);

@ -25,6 +25,7 @@
* - **-l \<number\>** Lifting Size (according to 5GNR standard. Default 2).
*/
#include "srslte/phy/utils/vector.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -166,10 +167,10 @@ int main(int argc, char** argv)
finalK = decoder.liftK;
finalN = decoder.liftN - 2 * lift_size;
messages_true = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
messages_sim = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
codewords = malloc(finalN * NOF_MESSAGES * sizeof(uint8_t));
symbols = malloc(finalN * NOF_MESSAGES * sizeof(int8_t));
messages_true = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
messages_sim = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
codewords = srslte_vec_u8_malloc(finalN * NOF_MESSAGES);
symbols = srslte_vec_i8_malloc(finalN * NOF_MESSAGES);
if (!messages_true || !messages_sim || !codewords || !symbols) {
perror("malloc");
exit(-1);

@ -25,6 +25,7 @@
* - **-l \<number\>** Lifting Size (according to 5GNR standard. Default 2).
*/
#include "srslte/phy/utils/vector.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -158,10 +159,10 @@ int main(int argc, char** argv)
finalK = decoder.liftK;
finalN = decoder.liftN - 2 * lift_size;
messages_true = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
messages_sim = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
codewords = malloc(finalN * NOF_MESSAGES * sizeof(uint8_t));
symbols = malloc(finalN * NOF_MESSAGES * sizeof(int16_t));
messages_true = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
messages_sim = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
codewords = srslte_vec_u8_malloc(finalN * NOF_MESSAGES);
symbols = srslte_vec_i16_malloc(finalN * NOF_MESSAGES);
if (!messages_true || !messages_sim || !codewords || !symbols) {
perror("malloc");
exit(-1);

@ -33,6 +33,7 @@
#include "srslte/phy/fec/ldpc/ldpc_common.h"
#include "srslte/phy/fec/ldpc/ldpc_decoder.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
srslte_basegraph_t base_graph = BG1; /*!< \brief Base Graph (BG1 or BG2). */
int lift_size = 2; /*!< \brief Lifting Size. */
@ -158,10 +159,10 @@ int main(int argc, char** argv)
finalK = decoder.liftK;
finalN = decoder.liftN - 2 * lift_size;
messages_true = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
messages_sim = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
codewords = malloc(finalN * NOF_MESSAGES * sizeof(uint8_t));
symbols = malloc(finalN * NOF_MESSAGES * sizeof(float));
messages_true = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
messages_sim = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
codewords = srslte_vec_u8_malloc(finalN * NOF_MESSAGES);
symbols = srslte_vec_f_malloc(finalN * NOF_MESSAGES);
if (!messages_true || !messages_sim || !codewords || !symbols) {
perror("malloc");
exit(-1);

@ -26,6 +26,7 @@
* - **-R \<number\>** Number of times tests are repeated (for computing throughput).
*/
#include "srslte/phy/utils/vector.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -165,9 +166,9 @@ int main(int argc, char** argv)
finalK = encoder.liftK;
finalN = encoder.liftN - 2 * lift_size;
messages = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
codewords_true = malloc(finalN * NOF_MESSAGES * sizeof(uint8_t));
codewords_sim = malloc(finalN * NOF_MESSAGES * sizeof(uint8_t));
messages = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
codewords_true = srslte_vec_u8_malloc(finalN * NOF_MESSAGES);
codewords_sim = srslte_vec_u8_malloc(finalN * NOF_MESSAGES);
if (!messages || !codewords_true || !codewords_sim) {
perror("malloc");
exit(-1);

@ -34,6 +34,7 @@
#include "srslte/phy/fec/ldpc/ldpc_common.h"
#include "srslte/phy/fec/ldpc/ldpc_encoder.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
static srslte_basegraph_t base_graph = BG1; /*!< \brief Base Graph (BG1 or BG2). */
static int lift_size = 2; /*!< \brief Lifting Size. */
@ -165,9 +166,9 @@ int main(int argc, char** argv)
finalK = encoder.liftK;
finalN = encoder.liftN - 2 * lift_size;
messages = malloc(finalK * NOF_MESSAGES * sizeof(uint8_t));
codewords_true = malloc(finalN * NOF_MESSAGES * sizeof(uint8_t));
codewords_sim = malloc(finalN * NOF_MESSAGES * sizeof(uint8_t));
messages = srslte_vec_u8_malloc(finalK * NOF_MESSAGES);
codewords_true = srslte_vec_u8_malloc(finalN * NOF_MESSAGES);
codewords_sim = srslte_vec_u8_malloc(finalN * NOF_MESSAGES);
if (!messages || !codewords_true || !codewords_sim) {
perror("malloc");
exit(-1);

@ -286,22 +286,22 @@ int main(int argc, char** argv)
1.0 * (encoder.liftK - F) / rm_length);
printf("\n Signal-to-Noise Ratio -> %.2f dB\n", snr);
messages_true = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_f = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_s = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_c = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_c_flood = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_avx = malloc(finalK * batch_size * sizeof(uint8_t));
messages_sim_avx_flood = malloc(finalK * batch_size * sizeof(uint8_t));
codewords = malloc(finalN * batch_size * sizeof(uint8_t));
rm_codewords = malloc(rm_length * batch_size * sizeof(uint8_t));
rm_symbols = malloc(rm_length * batch_size * sizeof(float));
rm_symbols_s = malloc(rm_length * batch_size * sizeof(uint16_t));
rm_symbols_c = malloc(rm_length * batch_size * sizeof(uint8_t));
symbols = malloc(finalN * batch_size * sizeof(float));
symbols_s = malloc(finalN * batch_size * sizeof(int16_t));
symbols_c = malloc(finalN * batch_size * sizeof(int8_t));
messages_true = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_f = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_s = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_c = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_c_flood = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_avx = srslte_vec_u8_malloc(finalK * batch_size);
messages_sim_avx_flood = srslte_vec_u8_malloc(finalK * batch_size);
codewords = srslte_vec_u8_malloc(finalN * batch_size);
rm_codewords = srslte_vec_u8_malloc(rm_length * batch_size);
rm_symbols = srslte_vec_f_malloc(rm_length * batch_size);
rm_symbols_s = srslte_vec_i16_malloc(rm_length * batch_size);
rm_symbols_c = srslte_vec_i8_malloc(rm_length * batch_size);
symbols = srslte_vec_f_malloc(finalN * batch_size);
symbols_s = srslte_vec_i16_malloc(finalN * batch_size);
symbols_c = srslte_vec_i8_malloc(finalN * batch_size);
if (!messages_true || !messages_sim_f || !messages_sim_s || !messages_sim_c || //
!messages_sim_avx || !messages_sim_c_flood || !messages_sim_avx_flood || //
!codewords || !rm_codewords || !rm_symbols || !rm_symbols_s || !rm_symbols_c || !symbols || !symbols_s ||

@ -192,15 +192,15 @@ int main(int argc, char** argv)
printf(" Final code rate -> (K-F)/E = (%d - %d)/%d = %.3f\n", encoder.liftK, F, E, 1.0 * (encoder.liftK - F) / E);
printf("\n");
codeblocks = malloc(C * K * sizeof(uint8_t));
codewords = malloc(C * N * sizeof(uint8_t));
rm_codewords = malloc(C * E * sizeof(uint8_t));
rm_symbols = malloc(C * E * sizeof(float));
rm_symbols_s = malloc(C * E * sizeof(int16_t));
rm_symbols_c = malloc(C * E * sizeof(int8_t));
unrm_symbols = malloc(C * N * sizeof(float));
unrm_symbols_s = malloc(C * N * sizeof(int16_t));
unrm_symbols_c = malloc(C * N * sizeof(int8_t));
codeblocks = srslte_vec_u8_malloc(C * K);
codewords = srslte_vec_u8_malloc(C * N);
rm_codewords = srslte_vec_u8_malloc(C * E);
rm_symbols = srslte_vec_f_malloc(C * E);
rm_symbols_s = srslte_vec_i16_malloc(C * E);
rm_symbols_c = srslte_vec_i8_malloc(C * E);
unrm_symbols = srslte_vec_f_malloc(C * N);
unrm_symbols_s = srslte_vec_i16_malloc(C * N);
unrm_symbols_c = srslte_vec_i8_malloc(C * N);
if (!codeblocks || !codewords || !rm_codewords || !rm_symbols || !rm_symbols_s || !rm_symbols_c || !unrm_symbols ||
!unrm_symbols_s || !unrm_symbols_c) {
perror("malloc");

@ -15,6 +15,8 @@ if (HAVE_AVX2)
endif (HAVE_AVX2)
set(FEC_SOURCES ${FEC_SOURCES} ${AVX2_SOURCES}
polar/polar_chanalloc.c
polar/polar_code.c
polar/polar_encoder.c
polar/polar_encoder_pipelined.c
polar/polar_decoder.c
@ -23,6 +25,7 @@ set(FEC_SOURCES ${FEC_SOURCES} ${AVX2_SOURCES}
polar/polar_decoder_ssc_s.c
polar/polar_decoder_ssc_c.c
polar/polar_decoder_vector.c
polar/polar_rm.c
PARENT_SCOPE)
add_subdirectory(test)

@ -0,0 +1,103 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/*!
* \file polar_chanalloc.c
* \brief Definition of the subchannel allocation block.
* \author Jesus Gomez (CTTC)
* \date 2020
*
* \copyright Software Radio Systems Limited
*
*/
#include "srslte/phy/fec/polar/polar_chanalloc.h"
#include <string.h>
void srslte_polar_chanalloc_tx(const uint8_t* message,
uint8_t* input_encoder,
const uint16_t N,
const uint16_t K,
const uint8_t nPC,
const uint16_t* K_set,
const uint16_t* PC_set)
{
bzero(input_encoder, N * sizeof(uint8_t));
uint16_t i_o = 0;
if (nPC == 0) {
for (uint16_t i = 0; i < K; i++) {
i_o = K_set[i];
input_encoder[i_o] = message[i];
}
} else {
uint16_t tmpy0 = 0;
uint16_t y0 = 0;
uint16_t y1 = 0;
uint16_t y2 = 0;
uint16_t y3 = 0;
uint16_t y4 = 0;
uint16_t iKPC = 0;
uint16_t iPC = 0;
uint16_t iK = 0;
for (i_o = 0; i_o < N; i_o++) {
// circ. shift register
tmpy0 = y0;
y0 = y1;
y1 = y2;
y2 = y3;
y3 = y4;
y4 = tmpy0;
if (i_o == K_set[iKPC]) { // information bit
iKPC = iKPC + 1;
if (i_o == PC_set[iPC]) { // parity bit
iPC++;
input_encoder[i_o] = y0;
} else {
input_encoder[i_o] = message[iK];
y0 = y0 ^ message[iK];
iK++;
}
}
}
}
}
void srslte_polar_chanalloc_rx(const uint8_t* output_decoder,
uint8_t* message,
const uint16_t K,
const uint8_t nPC,
const uint16_t* K_set,
const uint16_t* PC_set)
{
uint16_t i_o = 0;
uint16_t iPC = 0;
uint16_t iK = 0;
for (uint16_t iKPC = 0; iKPC < K + nPC; iKPC++) {
i_o = K_set[iKPC]; // includes parity bits
if (i_o == PC_set[iPC]) { // skip
iPC = iPC + 1;
} else {
message[iK] = output_decoder[i_o];
iK = iK + 1;
}
}
}

@ -0,0 +1,315 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/*!
* \file polar_code.c
* \brief Definition of the function that computes the polar code parameters including,
* message set (K_Set), the frozen set (F_set), and the parity check bits set (PC_Set)..
* \author Jesus Gomez (CTTC)
* \date 2020
*
* \copyright Software Radio Systems Limited
*
* The message and parity check sets provided by this functions are needed by
* the subchannel allocation block.
* The frozen bit set provided by this function is used by the polar decoder.
*/
#include "srslte/phy/utils/vector.h"
#include <stdint.h>
#include <stdlib.h>
#include "srslte/phy/fec/polar/polar_code.h"
#include "srslte/phy/utils/debug.h"
/*!
* Extracts the elements in x that are smaller than T or are in y.
* Returns the length of the output vector z.
*/
static uint16_t
setdiff_stable(const uint16_t* x, const uint16_t* y, uint16_t* z, const int T, const uint16_t len1, const uint16_t len2)
{
uint16_t o = 0;
int flag = 0;
for (int i = 0; i < len1; i++) {
// is x[i] in y ?
flag = 0;
if (x[i] <= T) {
flag = 1;
} else {
for (int j = 0; j < len2; j++) {
if (x[i] == y[j]) {
flag = 1;
break;
}
}
}
if (flag == 0) {
z[o] = x[i];
o++;
}
}
return o;
}
/*!
* Compares two uint16_t
*/
int cmpfunc(const void* a, const void* b)
{
const uint16_t ai = *(const uint16_t*)a;
const uint16_t bi = *(const uint16_t*)b;
if (ai < bi) {
return -1;
}
if (ai > bi) {
return 1;
}
return 0;
}
/*!
* Gets the codeword length N, nPC and nWmPC depending on the code parameters.
* Returns -1 if not supported configuration, otherwise returns 0.
*/
int get_code_params(srslte_polar_code_t* c, const uint16_t K, const uint16_t E, const uint8_t nMax)
{
// include here also npc and nwmPC computatoins
if (E > EMAX) {
ERROR("Rate-matched codeword size (E) not supported. Chose E<=8192\n");
return -1;
}
switch (nMax) {
case 9: // downlink
// iil = true
if (K < 36 || K > 164) {
ERROR("Codeblock length (K) not supported for downlink transmission, choose 165 > K > 35\n");
return -1;
}
break;
case 10:
// iil = false
if (K < 18 || (K > 25 && K < 31) || K > 1023) {
ERROR("Codeblock length (K) not supported for uplink transmission, choose K > 17 and K < 1024, "
"excluding 31 > K > 25\n");
return -1;
}
break;
default:
ERROR("nMax not supported choose 9 for downlink and 10 for uplink transmissions\n");
return -1;
}
// number of parity check bits (nPC) and parity check bits of minimum bandwidth nWmPC
uint8_t nPC = 0;
uint8_t nWmPC = 0;
if (K >= 18 && K <= 25) {
nPC = 3;
if (E > K + 189) {
nWmPC = 1;
}
}
if (K + nPC >= E) {
ERROR(" Rate-matched codeword length (E) not supported, choose E > %d\n", K + nPC);
return -1;
}
// determination of the codeword size (N)
// ceil(log2(E))
uint16_t tmpE = 0;
uint8_t e = 1;
for (; e <= eMAX; e++) {
tmpE = 1U << e; // 2^e
if (tmpE >= E) {
break;
}
}
uint8_t n1 = 0;
uint8_t e_1 = e - 1;
if ((8 * E <= 9 * (1U << e_1)) && (16 * K < 9 * E)) {
n1 = e - 1;
} else {
n1 = e;
}
// ceil(log2(K))
uint16_t tmpK = 0;
uint8_t k = 0;
for (; k <= 10; k++) {
tmpK = 1U << k; // 2^e
if (tmpK >= K) {
break;
}
}
uint8_t n2 = k + 3;
// min(n1, n2, n3)
uint8_t n = n1;
if (n2 < n1) {
n = n2;
}
if (nMax < n) {
n = nMax;
}
if (n < 5) {
n = 5;
}
uint16_t N = (1U << n);
if (K >= N) {
ERROR("Codeblock length (K) not supported, choose K < N\n");
return -1;
}
c->N = N;
c->n = n;
c->nPC = nPC;
c->nWmPC = nWmPC;
return 0;
}
void srslte_polar_code_free(srslte_polar_code_t* c)
{
if (c != NULL) {
free(c->F_set);
free(c->tmp_K_set); // also removes K_set
}
}
// allocate resources to the message set, frozen set and parity set, polar code
int srslte_polar_code_init(srslte_polar_code_t* c)
{
c->tmp_K_set = srslte_vec_u16_malloc(NMAX + 1); // +1 to mark the end with 1024
if (!c->tmp_K_set) {
perror("malloc");
exit(-1);
}
c->F_set = srslte_vec_u16_malloc(NMAX);
if (!c->F_set) {
free(c->tmp_K_set);
perror("malloc");
exit(-1);
}
return 0;
}
int srslte_polar_code_get(srslte_polar_code_t* c, uint16_t K, uint16_t E, uint8_t nMax)
{
if (c == NULL) {
return -1;
}
// check polar code parameters
if (get_code_params(c, K, E, nMax) == -1) {
return -1;
}
uint8_t nPC = c->nPC;
uint8_t nWmPC = c->nWmPC;
uint8_t n = c->n;
uint16_t N = c->N;
const uint16_t* blk_interleaver = get_blk_interleaver(n);
const uint16_t* mother_code = get_mother_code(n);
c->F_set_size = N - K - nPC;
c->K = K;
// Frozen bits due to Puncturing and Shortening.
int T = -1;
int tmp_F_set_size = N - E;
int N_th = 3 * N / 4;
if (tmp_F_set_size > 0) {
if (16 * K <= 7 * E) { // Puncturing
if (E >= N_th) {
T = N_th - (E >> 1U) - 1;
} else {
T = 9 * N / 16 - (E >> 2U);
}
memcpy(c->F_set,
blk_interleaver,
tmp_F_set_size * sizeof(uint16_t)); // The first (less reliable) after interleaving
} else { // Shortening
memcpy(c->F_set,
blk_interleaver + E,
tmp_F_set_size * sizeof(uint16_t)); // The first (less reliable) after interleaving
}
} else {
tmp_F_set_size = 0;
}
int tmp_K = setdiff_stable(mother_code, c->F_set, c->tmp_K_set, T, N, tmp_F_set_size);
// Select only the most reliable (message and parity)
c->K_set = c->tmp_K_set + tmp_K - K - nPC;
// take the nPC - nWmPC less reliable
for (int i = 0; i < nPC - nWmPC; i++) {
c->PC_set[i] = c->K_set[i];
}
// This only happens if K=18:25 and E=E+189+1:8192
// In this cases there is no puncturing or shortening
if (nWmPC == 1) {
if (K <= 21) {
c->PC_set[nPC - 1] = 252;
} else {
c->PC_set[nPC - 1] = 248;
}
}
// sorted K_set (includes parity bits)
qsort(c->K_set, c->K + c->nPC, sizeof(uint16_t), &cmpfunc);
// sorted PC_set
if (nPC > 0) {
qsort(c->PC_set, nPC, sizeof(uint16_t), &cmpfunc);
}
// create the sorted frozen set as the complement of sorted K_set
uint16_t i_k = 0;
uint16_t fvalue = 0;
uint16_t i_f = 0;
while (i_f < c->F_set_size) {
if (c->K_set[i_k] == fvalue) {
i_k++; // skip
fvalue++;
} else {
c->F_set[i_f] = fvalue;
fvalue++;
i_f++;
}
}
// mark the end of the sets (useful at subchannel allocation)
c->K_set[c->K + c->nPC] = 1024;
c->PC_set[c->nPC] = 1024;
return 0;
}

@ -36,12 +36,16 @@
#include "srslte/phy/utils/debug.h"
/*! SSC Polar decoder with float LLR inputs. */
static int decode_ssc_f(void* o, const float* symbols, uint8_t* data)
static int decode_ssc_f(void* o,
const float* symbols,
uint8_t* data,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
srslte_polar_decoder_t* q = o;
init_polar_decoder_ssc_f(q->ptr, symbols, data);
init_polar_decoder_ssc_f(q->ptr, symbols, data, n, frozen_set, frozen_set_size);
polar_decoder_ssc_f(q->ptr, data);
@ -49,11 +53,16 @@ static int decode_ssc_f(void* o, const float* symbols, uint8_t* data)
}
/*! SSC Polar decoder with int16_t LLR inputs. */
static int decode_ssc_s(void* o, const int16_t* symbols, uint8_t* data)
static int decode_ssc_s(void* o,
const int16_t* symbols,
uint8_t* data,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
srslte_polar_decoder_t* q = o;
init_polar_decoder_ssc_s(q->ptr, symbols, data);
init_polar_decoder_ssc_s(q->ptr, symbols, data, n, frozen_set, frozen_set_size);
polar_decoder_ssc_s(q->ptr, data);
@ -61,11 +70,16 @@ static int decode_ssc_s(void* o, const int16_t* symbols, uint8_t* data)
}
/*! SSC Polar decoder with int8_t LLR inputs. */
static int decode_ssc_c(void* o, const int8_t* symbols, uint8_t* data)
static int decode_ssc_c(void* o,
const int8_t* symbols,
uint8_t* data,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
srslte_polar_decoder_t* q = o;
init_polar_decoder_ssc_c(q->ptr, symbols, data);
init_polar_decoder_ssc_c(q->ptr, symbols, data, n, frozen_set, frozen_set_size);
polar_decoder_ssc_c(q->ptr, data);
@ -74,11 +88,16 @@ static int decode_ssc_c(void* o, const int8_t* symbols, uint8_t* data)
#ifdef LV_HAVE_AVX2
/*! SSC Polar decoder AVX2 with int8_t LLR inputs . */
static int decode_ssc_c_avx2(void* o, const int8_t* symbols, uint8_t* data)
static int decode_ssc_c_avx2(void* o,
const int8_t* symbols,
uint8_t* data,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
srslte_polar_decoder_t* q = o;
init_polar_decoder_ssc_c_avx2(q->ptr, symbols, data);
init_polar_decoder_ssc_c_avx2(q->ptr, symbols, data, n, frozen_set, frozen_set_size);
polar_decoder_ssc_c_avx2(q->ptr, data);
@ -117,12 +136,12 @@ static void free_ssc_c_avx2(void* o)
#endif
/*! Initializes a polar decoder structure to use the SSC polar decoder algorithm with float LLR inputs. */
static int init_ssc_f(srslte_polar_decoder_t* q, uint16_t* frozen_set, uint16_t code_size_log, uint16_t frozen_set_size)
static int init_ssc_f(srslte_polar_decoder_t* q)
{
q->decode_f = decode_ssc_f;
q->free = free_ssc_f;
if ((q->ptr = create_polar_decoder_ssc_f(frozen_set, code_size_log, frozen_set_size)) == NULL) {
if ((q->ptr = create_polar_decoder_ssc_f(q->nMax)) == NULL) {
ERROR("create_polar_decoder_ssc_f failed\n");
free_ssc_f(q);
return -1;
@ -131,12 +150,12 @@ static int init_ssc_f(srslte_polar_decoder_t* q, uint16_t* frozen_set, uint16_t
}
/*! Initializes a polar decoder structure to use the SSC polar decoder algorithm with uint16_t LLR inputs. */
static int init_ssc_s(srslte_polar_decoder_t* q, uint16_t* frozen_set, uint16_t code_size_log, uint16_t frozen_set_size)
static int init_ssc_s(srslte_polar_decoder_t* q)
{
q->decode_s = decode_ssc_s;
q->free = free_ssc_s;
if ((q->ptr = create_polar_decoder_ssc_s(frozen_set, code_size_log, frozen_set_size)) == NULL) {
if ((q->ptr = create_polar_decoder_ssc_s(q->nMax)) == NULL) {
ERROR("create_polar_decoder_ssc_s failed\n");
free_ssc_s(q);
return -1;
@ -145,12 +164,12 @@ static int init_ssc_s(srslte_polar_decoder_t* q, uint16_t* frozen_set, uint16_t
}
/*! Initializes a polar decoder structure to use the SSC polar decoder algorithm with uint8_t LLR inputs. */
static int init_ssc_c(srslte_polar_decoder_t* q, uint16_t* frozen_set, uint16_t code_size_log, uint16_t frozen_set_size)
static int init_ssc_c(srslte_polar_decoder_t* q)
{
q->decode_c = decode_ssc_c;
q->free = free_ssc_c;
if ((q->ptr = create_polar_decoder_ssc_c(frozen_set, code_size_log, frozen_set_size)) == NULL) {
if ((q->ptr = create_polar_decoder_ssc_c(q->nMax)) == NULL) {
ERROR("create_polar_decoder_ssc_c failed\n");
free_ssc_c(q);
return -1;
@ -161,13 +180,12 @@ static int init_ssc_c(srslte_polar_decoder_t* q, uint16_t* frozen_set, uint16_t
#ifdef LV_HAVE_AVX2
/*! Initializes a polar decoder structure to use the SSC polar decoder algorithm with uint8_t LLR inputs and AVX2
* instructions. */
static int
init_ssc_c_avx2(srslte_polar_decoder_t* q, uint16_t* frozen_set, uint16_t code_size_log, uint16_t frozen_set_size)
static int init_ssc_c_avx2(srslte_polar_decoder_t* q)
{
q->decode_c = decode_ssc_c_avx2;
q->free = free_ssc_c_avx2;
if ((q->ptr = create_polar_decoder_ssc_c_avx2(frozen_set, code_size_log, frozen_set_size)) == NULL) {
if ((q->ptr = create_polar_decoder_ssc_c_avx2(q->nMax)) == NULL) {
ERROR("create_polar_decoder_ssc_c failed\n");
free_ssc_c_avx2(q);
return -1;
@ -176,22 +194,19 @@ init_ssc_c_avx2(srslte_polar_decoder_t* q, uint16_t* frozen_set, uint16_t code_s
}
#endif
int srslte_polar_decoder_init(srslte_polar_decoder_t* q,
srslte_polar_decoder_type_t type,
uint16_t code_size_log,
uint16_t* frozen_set,
uint16_t frozen_set_size)
int srslte_polar_decoder_init(srslte_polar_decoder_t* q, srslte_polar_decoder_type_t type, const uint8_t nMax)
{
q->nMax = nMax;
switch (type) {
case SRSLTE_POLAR_DECODER_SSC_F:
return init_ssc_f(q, frozen_set, code_size_log, frozen_set_size);
return init_ssc_f(q);
case SRSLTE_POLAR_DECODER_SSC_S:
return init_ssc_s(q, frozen_set, code_size_log, frozen_set_size);
return init_ssc_s(q);
case SRSLTE_POLAR_DECODER_SSC_C:
return init_ssc_c(q, frozen_set, code_size_log, frozen_set_size);
return init_ssc_c(q);
#ifdef LV_HAVE_AVX2
case SRSLTE_POLAR_DECODER_SSC_C_AVX2:
return init_ssc_c_avx2(q, frozen_set, code_size_log, frozen_set_size);
return init_ssc_c_avx2(q);
#endif
default:
ERROR("Decoder not implemented\n");
@ -208,17 +223,44 @@ void srslte_polar_decoder_free(srslte_polar_decoder_t* q)
memset(q, 0, sizeof(srslte_polar_decoder_t));
}
int srslte_polar_decoder_decode_f(srslte_polar_decoder_t* q, const float* llr, uint8_t* data_decoded)
int srslte_polar_decoder_decode_f(srslte_polar_decoder_t* q,
const float* llr,
uint8_t* data_decoded,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
return q->decode_f(q, llr, data_decoded);
if (q->nMax >= n) {
return q->decode_f(q, llr, data_decoded, n, frozen_set, frozen_set_size);
}
return -1;
}
int srslte_polar_decoder_decode_s(srslte_polar_decoder_t* q, const int16_t* llr, uint8_t* data_decoded)
int srslte_polar_decoder_decode_s(srslte_polar_decoder_t* q,
const int16_t* llr,
uint8_t* data_decoded,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
return q->decode_s(q, llr, data_decoded);
if (q->nMax >= n) {
return q->decode_s(q, llr, data_decoded, n, frozen_set, frozen_set_size);
}
return -1;
}
int srslte_polar_decoder_decode_c(srslte_polar_decoder_t* q, const int8_t* llr, uint8_t* data_decoded)
int srslte_polar_decoder_decode_c(srslte_polar_decoder_t* q,
const int8_t* llr,
uint8_t* data_decoded,
const uint8_t n,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
return q->decode_c(q, llr, data_decoded);
if (q->nMax >= n) {
return q->decode_c(q, llr, data_decoded, n, frozen_set, frozen_set_size);
}
return -1;
}

@ -22,6 +22,138 @@
*/
#include "polar_decoder_ssc_all.h"
#include "../utils_avx2.h"
#include "srslte/phy/utils/vector.h"
/*!
* \brief Structure with pointers needed to obtain the node_type
*/
struct Tmp_node_type {
uint8_t* is_not_rate_0; /*!< \brief Pointers to a temporary buffer. */
uint8_t* is_rate_1; /*!< \brief Pointers to a temporary buffer. */
uint16_t* i_even; /*!< \brief Pointers to a temporary buffer. */
uint16_t* i_odd; /*!< \brief Pointers to a temporary buffer. */
};
void* create_tmp_node_type(const uint8_t nMax)
{
struct Tmp_node_type* tmp = NULL;
// allocate memory to the polar decoder instance
if ((tmp = malloc(sizeof(struct Tmp_node_type))) == NULL) {
return NULL;
}
SRSLTE_MEM_ZERO(tmp, struct Tmp_node_type, 1);
uint16_t max_code_size = (1U << nMax);
uint8_t nMax_1 = nMax - 1;
uint16_t max_code_half_size = (1U << nMax_1);
tmp->is_not_rate_0 = srslte_vec_u8_malloc(2 * max_code_size);
if (!tmp->is_not_rate_0) {
free(tmp);
perror("malloc");
return NULL;
}
tmp->is_rate_1 = tmp->is_not_rate_0 + max_code_size;
tmp->i_odd = srslte_vec_u16_malloc(max_code_half_size);
if (!tmp->i_odd) {
free(tmp->is_not_rate_0);
free(tmp);
perror("malloc");
return NULL;
}
tmp->i_even = srslte_vec_u16_malloc(max_code_half_size);
if (!tmp->i_even) {
free(tmp->is_not_rate_0);
free(tmp->i_odd);
free(tmp);
perror("malloc");
return NULL;
}
return tmp;
}
void delete_tmp_node_type(void* p)
{
struct Tmp_node_type* pp = p;
if (p != NULL) {
free(pp->i_even);
free(pp->i_odd);
free(pp->is_not_rate_0); // it also removes is_rate_1
free(pp);
}
}
int compute_node_type(void* p,
uint8_t** node_type,
const uint16_t* frozen_set,
const uint16_t code_size_log,
const uint16_t frozen_set_size)
{
struct Tmp_node_type* tmp = p;
if (p == NULL) {
return -1;
}
uint8_t s = 0; // stage
uint8_t* is_not_rate_0 = tmp->is_not_rate_0;
uint8_t* is_rate_1 = tmp->is_rate_1;
uint16_t* i_even = tmp->i_even;
uint16_t* i_odd = tmp->i_odd;
uint16_t code_size = (1U << code_size_log);
uint8_t code_size_log_1 = code_size_log - 1;
uint16_t code_half_size = (1U << code_size_log_1);
memset(i_even, 0, code_half_size);
memset(i_odd, 0, code_half_size);
for (uint16_t i = 0; i < code_half_size; i++) {
i_even[i] = 2 * i;
i_odd[i] = 2 * i + 1;
}
// node_type = is_not_rate_0_node: 0 if rate 0, 1 if not rate 0.
memset(is_not_rate_0, 1, code_size);
memset(is_rate_1, 1, code_size);
for (uint16_t i = 0; i < frozen_set_size; i++) {
is_not_rate_0[frozen_set[i]] = 0;
is_rate_1[frozen_set[i]] = 0;
}
s = 0;
for (uint16_t j = 0; j < code_size; j++) {
node_type[s][j] = 3 * is_not_rate_0[j]; // 0 if rate-0; 2 if rate-r; 3 if rate 1
}
uint16_t code_stage_size = 0;
uint16_t code_size_log_s = 0;
for (s = 1; s < code_size_log + 1; s++) {
code_size_log_s = code_size_log - s;
code_stage_size = (1U << code_size_log_s);
for (uint16_t j = 0; j < code_stage_size; j++) {
is_not_rate_0[j] = is_not_rate_0[i_even[j]] | is_not_rate_0[i_odd[j]]; // bitor
is_rate_1[j] = is_rate_1[i_even[j]] & is_rate_1[i_odd[j]]; // bitand
node_type[s][j] = 2 * is_not_rate_0[j] + is_rate_1[j]; // 0 if rate-0; 2 if rate-r; 3 if rate 1
}
}
#ifdef debug
for (s = 0; s < code_size_log + 1; s++) {
printf("Node types (%d): ", s);
code_stage_size = (1U << (code_size_log - s));
for (uint16_t j = 0; j < code_stage_size; j++) {
printf("%d ", node_type[s][j]);
}
printf("\n");
}
#endif
return 0;
}
int init_node_type(const uint16_t* frozen_set, struct Params* param)
{
@ -35,21 +167,21 @@ int init_node_type(const uint16_t* frozen_set, struct Params* param)
uint16_t code_size = param->code_stage_size[param->code_size_log];
uint16_t code_half_size = param->code_stage_size[param->code_size_log - 1];
is_not_rate_0 = aligned_alloc(SRSLTE_AVX2_B_SIZE, 2 * code_size * sizeof(uint8_t));
is_not_rate_0 = srslte_vec_u8_malloc(2 * code_size);
if (!is_not_rate_0) {
perror("malloc");
return -1;
}
is_rate_1 = is_not_rate_0 + code_size;
i_odd = malloc(code_half_size * sizeof(uint16_t));
i_odd = srslte_vec_u16_malloc(code_half_size);
if (!i_odd) {
free(is_not_rate_0);
perror("malloc");
return -1;
}
i_even = malloc(code_half_size * sizeof(uint16_t));
i_even = srslte_vec_u16_malloc(code_half_size);
if (!i_even) {
free(is_not_rate_0);
free(i_odd);

@ -66,4 +66,31 @@ struct State {
*/
int init_node_type(const uint16_t* frozen_set, struct Params* param);
/*!
* Computes node types for the decoding tree associated to the given frozen set.
* \param[in] p Pointer of a Tmp_node_type structure with the memory resources needed.
* \param[out] node_type Double pointer containing the node type at each stage of the decoding tree.
* \param[in] code_size_log \f$log_2\f$ of code size.
* \param[in] frozen_set The position of the frozen bits in the codeword.
* \param[in] frozen_set_size The size of the frozen set.
*/
int compute_node_type(void* p,
uint8_t** node_type,
const uint16_t* frozen_set,
const uint16_t code_size_log,
const uint16_t frozen_set_size);
/*!
* The "destructor" of the memory resources used to compute the node types.
* \param[in, out] p A pointer to the dismantled resources..
*/
void delete_tmp_node_type(void* p);
/*!
* Allocates memory resources for the computation of the node_type.
* \param[in] nMax \f$log_2\f$ of the maximum number of bits in the codeword.
* \return A pointer to a Tmp_node_type structure if the function executes correctly, NULL otherwise.
*/
void* create_tmp_node_type(const uint8_t nMax);
#endif // polar_decoder_SSC_ALL_H

@ -41,12 +41,13 @@
* \brief Describes an SSC polar decoder (8-bit version).
*/
struct pSSC_c {
int8_t** llr0; /*!< \brief Pointers to the upper half of LLRs values at all stages. */
int8_t** llr1; /*!< \brief Pointers to the lower half of LLRs values at all stages. */
uint8_t* est_bit; /*!< \brief Pointers to the temporary estimated bits. */
struct Params* param; /*!< \brief Pointer to a Params structure. */
struct State* state; /*!< \brief Pointer to a State. */
srslte_polar_encoder_t* enc; /*!< \brief Pointer to a srslte_polar_encoder_t. */
int8_t** llr0; /*!< \brief Pointers to the upper half of LLRs values at all stages. */
int8_t** llr1; /*!< \brief Pointers to the lower half of LLRs values at all stages. */
uint8_t* est_bit; /*!< \brief Pointers to the temporary estimated bits. */
struct Params* param; /*!< \brief Pointer to a Params structure. */
struct State* state; /*!< \brief Pointer to a State. */
void* tmp_node_type; /*!< \brief Pointer to a Tmp_node_type. */
srslte_polar_encoder_t* enc; /*!< \brief Pointer to a srslte_polar_encoder_t. */
void (*f)(const int8_t* x, const int8_t* y, int8_t* z, const uint16_t len); /*!< \brief Pointer to the function-f. */
void (*g)(const uint8_t* b,
const int8_t* x,
@ -94,7 +95,12 @@ static void rate_1_node(void* p, uint8_t* message);
*/
static void rate_r_node(void* p, uint8_t* message);
int init_polar_decoder_ssc_c(void* p, const int8_t* input_llr, uint8_t* data_decoded)
int init_polar_decoder_ssc_c(void* p,
const int8_t* input_llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
struct pSSC_c* pp = p;
@ -102,9 +108,9 @@ int init_polar_decoder_ssc_c(void* p, const int8_t* input_llr, uint8_t* data_dec
return -1;
}
uint8_t code_size_log = pp->param->code_size_log; // code_size_log.
int16_t code_size = pp->param->code_stage_size[code_size_log];
int16_t code_half_size = pp->param->code_stage_size[code_size_log - 1];
pp->param->code_size_log = code_size_log;
int16_t code_size = pp->param->code_stage_size[code_size_log];
int16_t code_half_size = pp->param->code_stage_size[code_size_log - 1];
// Initializes the data_decoded_vector to all zeros
memset(data_decoded, 0, code_size);
@ -125,6 +131,12 @@ int init_polar_decoder_ssc_c(void* p, const int8_t* input_llr, uint8_t* data_dec
}
pp->state->flag_finished = false;
// frozen_set
pp->param->frozen_set_size = frozen_set_size;
// computes the node types for the decoding tree
compute_node_type(pp->tmp_node_type, pp->param->node_type, frozen_set, code_size_log, frozen_set_size);
return 0;
}
@ -144,23 +156,46 @@ void delete_polar_decoder_ssc_c(void* p)
struct pSSC_c* pp = p;
if (p != NULL) {
free(pp->llr0[0]); // remove LLR buffer.
free(pp->llr0);
free(pp->llr1);
free(pp->param->node_type[0]);
free(pp->param->node_type);
free(pp->est_bit); // remove estbits buffer.
free(pp->param->code_stage_size);
free(pp->param);
free(pp->state->active_node_per_stage);
free(pp->state);
srslte_polar_encoder_free(pp->enc);
free(pp->enc);
if (pp->llr0) {
if (pp->llr0[0]) {
free(pp->llr0[0]); // remove LLR buffer.
}
free(pp->llr0);
}
if (pp->llr1) {
free(pp->llr1);
}
if (pp->param) {
if (pp->param->node_type) {
if (pp->param->node_type[0]) {
free(pp->param->node_type[0]);
}
free(pp->param->node_type);
}
if (pp->param->code_stage_size) {
free(pp->param->code_stage_size);
}
free(pp->param);
}
if (pp->est_bit) {
free(pp->est_bit); // remove estbits buffer.
}
if (pp->state) {
free(pp->state->active_node_per_stage);
free(pp->state);
}
if (pp->enc) {
srslte_polar_encoder_free(pp->enc);
free(pp->enc);
}
if (pp->tmp_node_type) {
delete_tmp_node_type(pp->tmp_node_type);
}
free(pp);
}
}
void* create_polar_decoder_ssc_c(uint16_t* frozen_set, const uint8_t code_size_log, const uint16_t frozen_set_size)
void* create_polar_decoder_ssc_c(const uint8_t nMax)
{
struct pSSC_c* pp = NULL; // pointer to the polar decoder instance
@ -168,6 +203,7 @@ void* create_polar_decoder_ssc_c(uint16_t* frozen_set, const uint8_t code_size_l
if ((pp = malloc(sizeof(struct pSSC_c))) == NULL) {
return NULL;
}
SRSLTE_MEM_ZERO(pp, struct pSSC_c, 1);
// set functions
pp->f = srslte_vec_function_f_ccc;
@ -176,33 +212,28 @@ void* create_polar_decoder_ssc_c(uint16_t* frozen_set, const uint8_t code_size_l
pp->hard_bit = srslte_vec_hard_bit_cc;
// encoder of maximum size
if ((pp->enc = malloc(sizeof(srslte_polar_encoder_t))) == NULL) {
free(pp);
if ((pp->enc = SRSLTE_MEM_ALLOC(srslte_polar_encoder_t, 1)) == NULL) {
delete_polar_decoder_ssc_c(pp);
return NULL;
}
srslte_polar_encoder_init(pp->enc, SRSLTE_POLAR_ENCODER_PIPELINED, code_size_log);
srslte_polar_encoder_init(pp->enc, SRSLTE_POLAR_ENCODER_PIPELINED, nMax);
// algorithm constants/parameters
if ((pp->param = malloc(sizeof(struct Params))) == NULL) {
free(pp->enc);
free(pp);
if ((pp->param = SRSLTE_MEM_ALLOC(struct Params, 1)) == NULL) {
delete_polar_decoder_ssc_c(pp);
return NULL;
}
if ((pp->param->code_stage_size = malloc((code_size_log + 1) * sizeof(uint16_t))) == NULL) {
free(pp->param);
free(pp->enc);
free(pp);
if ((pp->param->code_stage_size = srslte_vec_u16_malloc(nMax + 1)) == NULL) {
delete_polar_decoder_ssc_c(pp);
return NULL;
}
pp->param->code_stage_size[0] = 1;
for (uint8_t i = 1; i < code_size_log + 1; i++) {
for (uint8_t i = 1; i < nMax + 1; i++) {
pp->param->code_stage_size[i] = 2 * pp->param->code_stage_size[i - 1];
}
pp->param->code_size_log = code_size_log;
// state -- initialized in polar_decoder_ssc_init
if ((pp->state = malloc(sizeof(struct State))) == NULL) {
free(pp->param->code_stage_size);
@ -211,7 +242,7 @@ void* create_polar_decoder_ssc_c(uint16_t* frozen_set, const uint8_t code_size_l
free(pp);
return NULL;
}
if ((pp->state->active_node_per_stage = malloc((code_size_log + 1) * sizeof(uint16_t))) == NULL) {
if ((pp->state->active_node_per_stage = srslte_vec_u16_malloc(nMax + 1)) == NULL) {
free(pp->state);
free(pp->param->code_stage_size);
free(pp->param);
@ -221,13 +252,13 @@ void* create_polar_decoder_ssc_c(uint16_t* frozen_set, const uint8_t code_size_l
}
// allocates memory for estimated bits per stage
uint16_t est_bits_size = pp->param->code_stage_size[code_size_log];
uint16_t est_bits_size = pp->param->code_stage_size[nMax];
pp->est_bit = aligned_alloc(SRSLTE_AVX2_B_SIZE, est_bits_size); // every 32 chars are aligned
pp->est_bit = srslte_vec_u8_malloc(est_bits_size); // every 32 chars are aligned
// allocate memory for LLR pointers.
pp->llr0 = malloc((code_size_log + 1) * sizeof(int8_t*));
pp->llr1 = malloc((code_size_log + 1) * sizeof(int8_t*));
pp->llr0 = malloc((nMax + 1) * sizeof(int8_t*));
pp->llr1 = malloc((nMax + 1) * sizeof(int8_t*));
// There are LLR buffers for n = 0 to n = code_size_log. Each with size 2^n. Thus,
// the total memory needed is 2^(n+1)-1.
@ -237,10 +268,10 @@ void* create_polar_decoder_ssc_c(uint16_t* frozen_set, const uint8_t code_size_l
// i.e. in a SIMD instruction we can load 2^(n_simd_llr) LLR values
// then the memory for stages s >= n_simd_llr - 1 is aligned.
// but only the operations at stages s > n_simd_llr have all the inputs aligned.
uint8_t n_llr_all_stages = code_size_log + 1; // there are 2^(n_llr_all_stages) - 1 LLR values summing up all stages.
uint8_t n_llr_all_stages = nMax + 1; // there are 2^(n_llr_all_stages) - 1 LLR values summing up all stages.
uint16_t llr_all_stages = 1U << n_llr_all_stages;
pp->llr0[0] = aligned_alloc(SRSLTE_AVX2_B_SIZE, llr_all_stages * sizeof(int8_t)); // 32*8=256
pp->llr0[0] = srslte_vec_i8_malloc(llr_all_stages); // 32*8=256
// allocate memory to the polar decoder instance
if (pp->llr0[0] == NULL) {
free(pp->est_bit);
@ -254,18 +285,17 @@ void* create_polar_decoder_ssc_c(uint16_t* frozen_set, const uint8_t code_size_l
// initialize all LLR pointers
pp->llr1[0] = pp->llr0[0] + 1;
for (uint8_t s = 1; s < code_size_log + 1; s++) {
for (uint8_t s = 1; s < nMax + 1; s++) {
pp->llr0[s] = pp->llr0[0] + pp->param->code_stage_size[s];
pp->llr1[s] = pp->llr0[0] + pp->param->code_stage_size[s] + pp->param->code_stage_size[s - 1];
}
// allocate memory for node type pointers, one per stage.
pp->param->frozen_set_size = frozen_set_size;
pp->param->node_type = malloc((code_size_log + 1) * sizeof(uint8_t*));
pp->param->node_type = malloc((nMax + 1) * sizeof(uint8_t*));
// allocate memory to node_type_ssc. Stage s has 2^(N-s) nodes s=0,...,N.
// Thus, same size as LLRs all stages.
pp->param->node_type[0] = aligned_alloc(SRSLTE_AVX2_B_SIZE, llr_all_stages * sizeof(uint8_t)); // 32*8=256
pp->param->node_type[0] = srslte_vec_u8_malloc(llr_all_stages); // 32*8=256
if (pp->param->node_type[0] == NULL) {
free(pp->param->node_type);
@ -279,11 +309,24 @@ void* create_polar_decoder_ssc_c(uint16_t* frozen_set, const uint8_t code_size_l
}
// initialize all node type pointers. (stage 0 is the first, opposite to LLRs)
for (uint8_t s = 1; s < code_size_log + 1; s++) {
pp->param->node_type[s] = pp->param->node_type[s - 1] + pp->param->code_stage_size[code_size_log - s + 1];
for (uint8_t s = 1; s < nMax + 1; s++) {
pp->param->node_type[s] = pp->param->node_type[s - 1] + pp->param->code_stage_size[nMax - s + 1];
}
init_node_type(frozen_set, pp->param);
// memory allocation to compute node_type
pp->tmp_node_type = create_tmp_node_type(nMax);
if (pp->tmp_node_type == NULL) {
free(pp->param->node_type[0]);
free(pp->llr0[0]);
free(pp->llr1);
free(pp->llr0);
free(pp->state);
free(pp->param->code_stage_size);
free(pp->param);
free(pp->enc);
free(pp);
return NULL;
}
return pp;
}

@ -30,13 +30,10 @@
* This function is exactly the same as the one for the floating-point version.
* Note, however, that it works with a different pSSC structure (different function pointers
* pSSC::f, pSSC::f, pSSC::g, pSSC::xor and pSSC::hard_bit).
*
* \param[in] frozen_set The position of the frozen bits in the codeword.
* \param[in] frozen_set_size Number of frozen bits.
* \param[in] code_size_log \f$log_2\f$ of the number of bits in the codeword.
* \param[in] nMax \f$log_2\f$ of the number of bits in the codeword.
* \return A pointer to a pSSC structure if the function executes correctly, NULL otherwise.
*/
void* create_polar_decoder_ssc_c(uint16_t* frozen_set, uint8_t code_size_log, uint16_t frozen_set_size);
void* create_polar_decoder_ssc_c(uint8_t nMax);
/*!
* The (8-bit) polar decoder SSC "destructor": it frees all the resources allocated to the decoder.
@ -51,9 +48,17 @@ void delete_polar_decoder_ssc_c(void* p);
* \param[in, out] p A void pointer used to declare a pSSC structure.
* \param[in] llr LLRs for the new codeword.
* \param[out] data_decoded Pointer to the decoded message.
* \param[in] code_size_log \f$log_2\f$ of the number of bits in the codeword.
* \param[in] frozen_set The position of the frozen bits in increasing order.
* \param[in] frozen_set_size The size of the frozen_set.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
int init_polar_decoder_ssc_c(void* p, const int8_t* llr, uint8_t* data_decoded);
int init_polar_decoder_ssc_c(void* p,
const int8_t* llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size);
/*!
* Decodes a data message from a 8 bit resolution codeword with the specified decoder. Note that

@ -42,12 +42,13 @@ struct StateAVX2 {
* \brief Describes an SSC polar decoder (8-bit version).
*/
struct pSSC_c_avx2 {
int8_t** llr0; /*!< \brief Pointers to the upper half of LLRs values at all stages. */
int8_t** llr1; /*!< \brief Pointers to the lower half of LLRs values at all stages. */
uint8_t* est_bit; /*!< \brief Pointers to the temporary estimated bits. */
struct Params* param; /*!< \brief Pointer to a Params structure. */
struct StateAVX2* state; /*!< \brief Pointer to a State. */
srslte_polar_encoder_t* enc; /*!< \brief Pointer to a srslte_polar_encoder_t. */
int8_t** llr0; /*!< \brief Pointers to the upper half of LLRs values at all stages. */
int8_t** llr1; /*!< \brief Pointers to the lower half of LLRs values at all stages. */
uint8_t* est_bit; /*!< \brief Pointers to the temporary estimated bits. */
struct Params* param; /*!< \brief Pointer to a Params structure. */
struct StateAVX2* state; /*!< \brief Pointer to a State. */
void* tmp_node_type; /*!< \brief Pointer to a Tmp_node_type. */
srslte_polar_encoder_t* enc; /*!< \brief Pointer to a srslte_polar_encoder_t. */
void (*f)(const int8_t* x, const int8_t* y, int8_t* z, const uint16_t len); /*!< \brief Pointer to the function-f. */
void (*g)(const uint8_t* b,
const int8_t* x,
@ -96,22 +97,45 @@ void delete_polar_decoder_ssc_c_avx2(void* p)
struct pSSC_c_avx2* pp = p;
if (p != NULL) {
free(pp->llr0[0]); // remove LLR buffer.
free(pp->llr0);
free(pp->llr1);
free(pp->param->node_type[0]);
free(pp->param->node_type);
free(pp->est_bit); // remove estbits buffer.
free(pp->param->code_stage_size);
free(pp->param);
free(pp->state);
srslte_polar_encoder_free(pp->enc);
free(pp->enc);
if (pp->llr0[0]) {
free(pp->llr0[0]); // remove LLR buffer.
}
if (pp->llr0) {
free(pp->llr0);
}
if (pp->llr1) {
free(pp->llr1);
}
if (pp->param) {
if (pp->param->node_type[0]) {
free(pp->param->node_type[0]);
}
if (pp->param->node_type) {
free(pp->param->node_type);
}
if (pp->param->code_stage_size) {
free(pp->param->code_stage_size);
}
free(pp->param);
}
if (pp->est_bit) {
free(pp->est_bit); // remove estbits buffer.
}
if (pp->state) {
free(pp->state);
}
if (pp->enc) {
srslte_polar_encoder_free(pp->enc);
free(pp->enc);
}
if (pp->tmp_node_type) {
delete_tmp_node_type(pp->tmp_node_type);
}
free(pp);
}
}
void* create_polar_decoder_ssc_c_avx2(uint16_t* frozen_set, const uint8_t code_size_log, const uint16_t frozen_set_size)
void* create_polar_decoder_ssc_c_avx2(const uint8_t nMax)
{
struct pSSC_c_avx2* pp = NULL; // pointer to the polar decoder instance
// allocate memory to the polar decoder instance
@ -131,7 +155,7 @@ void* create_polar_decoder_ssc_c_avx2(uint16_t* frozen_set, const uint8_t code_s
return NULL;
}
srslte_polar_encoder_init(pp->enc, SRSLTE_POLAR_ENCODER_AVX2, code_size_log);
srslte_polar_encoder_init(pp->enc, SRSLTE_POLAR_ENCODER_AVX2, nMax);
// algorithm constants/parameters
if ((pp->param = malloc(sizeof(struct Params))) == NULL) {
@ -140,8 +164,7 @@ void* create_polar_decoder_ssc_c_avx2(uint16_t* frozen_set, const uint8_t code_s
return NULL;
}
printf("-- code_stage_size=%d;\n", code_size_log + 1);
if ((pp->param->code_stage_size = srslte_vec_u16_malloc(code_size_log + 1)) == NULL) {
if ((pp->param->code_stage_size = srslte_vec_u16_malloc(nMax + 1)) == NULL) {
free(pp->param);
free(pp->enc);
free(pp);
@ -149,12 +172,10 @@ void* create_polar_decoder_ssc_c_avx2(uint16_t* frozen_set, const uint8_t code_s
}
pp->param->code_stage_size[0] = 1;
for (uint8_t i = 1; i < code_size_log + 1; i++) {
for (uint8_t i = 1; i < nMax + 1; i++) {
pp->param->code_stage_size[i] = 2 * pp->param->code_stage_size[i - 1];
}
pp->param->code_size_log = code_size_log;
// state -- initialized in polar_decoder_ssc_init
if ((pp->state = malloc(sizeof(struct StateAVX2))) == NULL) {
free(pp->param->code_stage_size);
@ -166,13 +187,13 @@ void* create_polar_decoder_ssc_c_avx2(uint16_t* frozen_set, const uint8_t code_s
// allocates memory for estimated bits per stage
// allocates extra SRSLTE_AVX2_B_SIZE bytes to allow store the output of 256-bit instructions
int est_bit_size = pp->param->code_stage_size[code_size_log] + SRSLTE_AVX2_B_SIZE;
int est_bit_size = pp->param->code_stage_size[nMax] + SRSLTE_AVX2_B_SIZE;
pp->est_bit = aligned_alloc(SRSLTE_AVX2_B_SIZE, est_bit_size); // every 32 chars are aligned
pp->est_bit = srslte_vec_u8_malloc(est_bit_size); // every 32 chars are aligned
// allocate memory for LLR pointers.
pp->llr0 = malloc((code_size_log + 1) * sizeof(int8_t*));
pp->llr1 = malloc((code_size_log + 1) * sizeof(int8_t*));
pp->llr0 = malloc((nMax + 1) * sizeof(int8_t*));
pp->llr1 = malloc((nMax + 1) * sizeof(int8_t*));
// LLR MEMORY NOT ALIGNED FOR LLR_BUFFERS_SIZE < SRSLTE_SIMB_LLR_ALIGNED
@ -180,7 +201,7 @@ void* create_polar_decoder_ssc_c_avx2(uint16_t* frozen_set, const uint8_t code_s
// operation, the second half of the output vector needs to be moved to the next
// aligned position. This extra operation may incur more overhead that the gain of aligned memory.
uint8_t n_llr_all_stages = code_size_log + 1; // there are 2^(n_llr_all_stages) - 1 LLR values summing up all stages.
uint8_t n_llr_all_stages = nMax + 1; // there are 2^(n_llr_all_stages) - 1 LLR values summing up all stages.
uint16_t llr_all_stages = 1U << n_llr_all_stages;
// Reserve at least SRSLTE_AVX2_B_SIZE bytes for each stage, so that there is space for the output
@ -188,65 +209,63 @@ void* create_polar_decoder_ssc_c_avx2(uint16_t* frozen_set, const uint8_t code_s
// llr1 (second half) of lower stages is not aligned.
uint16_t llr_all_stages_avx2 = llr_all_stages;
if (code_size_log >= 5) {
if (nMax >= 5) {
llr_all_stages_avx2 += SRSLTE_AVX2_B_SIZE * 5;
} else {
llr_all_stages_avx2 += (code_size_log + 1) * SRSLTE_AVX2_B_SIZE;
llr_all_stages_avx2 += (nMax + 1) * SRSLTE_AVX2_B_SIZE;
}
// add extra SRSLTE_AVX2_B_SIZE llrs positions for hard_bit functions on the last bits have
// access to allocated memory
llr_all_stages_avx2 += SRSLTE_AVX2_B_SIZE;
pp->llr0[0] = aligned_alloc(SRSLTE_AVX2_B_SIZE, llr_all_stages_avx2 * sizeof(int8_t)); // 32*8=256
pp->llr0[0] = srslte_vec_i8_malloc(llr_all_stages_avx2); // 32*8=256
// allocate memory to the polar decoder instance
if (pp->llr0[0] == NULL) {
free(pp->est_bit);
free(pp->state);
free(pp->param->code_stage_size);
free(pp->param);
free(pp->enc);
free(pp);
delete_polar_decoder_ssc_c_avx2(pp);
return NULL;
}
pp->llr1[0] = pp->llr0[0] + 1;
for (uint8_t s = 1; s < code_size_log + 1; s++) {
for (uint8_t s = 1; s < nMax + 1; s++) {
pp->llr0[s] = pp->llr0[s - 1] + max(SRSLTE_AVX2_B_SIZE, pp->param->code_stage_size[s - 1]);
pp->llr1[s] = pp->llr0[s] + pp->param->code_stage_size[s - 1];
}
// allocate memory for node type pointers, one per stage.
pp->param->frozen_set_size = frozen_set_size;
pp->param->node_type = malloc((code_size_log + 1) * sizeof(uint8_t*));
pp->param->node_type = SRSLTE_MEM_ALLOC(uint8_t*, nMax + 1);
// allocate memory to node_type_ssc. Stage s has 2^(N-s) nodes s=0,...,N.
// Thus, same size as LLRs all stages.
pp->param->node_type[0] = aligned_alloc(SRSLTE_AVX2_B_SIZE, llr_all_stages * sizeof(uint8_t)); // 32*8=256
pp->param->node_type[0] = srslte_vec_u8_malloc(llr_all_stages); // 32*8=256
if (pp->param->node_type[0] == NULL) {
free(pp->param->node_type);
free(pp->est_bit);
free(pp->state);
free(pp->param->code_stage_size);
free(pp->param);
free(pp->enc);
free(pp);
delete_polar_decoder_ssc_c_avx2(pp);
return NULL;
}
// initialize all node type pointers. (stage 0 is the first, opposite to LLRs)
for (uint8_t s = 1; s < code_size_log + 1; s++) {
pp->param->node_type[s] = pp->param->node_type[s - 1] + pp->param->code_stage_size[code_size_log - s + 1];
for (uint8_t s = 1; s < nMax + 1; s++) {
pp->param->node_type[s] = pp->param->node_type[s - 1] + pp->param->code_stage_size[nMax - s + 1];
}
init_node_type(frozen_set, pp->param);
// memory allocation to compute node_type
pp->tmp_node_type = create_tmp_node_type(nMax);
if (pp->tmp_node_type == NULL) {
delete_polar_decoder_ssc_c_avx2(pp);
return NULL;
}
return pp;
}
int init_polar_decoder_ssc_c_avx2(void* p, const int8_t* input_llr, uint8_t* data_decoded)
int init_polar_decoder_ssc_c_avx2(void* p,
const int8_t* input_llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
struct pSSC_c_avx2* pp = p;
@ -254,9 +273,9 @@ int init_polar_decoder_ssc_c_avx2(void* p, const int8_t* input_llr, uint8_t* dat
return -1;
}
uint8_t code_size_log = pp->param->code_size_log;
int16_t code_size = pp->param->code_stage_size[code_size_log];
int16_t code_half_size = pp->param->code_stage_size[code_size_log - 1];
pp->param->code_size_log = code_size_log;
int16_t code_size = pp->param->code_stage_size[code_size_log];
int16_t code_half_size = pp->param->code_stage_size[code_size_log - 1];
// Initializes the data_decoded_vector to all zeros
memset(data_decoded, 0, code_size);
@ -273,6 +292,12 @@ int init_polar_decoder_ssc_c_avx2(void* p, const int8_t* input_llr, uint8_t* dat
pp->state->stage = code_size_log + 1; // start from the only one node at the last stage + 1.
pp->state->bit_pos = 0;
// frozen_set
pp->param->frozen_set_size = frozen_set_size;
// computes the node types for the decoding tree
compute_node_type(pp->tmp_node_type, pp->param->node_type, frozen_set, code_size_log, frozen_set_size);
return 0;
}
@ -309,9 +334,6 @@ static void simplified_node(struct pSSC_c_avx2* p)
uint16_t stage_size = pp->param->code_stage_size[stage];
uint16_t stage_half_size = 0;
if (stage > 0) {
stage_half_size = pp->param->code_stage_size[stage - 1];
}
switch (pp->param->node_type[stage][bit_pos]) {
@ -327,6 +349,8 @@ static void simplified_node(struct pSSC_c_avx2* p)
case RATE_R:
stage_half_size = pp->param->code_stage_size[stage - 1];
// compute_function_f(pp);
pp->f(pp->llr0[stage], pp->llr1[stage], pp->llr0[stage - 1], stage_half_size);
// move to the child node to the left (up) of the tree.

@ -28,12 +28,10 @@
/*!
* Creates an SSC polar decoder structure of type pSSC_c_avx2, and allocates memory for the decoding buffers.
*
* \param[in] frozen_set The position of the frozen bits in the codeword.
* \param[in] frozen_set_size Number of frozen bits.
* \param[in] code_size_log \f$log_2\f$ of the number of bits in the codeword.
* \param[in] nMax \f$log_2\f$ of the number of bits in the codeword.
* \return A pointer to a pSSC_c_avx2 structure if the function executes correctly, NULL otherwise.
*/
void* create_polar_decoder_ssc_c_avx2(uint16_t* frozen_set, uint8_t code_size_log, uint16_t frozen_set_size);
void* create_polar_decoder_ssc_c_avx2(uint8_t nMax);
/*!
* The (8-bit, avx2) polar decoder SSC "destructor": it frees all the resources allocated to the decoder.
@ -48,9 +46,17 @@ void delete_polar_decoder_ssc_c_avx2(void* p);
* \param[in, out] p A void pointer used to declare a pSSC_c_avx2 structure.
* \param[in] llr LLRs for the new codeword.
* \param[out] data_decoded Pointer to the decoded message.
* \param[in] code_size_log \f$log_2\f$ of the number of bits in the codeword.
* \param[in] frozen_set The position of the frozen bits in the codeword.
* \param[in] frozen_set_size Number of frozen bits.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
int init_polar_decoder_ssc_c_avx2(void* p, const int8_t* llr, uint8_t* data_decoded);
int init_polar_decoder_ssc_c_avx2(void* p,
const int8_t* llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size);
/*!
* Decodes a data message from a 8 bit resolution codeword with the specified decoder. Note that

@ -32,12 +32,13 @@
* \brief Describes an SSC polar decoder (float version).
*/
struct pSSC_f {
float** llr0; /*!< \brief Pointers to the upper half of LLRs values at all stages. */
float** llr1; /*!< \brief Pointers to the lower half of LLRs values at all stages. */
uint8_t* est_bit; /*!< \brief Pointers to the temporary estimated bits. */
struct Params* param; /*!< \brief Pointer to a Params structure. */
struct State* state; /*!< \brief Pointer to a State. */
srslte_polar_encoder_t* enc; /*!< \brief Pointer to a srslte_polar_encoder_t. */
float** llr0; /*!< \brief Pointers to the upper half of LLRs values at all stages. */
float** llr1; /*!< \brief Pointers to the lower half of LLRs values at all stages. */
uint8_t* est_bit; /*!< \brief Pointers to the temporary estimated bits. */
struct Params* param; /*!< \brief Pointer to a Params structure. */
struct State* state; /*!< \brief Pointer to a State. */
void* tmp_node_type; /*!< \brief Pointer to a Tmp_node_type. */
srslte_polar_encoder_t* enc; /*!< \brief Pointer to a srslte_polar_encoder_t. */
void (*f)(const float* x, const float* y, float* z, const uint16_t len); /*!< \brief Pointer to the function-f. */
void (*g)(const uint8_t* b,
const float* x,
@ -85,17 +86,22 @@ static void rate_1_node(void* p, uint8_t* message);
*/
static void rate_r_node(void* p, uint8_t* message);
int init_polar_decoder_ssc_f(void* p, const float* input_llr, uint8_t* data_decoded)
int init_polar_decoder_ssc_f(void* p,
const float* input_llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
struct pSSC_f* pp = p;
if (p == NULL) {
return -1;
}
struct pSSC_f* pp = p;
uint8_t code_size_log = pp->param->code_size_log;
int16_t code_size = pp->param->code_stage_size[code_size_log];
int16_t code_half_size = pp->param->code_stage_size[code_size_log - 1];
pp->param->code_size_log = code_size_log;
int16_t code_size = pp->param->code_stage_size[code_size_log];
int16_t code_half_size = pp->param->code_stage_size[code_size_log - 1];
// Initializes the data_decoded_vector to all zeros
memset(data_decoded, 0, code_size);
@ -116,6 +122,12 @@ int init_polar_decoder_ssc_f(void* p, const float* input_llr, uint8_t* data_deco
}
pp->state->flag_finished = false;
// frozen_set
pp->param->frozen_set_size = frozen_set_size;
// computes the node types for the decoding tree
compute_node_type(pp->tmp_node_type, pp->param->node_type, frozen_set, code_size_log, frozen_set_size);
return 0;
}
@ -146,11 +158,13 @@ void delete_polar_decoder_ssc_f(void* p)
free(pp->state);
srslte_polar_encoder_free(pp->enc);
free(pp->enc);
// free(pp->frozen_set); // this is not SSC responsibility.
delete_tmp_node_type(pp->tmp_node_type);
free(pp);
}
}
void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_log, const uint16_t frozen_set_size)
void* create_polar_decoder_ssc_f(const uint8_t nMax)
{
struct pSSC_f* pp = NULL; // pointer to the polar decoder instance
@ -170,7 +184,7 @@ void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_l
free(pp);
return NULL;
}
srslte_polar_encoder_init(pp->enc, SRSLTE_POLAR_ENCODER_PIPELINED, code_size_log);
srslte_polar_encoder_init(pp->enc, SRSLTE_POLAR_ENCODER_PIPELINED, nMax);
// algorithm constants/parameters
if ((pp->param = malloc(sizeof(struct Params))) == NULL) {
@ -179,7 +193,7 @@ void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_l
return NULL;
}
if ((pp->param->code_stage_size = malloc((code_size_log + 1) * sizeof(uint16_t))) == NULL) {
if ((pp->param->code_stage_size = srslte_vec_u16_malloc(nMax + 1)) == NULL) {
free(pp->param);
free(pp->enc);
free(pp);
@ -187,12 +201,10 @@ void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_l
}
pp->param->code_stage_size[0] = 1;
for (uint8_t i = 1; i < code_size_log + 1; i++) {
for (uint8_t i = 1; i < nMax + 1; i++) {
pp->param->code_stage_size[i] = 2 * pp->param->code_stage_size[i - 1];
}
pp->param->code_size_log = code_size_log;
// state -- initialized in polar_decoder_ssc_init
if ((pp->state = malloc(sizeof(struct State))) == NULL) {
free(pp->param->code_stage_size);
@ -201,7 +213,7 @@ void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_l
free(pp);
return NULL;
}
if ((pp->state->active_node_per_stage = malloc((code_size_log + 1) * sizeof(uint16_t))) == NULL) {
if ((pp->state->active_node_per_stage = srslte_vec_u16_malloc(nMax + 1)) == NULL) {
free(pp->state);
free(pp->param->code_stage_size);
free(pp->param);
@ -211,13 +223,13 @@ void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_l
}
// allocates memory for estimated bits per stage
uint16_t est_bits_size = pp->param->code_stage_size[code_size_log];
uint16_t est_bits_size = pp->param->code_stage_size[nMax];
pp->est_bit = aligned_alloc(SRSLTE_AVX2_B_SIZE, est_bits_size); // every 32 chars are aligned
pp->est_bit = srslte_vec_u8_malloc(est_bits_size); // every 32 chars are aligned
// allocate memory for LLR pointers.
pp->llr0 = malloc((code_size_log + 1) * sizeof(float*));
pp->llr1 = malloc((code_size_log + 1) * sizeof(float*));
pp->llr0 = malloc((nMax + 1) * sizeof(float*));
pp->llr1 = malloc((nMax + 1) * sizeof(float*));
// There are LLR buffers for n = 0 to n = code_size_log. Each with size 2^n. Thus,
// the total memory needed is 2^(n+1)-1.
@ -227,10 +239,10 @@ void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_l
// i.e. in a SIMD instruction we can load 2^(n_simd_llr) LLR values
// then the memory for stages s >= n_simd_llr - 1 is aligned.
// but only the operations at stages s > n_simd_llr have all the inputs aligned.
uint8_t n_llr_all_stages = code_size_log + 1; // there are 2^(n_llr_all_stages) - 1 LLR values summing up all stages.
uint8_t n_llr_all_stages = nMax + 1; // there are 2^(n_llr_all_stages) - 1 LLR values summing up all stages.
uint16_t llr_all_stages = 1U << n_llr_all_stages;
pp->llr0[0] = aligned_alloc(SRSLTE_AVX2_B_SIZE, llr_all_stages * sizeof(float)); // 32*8=256
pp->llr0[0] = srslte_vec_f_malloc(llr_all_stages); // 32*8=256
// allocate memory to the polar decoder instance
if (pp->llr0[0] == NULL) {
@ -246,18 +258,18 @@ void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_l
// initialize all LLR pointers
pp->llr1[0] = pp->llr0[0] + 1;
for (uint8_t s = 1; s < code_size_log + 1; s++) {
for (uint8_t s = 1; s < nMax + 1; s++) {
pp->llr0[s] = pp->llr0[0] + pp->param->code_stage_size[s];
pp->llr1[s] = pp->llr0[0] + pp->param->code_stage_size[s] + pp->param->code_stage_size[s - 1];
}
// allocate memory for node type pointers, one per stage.
pp->param->frozen_set_size = frozen_set_size;
pp->param->node_type = malloc((code_size_log + 1) * sizeof(uint8_t*));
pp->param->node_type = malloc((nMax + 1) * sizeof(uint8_t*));
// allocate memory to node_type_ssc. Stage s has 2^(N-s) nodes s=0,...,N.
// Thus, same size as LLRs all stages.
pp->param->node_type[0] = aligned_alloc(SRSLTE_AVX2_B_SIZE, llr_all_stages * sizeof(uint8_t)); // 32*8=256
pp->param->node_type[0] = srslte_vec_u8_malloc(llr_all_stages); // 32*8=256
if (pp->param->node_type[0] == NULL) {
free(pp->llr0[0]);
@ -272,11 +284,24 @@ void* create_polar_decoder_ssc_f(uint16_t* frozen_set, const uint8_t code_size_l
}
// initialize all node type pointers. (stage 0 is the first, opposite to LLRs)
for (uint8_t s = 1; s < code_size_log + 1; s++) {
pp->param->node_type[s] = pp->param->node_type[s - 1] + pp->param->code_stage_size[code_size_log - s + 1];
for (uint8_t s = 1; s < nMax + 1; s++) {
pp->param->node_type[s] = pp->param->node_type[s - 1] + pp->param->code_stage_size[nMax - s + 1];
}
init_node_type(frozen_set, pp->param);
// memory allocation to compute node_type
pp->tmp_node_type = create_tmp_node_type(nMax);
if (pp->tmp_node_type == NULL) {
free(pp->param->node_type[0]);
free(pp->llr0[0]);
free(pp->llr1);
free(pp->llr0);
free(pp->state);
free(pp->param->code_stage_size);
free(pp->param);
free(pp->enc);
free(pp);
return NULL;
}
return pp;
}

@ -28,12 +28,10 @@
/*!
* Creates an SSC polar decoder structure of type pSSC, and allocates memory for the decoding buffers.
* \param[in] frozen_set The position of the frozen bits in the codeword.
* \param[in] frozen_set_size Number of frozen bits.
* \param[in] code_size_log \f$log_2\f$ of the number of bits in the codeword.
* \param[in] nMax \f$log_2\f$ of the number of bits in the codeword.
* \return A pointer to a pSSC structure if the function executes correctly, NULL otherwise.
*/
void* create_polar_decoder_ssc_f(uint16_t* frozen_set, uint8_t code_size_log, uint16_t frozen_set_size);
void* create_polar_decoder_ssc_f(const uint8_t nMax);
/*!
* The polar decoder SSC "destructor": it frees all the resources allocated to the decoder.
@ -46,9 +44,17 @@ void delete_polar_decoder_ssc_f(void* p);
* \param[in, out] p A void pointer used to declare a pSSC structure.
* \param[in] llr LLRs for the new codeword.
* \param[out] data_decoded Pointer to the decoded message.
* \param[in] code_size_log \f$\log_2(code_size)\f$.
* \param[in] frozen_set The position of the frozen bits in increasing order.
* \param[in] frozen_set_size The size of the frozen_set.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
int init_polar_decoder_ssc_f(void* p, const float* llr, uint8_t* data_decoded);
int init_polar_decoder_ssc_f(void* p,
const float* llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size);
/*!
* Decodes a data message from a codeword with the specified decoder. Note that

@ -46,12 +46,13 @@
* \brief Describes an SSC polar decoder (16-bit version).
*/
struct pSSC_s {
int16_t** llr0; /*!< \brief Pointers to the upper half of LLRs values at all stages. */
int16_t** llr1; /*!< \brief Pointers to the lower half of LLRs values at all stages. */
uint8_t* est_bit; /*!< \brief Pointers to the temporary estimated bits. */
struct Params* param; /*!< \brief Pointer to a Params structure. */
struct State* state; /*!< \brief Pointer to a State. */
srslte_polar_encoder_t* enc; /*!< \brief Pointer to a srslte_polar_encoder_t. */
int16_t** llr0; /*!< \brief Pointers to the upper half of LLRs values at all stages. */
int16_t** llr1; /*!< \brief Pointers to the lower half of LLRs values at all stages. */
uint8_t* est_bit; /*!< \brief Pointers to the temporary estimated bits. */
struct Params* param; /*!< \brief Pointer to a Params structure. */
struct State* state; /*!< \brief Pointer to a State. */
void* tmp_node_type; /*!< \brief Pointer to a Tmp_node_type. */
srslte_polar_encoder_t* enc; /*!< \brief Pointer to a srslte_polar_encoder_t. */
void (*f)(const int16_t* x,
const int16_t* y,
int16_t* z,
@ -102,7 +103,12 @@ static void rate_1_node(void* p, uint8_t* message);
*/
static void rate_r_node(void* p, uint8_t* message);
int init_polar_decoder_ssc_s(void* p, const int16_t* input_llr, uint8_t* data_decoded)
int init_polar_decoder_ssc_s(void* p,
const int16_t* input_llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size)
{
struct pSSC_s* pp = p;
@ -110,9 +116,9 @@ int init_polar_decoder_ssc_s(void* p, const int16_t* input_llr, uint8_t* data_de
return -1;
}
uint8_t code_size_log = pp->param->code_size_log;
int16_t code_size = pp->param->code_stage_size[code_size_log];
int16_t code_half_size = pp->param->code_stage_size[code_size_log - 1];
pp->param->code_size_log = code_size_log;
int16_t code_size = pp->param->code_stage_size[code_size_log];
int16_t code_half_size = pp->param->code_stage_size[code_size_log - 1];
// Initializes the data_decoded_vector to all zeros
memset(data_decoded, 0, code_size);
@ -133,6 +139,12 @@ int init_polar_decoder_ssc_s(void* p, const int16_t* input_llr, uint8_t* data_de
}
pp->state->flag_finished = false;
// frozen_set
pp->param->frozen_set_size = frozen_set_size;
// computes the node types for the decoding tree
compute_node_type(pp->tmp_node_type, pp->param->node_type, frozen_set, code_size_log, frozen_set_size);
return 0;
}
@ -164,11 +176,13 @@ void delete_polar_decoder_ssc_s(void* p)
free(pp->state);
srslte_polar_encoder_free(pp->enc);
free(pp->enc);
// free(pp->frozen_set); // this is not SSC responsibility.
delete_tmp_node_type(pp->tmp_node_type);
free(pp);
}
}
void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_log, const uint16_t frozen_set_size)
void* create_polar_decoder_ssc_s(const uint8_t nMax)
{
struct pSSC_s* pp = NULL; // pointer to the polar decoder instance
@ -188,7 +202,7 @@ void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_l
free(pp);
return NULL;
}
srslte_polar_encoder_init(pp->enc, SRSLTE_POLAR_ENCODER_PIPELINED, code_size_log);
srslte_polar_encoder_init(pp->enc, SRSLTE_POLAR_ENCODER_PIPELINED, nMax);
// algorithm constants/parameters
if ((pp->param = malloc(sizeof(struct Params))) == NULL) {
@ -197,7 +211,7 @@ void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_l
return NULL;
}
if ((pp->param->code_stage_size = malloc((code_size_log + 1) * sizeof(uint16_t))) == NULL) {
if ((pp->param->code_stage_size = srslte_vec_u16_malloc(nMax + 1)) == NULL) {
free(pp->param);
free(pp->enc);
free(pp);
@ -205,12 +219,10 @@ void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_l
}
pp->param->code_stage_size[0] = 1;
for (uint8_t i = 1; i < code_size_log + 1; i++) {
for (uint8_t i = 1; i < nMax + 1; i++) {
pp->param->code_stage_size[i] = 2 * pp->param->code_stage_size[i - 1];
}
pp->param->code_size_log = code_size_log;
// state -- initialized in polar_decoder_ssc_init
if ((pp->state = malloc(sizeof(struct State))) == NULL) {
free(pp->param->code_stage_size);
@ -219,7 +231,7 @@ void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_l
free(pp);
return NULL;
}
if ((pp->state->active_node_per_stage = malloc((code_size_log + 1) * sizeof(uint16_t))) == NULL) {
if ((pp->state->active_node_per_stage = srslte_vec_u16_malloc(nMax + 1)) == NULL) {
free(pp->state);
free(pp->param->code_stage_size);
free(pp->param);
@ -229,13 +241,13 @@ void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_l
}
// allocates memory for estimated bits per stage
uint16_t est_bits_size = pp->param->code_stage_size[code_size_log];
uint16_t est_bits_size = pp->param->code_stage_size[nMax];
pp->est_bit = aligned_alloc(SRSLTE_AVX2_B_SIZE, est_bits_size); // every 32 chars are aligned
pp->est_bit = srslte_vec_u8_malloc(est_bits_size); // every 32 chars are aligned
// allocate memory for LLR pointers.
pp->llr0 = malloc((code_size_log + 1) * sizeof(int16_t*));
pp->llr1 = malloc((code_size_log + 1) * sizeof(int16_t*));
pp->llr0 = malloc((nMax + 1) * sizeof(int16_t*));
pp->llr1 = malloc((nMax + 1) * sizeof(int16_t*));
// There are LLR buffers for n = 0 to n = code_size_log. Each with size 2^n. Thus,
// the total memory needed is 2^(n+1)-1.
@ -245,10 +257,10 @@ void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_l
// i.e. in a SIMD instruction we can load 2^(n_simd_llr) LLR values
// then the memory for stages s >= n_simd_llr - 1 is aligned.
// but only the operations at stages s > n_simd_llr have all the inputs aligned.
uint8_t n_llr_all_stages = code_size_log + 1; // there are 2^(n_llr_all_stages) - 1 LLR values summing up all stages.
uint8_t n_llr_all_stages = nMax + 1; // there are 2^(n_llr_all_stages) - 1 LLR values summing up all stages.
uint16_t llr_all_stages = 1U << n_llr_all_stages;
pp->llr0[0] = aligned_alloc(SRSLTE_AVX2_B_SIZE, llr_all_stages * sizeof(int16_t)); // 32*8=256
pp->llr0[0] = srslte_vec_i16_malloc(llr_all_stages); // 32*8=256
// allocate memory to the polar decoder instance
if (pp->llr0[0] == NULL) {
free(pp->est_bit);
@ -262,18 +274,17 @@ void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_l
// initialize all LLR pointers
pp->llr1[0] = pp->llr0[0] + 1;
for (uint8_t s = 1; s < code_size_log + 1; s++) {
for (uint8_t s = 1; s < nMax + 1; s++) {
pp->llr0[s] = pp->llr0[0] + pp->param->code_stage_size[s];
pp->llr1[s] = pp->llr0[0] + pp->param->code_stage_size[s] + pp->param->code_stage_size[s - 1];
}
// allocate memory for node type pointers, one per stage.
pp->param->frozen_set_size = frozen_set_size;
pp->param->node_type = malloc((code_size_log + 1) * sizeof(uint8_t*));
pp->param->node_type = malloc((nMax + 1) * sizeof(uint8_t*));
// allocate memory to node_type_ssc. Stage s has 2^(N-s) nodes s=0,...,N.
// Thus, same size as LLRs all stages.
pp->param->node_type[0] = aligned_alloc(SRSLTE_AVX2_B_SIZE, llr_all_stages * sizeof(uint8_t)); // 32*8=256
pp->param->node_type[0] = srslte_vec_u8_malloc(llr_all_stages); // 32*8=256
if (pp->param->node_type[0] == NULL) {
free(pp->param->node_type);
@ -287,11 +298,23 @@ void* create_polar_decoder_ssc_s(uint16_t* frozen_set, const uint8_t code_size_l
}
// initialize all node type pointers. (stage 0 is the first, opposite to LLRs)
for (uint8_t s = 1; s < code_size_log + 1; s++) {
pp->param->node_type[s] = pp->param->node_type[s - 1] + pp->param->code_stage_size[code_size_log - s + 1];
for (uint8_t s = 1; s < nMax + 1; s++) {
pp->param->node_type[s] = pp->param->node_type[s - 1] + pp->param->code_stage_size[nMax - s + 1];
}
// memory allocation to compute node_type
pp->tmp_node_type = create_tmp_node_type(nMax);
if (pp->tmp_node_type == NULL) {
free(pp->param->node_type[0]);
free(pp->llr0[0]);
free(pp->llr1);
free(pp->llr0);
free(pp->state);
free(pp->param->code_stage_size);
free(pp->param);
free(pp->enc);
free(pp);
return NULL;
}
init_node_type(frozen_set, pp->param);
return pp;
}

@ -31,13 +31,10 @@
* This function is exactly the same as the one for the floating-point version.
* Note, however, that it works with a different pSSC structure (different function pointers
* pSSC::f, pSSC::f, pSSC::g, pSSC::xor and pSSC::hard_bit).
*
* \param[in] frozen_set The position of the frozen bits in the codeword.
* \param[in] frozen_set_size Number of frozen bits.
* \param[in] code_size_log \f$log_2\f$ of the number of bits in the codeword.
* \param[in] nMax \f$log_2\f$ of the number of bits in the codeword.
* \return A pointer to a pSSC structure if the function executes correctly, NULL otherwise.
*/
void* create_polar_decoder_ssc_s(uint16_t* frozen_set, uint8_t code_size_log, uint16_t frozen_set_size);
void* create_polar_decoder_ssc_s(uint8_t nMax);
/*!
* The 16-bit polar decoder SSC "destructor": it frees all the resources allocated to the decoder.
@ -52,9 +49,17 @@ void delete_polar_decoder_ssc_s(void* p);
* \param[in, out] p A void pointer used to declare a pSSC structure.
* \param[in] llr LLRs for the new codeword.
* \param[out] data_decoded Pointer to the decoded message.
* \param[in] code_size_log \f$log_2\f$ of the number of bits in the codeword.
* \param[in] frozen_set The position of the frozen bits in the codeword.
* \param[in] frozen_set_size Number of frozen bits.
* \return An integer: 0 if the function executes correctly, -1 otherwise.
*/
int init_polar_decoder_ssc_s(void* p, const int16_t* llr, uint8_t* data_decoded);
int init_polar_decoder_ssc_s(void* p,
const int16_t* llr,
uint8_t* data_decoded,
const uint8_t code_size_log,
const uint16_t* frozen_set,
const uint16_t frozen_set_size);
/*!
* Decodes a data message from a 16-bit resolution codeword with the specified decoder. Note that

@ -23,6 +23,7 @@
*/
#include "../utils_avx2.h"
#include "srslte/phy/utils/vector.h"
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
@ -66,9 +67,9 @@ void* create_polar_encoder_avx2(const uint8_t code_size_log)
uint16_t code_size = 1U << code_size_log;
if (code_size_log > SRSLTE_AVX2_B_SIZE_LOG) {
q->tmp = malloc(code_size * sizeof(uint8_t));
q->tmp = srslte_vec_u8_malloc(code_size);
} else {
q->tmp = malloc(SRSLTE_AVX2_B_SIZE * sizeof(uint8_t));
q->tmp = srslte_vec_u8_malloc(SRSLTE_AVX2_B_SIZE);
}
if (!q->tmp) {
free(q);

@ -26,6 +26,7 @@
*/
#include "srslte/phy/fec/polar/polar_encoder.h"
#include "srslte/phy/utils/vector.h"
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
@ -71,14 +72,14 @@ void* create_polar_encoder_pipelined(const uint8_t code_size_log)
uint16_t code_size = 1U << code_size_log;
uint16_t code_half_size = code_size / 2;
q->i_odd = malloc(code_half_size * sizeof(uint16_t));
q->i_odd = srslte_vec_u16_malloc(code_half_size);
if (!q->i_odd) {
free(q);
perror("malloc");
return NULL;
}
q->i_even = malloc(code_half_size * sizeof(uint16_t));
q->i_even = srslte_vec_u16_malloc(code_half_size);
if (!q->i_even) {
free(q->i_odd);
free(q);
@ -86,7 +87,7 @@ void* create_polar_encoder_pipelined(const uint8_t code_size_log)
return NULL;
}
q->tmp = malloc(code_size * sizeof(uint8_t));
q->tmp = srslte_vec_u8_malloc(code_size);
if (!q->tmp) {
free(q->i_even);
free(q->i_odd);

@ -0,0 +1,615 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/*!
* \file polar_rm.c
* \brief Definition of the LDPC Rate Matcher and Rate Dematcher (float-valued, int16_t and int8_t)
* \author Jesus Gomez (CTTC)
* \date 2020
*
* \copyright Software Radio Systems Limited
*
*/
#include "srslte/phy/utils/vector.h"
#include <stddef.h>
#include <stdint.h>
#include "srslte/phy/fec/polar/polar_code.h"
#include "srslte/phy/fec/polar/polar_rm.h"
#include "srslte/phy/utils/debug.h"
/*!
* \brief Describes an rate matcher.
*/
struct pRM_tx {
uint8_t* y_e; /*!< \brief Pointer to a temporal buffer to store the block interleaved codeword (y), as well as the
rate-matched codewords (e). */
};
/*!
* \brief Describes an rate dematcher (float version).
*/
struct pRM_rx_f {
float* y_e; /*!< \brief Pointer to a temporal buffer to symbols before and after bit_selection_rx. */
float* e; /*!< \brief Pointer to a the position in the y_e buffer where the rate matched llr start.*/
};
/*!
* \brief Describes an rate dematcher (int8_t version).
*/
struct pRM_rx_s {
int16_t* y_e; /*!< \brief Pointer to a temporal buffer to symbols before and after bit_selection_rx. */
int16_t* e; /*!< \brief Pointer to a the position in the y_e buffer where the rate matched llr start.*/
};
/*!
* \brief Describes an rate dematcher (int8_t version).
*/
struct pRM_rx_c {
int8_t* y_e; /*!< \brief Pointer to a temporal buffer to symbols before and after bit_selection_rx. */
int8_t* e; /*!< \brief Pointer to a the position in the y_e buffer where the rate matched llr start.*/
};
/*!
* generic interleaver
*/
static void interleaver_rm_tx(const uint8_t* input, uint8_t* output, const uint16_t* indices, const uint16_t len)
{
for (uint32_t j = 0; j < len; j++) {
output[j] = input[indices[j]];
}
}
/*!
* generic deinterleaver.
*/
static void interleaver_rm_rx(const float* input, float* output, const uint16_t* indices, const uint16_t len)
{
for (uint32_t j = 0; j < len; j++) {
output[indices[j]] = input[j];
}
}
/*!
* generic deinterleaver (int16_t).
*/
static void interleaver_rm_rx_s(const int16_t* input, int16_t* output, const uint16_t* indices, const uint16_t len)
{
for (uint32_t j = 0; j < len; j++) {
output[indices[j]] = input[j];
}
}
/*!
* generic deinterleaver (int8_t).
*/
static void interleaver_rm_rx_c(const int8_t* input, int8_t* output, const uint16_t* indices, const uint16_t len)
{
for (uint32_t j = 0; j < len; j++) {
output[indices[j]] = input[j];
}
}
/*!
* Bit selection for the polar rate-matching block. ye has length N, but there is EMAX memory allocated to it.
*/
static uint8_t* bit_selection_rm_tx(uint8_t* y, const uint32_t N, const uint32_t E, const uint32_t K)
{
uint8_t* e = NULL;
uint32_t k_N = 0;
e = y;
if (E >= N) { // repetition
for (uint32_t k = N; k < E; k++) {
k_N = k % N;
e[k] = y[k_N];
}
} else {
if (16 * K <= 7 * E) { // puncturing the first N-E bits
e = y + (N - E);
} // else shortening the last N-E bits
}
return e;
}
/*!
* Undoes bit selection for the rate-dematching block float).
* The output has the codeword length N. It inserts 0 to punctured bits (completely unknown bit)
* and 127 (to indicate very reliable 0 bit). Repeated symbols are added.
*/
static float* bit_selection_rm_rx(float* e, const uint32_t E, const uint32_t N, const uint32_t K)
{
float* y = NULL;
uint32_t k_N = 0;
y = e;
if (E >= N) { // add repetitions
y = e;
for (uint32_t k = N; k < E; k++) {
k_N = k % N;
y[k_N] = y[k_N] + e[k];
}
} else {
if (16 * K <= 7 * E) { // puncturing bits are completely unknown, i.e. llr = 0;
y = e - (N - E);
for (uint32_t k = 0; k < N - E; k++) {
y[k] = 0;
}
} else { // shortening, bits are know to be 0. i.e., very high llrs
for (uint32_t k = E; k < N; k++) {
y[k] = 1e+20F; /* max value */
}
}
}
return y;
}
/*!
* Undoes bit selection for the rate-dematching block (int16_t).
* The output has the codeword length N. It inserts 0 to punctured bits (completely unknown bit)
* and 127 (to indicate very reliable 0 bit). Repeated symbols are added.
*/
static int16_t* bit_selection_rm_rx_s(int16_t* e, const uint32_t E, const uint32_t N, const uint32_t K)
{
int16_t* y = NULL;
uint32_t k_N = 0;
long tmp = 0;
y = e;
if (E >= N) { // add repetitions
y = e;
for (uint32_t k = N; k < E; k++) {
k_N = k % N;
tmp = (long)y[k_N] + e[k];
// control saturation
if (tmp > 32767) {
tmp = 32767;
}
if (tmp < -32767) {
tmp = -32767;
}
y[k_N] = (int16_t)tmp;
}
} else {
if (16 * K <= 7 * E) { // puncturing bits are completely unknown, i.e. llr = 0;
y = e - (N - E);
for (uint32_t k = 0; k < N - E; k++) {
y[k] = 0;
}
} else { // shortening, bits are know to be 0. i.e., very high llrs
for (uint32_t k = E; k < N; k++) {
y[k] = 32767; /* max value */
}
}
}
return y;
}
/*!
* Undoes bit selection for the rate-dematching block (int8_t).
* The output has the codeword length N. It inserts 0 to punctured bits (completely unknown bit)
* and 127 (to indicate very reliable 0 bit). Repeated symbols are added.
*/
static int8_t* bit_selection_rm_rx_c(int8_t* e, const uint32_t E, const uint32_t N, const uint32_t K)
{
int8_t* y = NULL;
uint32_t k_N = 0;
long tmp = 0;
y = e;
if (E >= N) { // add repetitions
y = e;
for (uint32_t k = N; k < E; k++) {
k_N = k % N;
tmp = (long)y[k_N] + e[k];
// control saturation
if (tmp > 127) {
tmp = 127;
}
if (tmp < -127) {
tmp = -127;
}
y[k_N] = (int8_t)tmp;
}
} else {
if (16 * K <= 7 * E) { // puncturing bits are completely unknown, i.e. llr = 0;
y = e - (N - E);
for (uint32_t k = 0; k < N - E; k++) {
y[k] = 0;
}
} else { // shortening, bits are know to be 0. i.e., very high llrs
for (uint32_t k = E; k < N; k++) {
y[k] = 127; /* max value */
}
}
}
return y;
}
/*!
* Channel interleaver.
*/
static void ch_interleaver_rm_tx(const uint8_t* e, uint8_t* f, const uint32_t E)
{
// compute T - Smaller integer such that T(T+1)/2 >= E. Use the fact that 1+2+,..,+T = T(T+1)/2
uint32_t S = 1;
uint32_t T = 1;
while (S < E) {
T++;
S = S + T;
}
uint32_t i_out = 0;
uint32_t i_in = 0;
for (uint32_t r = 0; r < T; r++) {
i_in = r;
for (uint32_t c = 0; c < T - r; c++) {
if (i_in < E) {
f[i_out] = e[i_in];
i_out++;
i_in = i_in + (T - c);
} else {
break;
}
}
}
}
/*!
* Channel deinterleaver.
*/
static void ch_interleaver_rm_rx(const float* f, float* e, const uint32_t E)
{
// compute T - Smaller integer such that T(T+1)/2 >= E. Use the fact that 1+2+,..,+T = T(T+1)/2
uint32_t S = 1;
uint32_t T = 1;
while (S < E) {
T++;
S = S + T;
}
uint32_t i_out = 0;
uint32_t i_in = 0;
for (uint32_t r = 0; r < T; r++) {
i_in = r;
for (uint32_t c = 0; c < T - r; c++) {
if (i_in < E) {
e[i_in] = f[i_out];
i_out++;
i_in = i_in + (T - c);
} else {
break;
}
}
}
}
/*!
* Channel deinterleaver (int16_t).
*/
static void ch_interleaver_rm_rx_s(const int16_t* f, int16_t* e, const uint32_t E)
{
// compute T - Smaller integer such that T(T+1)/2 >= E. Use the fact that 1+2+,..,+T = T(T+1)/2
uint32_t S = 1;
uint32_t T = 1;
while (S < E) {
T++;
S = S + T;
}
uint32_t i_out = 0;
uint32_t i_in = 0;
for (uint32_t r = 0; r < T; r++) {
i_in = r;
for (uint32_t c = 0; c < T - r; c++) {
if (i_in < E) {
e[i_in] = f[i_out];
i_out++;
i_in = i_in + (T - c);
} else {
break;
}
}
}
}
/*!
* Channel deinterleaver (int8_t).
*/
static void ch_interleaver_rm_rx_c(const int8_t* f, int8_t* e, const uint32_t E)
{
// compute T - Smaller integer such that T(T+1)/2 >= E. Use the fact that 1+2+,..,+T = T(T+1)/2
uint32_t S = 1;
uint32_t T = 1;
while (S < E) {
T++;
S = S + T;
}
uint32_t i_out = 0;
uint32_t i_in = 0;
for (uint32_t r = 0; r < T; r++) {
i_in = r;
for (uint32_t c = 0; c < T - r; c++) {
if (i_in < E) {
e[i_in] = f[i_out];
i_out++;
i_in = i_in + (T - c);
} else {
break;
}
}
}
}
int srslte_polar_rm_tx_init(srslte_polar_rm_t* p)
{
if (p == NULL) {
return -1;
}
struct pRM_tx* pp = NULL; // pointer to the rate matcher instance
// allocate memory to the rate-matcher instance
if ((pp = malloc(sizeof(struct pRM_tx))) == NULL) {
return -1;
}
p->ptr = pp;
// allocate memory to the blk interleaved codeword
if ((pp->y_e = srslte_vec_u8_malloc(EMAX)) == NULL) {
free(pp);
return -1;
}
return 0;
}
int srslte_polar_rm_rx_init_f(srslte_polar_rm_t* p)
{
if (p == NULL) {
return -1;
}
struct pRM_rx_f* pp = NULL; // pointer to the rate matcher instance
// allocate memory to ther rate-demacher instance
if ((pp = malloc(sizeof(struct pRM_rx_f))) == NULL) {
return -1;
}
p->ptr = pp;
// allocate memory to the temporal buffer of chDeInterleaved llrs
if ((pp->y_e = srslte_vec_f_malloc(EMAX + NMAX)) == NULL) {
free(pp);
return -1;
}
pp->e = pp->y_e + NMAX;
return 0;
}
int srslte_polar_rm_rx_init_s(srslte_polar_rm_t* p)
{
if (p == NULL) {
return -1;
}
struct pRM_rx_s* pp = NULL; // pointer to the rate matcher instance
// allocate memory to ther rate-demacher instance
if ((pp = malloc(sizeof(struct pRM_rx_s))) == NULL) {
return -1;
}
p->ptr = pp;
// allocate memory to the temporal buffer of chDeInterleaved llrs
if ((pp->y_e = srslte_vec_i16_malloc(EMAX + NMAX)) == NULL) {
free(pp);
return -1;
}
pp->e = pp->y_e + NMAX;
return 0;
}
int srslte_polar_rm_rx_init_c(srslte_polar_rm_t* p)
{
if (p == NULL) {
return -1;
}
struct pRM_rx_c* pp = NULL; // pointer to the rate matcher instance
// allocate memory to ther rate-demacher instance
if ((pp = malloc(sizeof(struct pRM_rx_c))) == NULL) {
return -1;
}
p->ptr = pp;
// allocate memory to the temporal buffer of chDeInterleaved llrs
if ((pp->y_e = srslte_vec_i8_malloc(EMAX + NMAX)) == NULL) {
free(pp);
return -1;
}
pp->e = pp->y_e + NMAX;
return 0;
}
void srslte_polar_rm_tx_free(srslte_polar_rm_t* q)
{
if (q != NULL) {
struct pRM_tx* qq = q->ptr;
free(qq->y_e);
free(qq);
}
}
void srslte_polar_rm_rx_free_f(srslte_polar_rm_t* q)
{
if (q != NULL) {
struct pRM_rx_f* qq = q->ptr;
free(qq->y_e);
// free(qq->indices);
free(qq);
}
}
void srslte_polar_rm_rx_free_s(srslte_polar_rm_t* q)
{
if (q != NULL) {
struct pRM_rx_s* qq = q->ptr;
free(qq->y_e);
// free(qq->indices);
free(qq);
}
}
void srslte_polar_rm_rx_free_c(srslte_polar_rm_t* q)
{
if (q != NULL) {
struct pRM_rx_c* qq = q->ptr;
free(qq->y_e);
// free(qq->indices);
free(qq);
}
}
int srslte_polar_rm_tx(srslte_polar_rm_t* q,
const uint8_t* input,
uint8_t* output,
const uint8_t n,
const uint32_t E,
const uint32_t K,
const uint8_t ibil)
{
const uint16_t* blk_interleaver = get_blk_interleaver(n);
uint32_t N = (1U << n);
struct pRM_tx* pp = q->ptr;
uint8_t* y = pp->y_e;
uint8_t* e = NULL;
interleaver_rm_tx(input, y, blk_interleaver, N);
e = bit_selection_rm_tx(y, N, E, K); // moves the pointer if puncturing e = y + (N-E), otherwise e = y;
if (ibil == 0) {
memcpy(output, e, E * sizeof(uint8_t));
} else {
ch_interleaver_rm_tx(e, output, E);
}
return 0;
}
int srslte_polar_rm_rx_f(srslte_polar_rm_t* q,
const float* input,
float* output,
const uint32_t E,
const uint8_t n,
const uint32_t K,
const uint8_t ibil)
{
struct pRM_rx_f* pp = q->ptr;
float* y = NULL;
float* e = pp->e; // length E
uint32_t N = (1U << n);
const uint16_t* blk_interleaver = get_blk_interleaver(n);
if (ibil == 0) {
memcpy(e, input, E * sizeof(float));
} else {
ch_interleaver_rm_rx(input, e, E);
}
y = bit_selection_rm_rx(e, E, N, K);
interleaver_rm_rx(y, output, blk_interleaver, N);
return 0;
}
int srslte_polar_rm_rx_s(srslte_polar_rm_t* q,
const int16_t* input,
int16_t* output,
const uint32_t E,
const uint8_t n,
const uint32_t K,
const uint8_t ibil)
{
struct pRM_rx_s* pp = q->ptr;
int16_t* y = NULL;
int16_t* e = pp->e;
uint32_t N = (1U << n);
const uint16_t* blk_interleaver = get_blk_interleaver(n);
if (ibil == 0) {
memcpy(e, input, E * sizeof(int16_t));
} else {
ch_interleaver_rm_rx_s(input, e, E);
}
y = bit_selection_rm_rx_s(e, E, N, K);
interleaver_rm_rx_s(y, output, blk_interleaver, N);
return 0;
}
int srslte_polar_rm_rx_c(srslte_polar_rm_t* q,
const int8_t* input,
int8_t* output,
const uint32_t E,
const uint8_t n,
const uint32_t K,
const uint8_t ibil)
{
struct pRM_rx_c* pp = q->ptr;
int8_t* y = NULL;
int8_t* e = pp->e;
uint32_t N = (1U << n);
const uint16_t* blk_interleaver = get_blk_interleaver(n);
if (ibil == 0) {
memcpy(e, input, E * sizeof(int8_t));
} else {
ch_interleaver_rm_rx_c(input, e, E);
}
y = bit_selection_rm_rx_c(e, E, N, K);
interleaver_rm_rx_c(y, output, blk_interleaver, N);
return 0;
}

@ -13,35 +13,80 @@ add_executable(polar_chain_test polar_chain_test.c)
target_link_libraries(polar_chain_test srslte_phy polar_test_utils)
### Test polar libs
function(polar_unit_tests)
function(polar_tests_lite)
set(S ${ARGV0}) #101 means no noise, 100 scan
set(listC 5 6 6 6 7 7 8 8 9 9 10)
set(listR 32 64 64 64 128 128 256 256 512 864 1024)
set(listM 31 31 36 63 36 64 36 128 256 56 512)
set(listP 0 0 0 0 0 0 0 0 0 0 0)
set(listW 0 0 0 0 0 0 0 0 0 0 0)
list(LENGTH listC len)
set(listN 10 10 9 9 9 9 9 9 10 9 10)
set(listE 32 64 64 64 128 128 256 256 512 864 1024)
set(listK 31 31 36 63 36 64 36 128 256 56 512)
set(listI 0 0 0 0 0 0 0 0 1 0 1)
list(LENGTH listN len)
math(EXPR lenr "${len} - 1")
foreach(num RANGE ${lenr})
list(GET listC ${num} cval)
list(GET listR ${num} rval)
list(GET listM ${num} mval)
list(GET listP ${num} pval)
list(GET listW ${num} wval)
add_test(NAME ${test_name}-s${S}-c${cval}-r${rval}-m${mval}-p${pval}-w${wval}
COMMAND ${test_command} -s${S} -c${cval} -r${rval} -m${mval} -p${pval} -w${wval} -E1 -N1
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/
list(GET listN ${num} nval)
list(GET listE ${num} eval)
list(GET listK ${num} kval)
list(GET listI ${num} ival)
add_test(NAME ${test_name}-s${S}-n${nval}-e${eval}-k${kval}-i${ival}
COMMAND ${test_command} -s${S} -n${nval} -e${eval} -k${kval} -i${ival}
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/tests/polar
)
endforeach()
endfunction()
### Test polar libs
function(polar_tests)
set(S ${ARGV0}) #101 means no noise, 100 scan
#Downlink tests
set(nval 9)
foreach(Kval RANGE 36 164 32)
math(EXPR Emin "${Kval} + 1")
foreach(Eval RANGE ${Emin} 8192 128)
add_test(NAME ${test_name}-s${S}-k${Kval}-e${Eval}-n${nval}-i0
COMMAND ${test_command} -s${S} -k${Kval} -e${Eval} -n${nval} -i0
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/tests/polar
)
endforeach()
endforeach()
#Uplink tests
set(nval 10)
foreach(Kval RANGE 18 25)
math(EXPR Emin "${Kval} + 3 + 1")
foreach(Eval RANGE ${Emin} 8192 128)
add_test(NAME ${test_name}-s${S}-k${Kval}-e${Eval}-n${nval}-i1
COMMAND ${test_command} -s${S} -k${Kval} -e${Eval} -n${nval} -i1
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/tests/polar
)
endforeach()
endforeach()
foreach(Kval RANGE 32 1023 32)
math(EXPR Emin "${Kval} + 1")
foreach(Eval RANGE ${Emin} 8192 128)
add_test(NAME ${test_name}-s${S}-k${Kval}-e${Eval}-n${nval}-i1
COMMAND ${test_command} -s${S} -k${Kval} -e${Eval} -n${nval} -i1
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/tests/polar
)
endforeach()
endforeach()
endfunction()
# Unit tests
set(test_name POLAR-UNIT-TEST)
set(test_name POLAR-UNIT-TEST-LITE)
set(test_command polar_chain_test)
polar_unit_tests(101)
polar_tests_lite(101)
# WER (performance) tests
# For these tests, run ctest --verbose
set(test_name POLAR-PERF-TEST)
set(test_command polar_chain_test)
polar_unit_tests(-3)
polar_tests_lite(-3)
# Unit tests full
set(test_name POLAR-UNIT-TEST)
set(test_command polar_chain_test)
polar_tests(101)

@ -12,47 +12,40 @@
/*!
* \file polar_chain_test.c
* \brief Throughput and WER tests for the polar encoder/decoder.
* \brief Ent-to-end test for the Polar coding chain including: subchannel allocator, encoder, rate-matcher,
rate-dematcher, decoder and subchannel deallocation.
*
* Synopsis: **polar_test [options]**
* A batch of example messages is randomly generated, frozen bits are added, encoded, rate-matched, 2-PAM modulated,
* sent over an AWGN channel, rate-dematched, and, finally, decoded by all three types of
* decoder. Transmitted and received messages are compared to estimate the WER.
* Multiple batches are simulated if the number of errors is not significant
* enough.
*
* Options:
*
* - <b>-c \<number\></b> \f$log_2\f$ of the codeword length [Default 8]
*
* - <b>-r \<number\></b> Rate matching size [Default 256]
*
* - <b>-m \<number\></b> Message size [Default 128]
* Synopsis: **polar_chain_test [options]**
*
* - <b>-p \<number\></b> Parity-set size [Default 0]
*
* - <b>-w \<number\></b> nWmPC [Default 0]
*
* - <b>-s \<number\></b> SNR [dB, Default 3.00 dB] -- Use 100 for scan, and 101 for noiseless
* Options:
*
* - <b>-n \<number\></b> nMax, [Default 9] -- Use 9 for downlink, and 10 for uplink configuration.
* - <b>-k \<number\></b> Message size (K), [Default 128]. K includes the CRC bits if applicable.
* If nMax = 9, K must satisfy 165 > K > 35. If nMax = 10, K must satisfy K > 17 and K <1024, excluding 31 > K > 25.
* - <b>-e \<number\></b> Rate matching size (E), [Default 256]. If 17 < K < 26, E must satisfy K +3 < E < 8193.
* If K > 30, E must satisfy K < E < 8193.
* - <b>-i \<number\></b> Enable bit interleaver (bil), [Default 0] -- Set bil = 0 to disable the
* bit interleaver at rate matching. Choose 0 for downlink and 1 for uplink configuration.
* - <b>-s \<number\></b> SNR [dB, Default 3.00 dB] -- Use 100 for scan, and 101 for noiseless.
* - <b>-o \<number\></b> Print output results [Default 0] -- Use 0 for detailed, Use 1 for 1 line, Use 2 for vector
* form
* form.
*
* - <b>-B \<number\>** Number of codewords in a batch.(Default 100).
* Example 1: BCH - ./polar_chain_test -n9 -k56 -e864 -i0 -s101 -o1
*
* - <b>-N \<number\>** Max number of simulated batches.(Default 10000).
* Example 2: DCI - ./polar_chain_test -n9 -k40 -e100 -i0 -s101 -o1
*
* - <b>-E \<number\>** Minimum number of errors for a significant simulation.(Default 100).
* Example 3: UCI - PC bits - ./polar_chain_test -n10 -k20 -e256 -i1 -s101 -o1
*
* It (1) generates a random set of bits (data); (2) passes the data bits
* through the subchannel allocation block where the input vector to the
* encoder is generated; (3) encodes the input vector; (4) adds Gaussian channel noise
* (optional); (5) passes the decoder output through the subchannel
* deallocation block where data bits are extracted; (6) compares the decoded
* bits with the original data bits and measures the throughput (in bit / s).
* Example 4: UCI - puncturing 19 first bits - ./polar_chain_test -n10 -k18 -e45 -i1 -s101 -o1
*
* The message, frozen and parity bit sets corresponding to the input
* parameters -c, -r, -m, -p, -w must be available in the subfolder \a
* frozensets of the execution directory.
* These sets are stored in files with the following name convention:
* > polar_code_<code_size>_<rate_matching_size>_<message_size>_<parity_set_size>_<wmPC>.bin
* Example 5: UCI - shortening 26 last bits - ./polar_chain_test -n10 -k18 -e38 -i1 -s101 -o1
*
* See \ref polar for futher details.
*
*/
@ -64,7 +57,7 @@
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/phy_logger.h"
#include "srslte/phy/utils/random.h"
#include "srslte/phy/utils/vector.h" // srslte_convert_dB_to_amplitude
#include "srslte/phy/utils/vector.h"
#include <inttypes.h>
#include <stdio.h>
@ -76,45 +69,44 @@
#include "srslte/phy/utils/vector.h"
// polar libs
#include "polar_sets.h"
#include "srslte/phy/fec/polar/polar_chanalloc.h"
#include "srslte/phy/fec/polar/polar_code.h"
#include "srslte/phy/fec/polar/polar_decoder.h"
#include "srslte/phy/fec/polar/polar_encoder.h"
#include "subchannel_allocation.h"
#include "srslte/phy/fec/polar/polar_rm.h"
//#define debug
//#define DATA_ALL_ONES
#define SNR_POINTS 10 /*!< \brief Number of SNR evaluation points.*/
#define SNR_MIN (-2.0) /*!< \brief Min SNR [dB].*/
#define SNR_MAX 8.0 /*!< \brief Max SNR [dB].*/
static int batch_size = 100; /*!< \brief Number of codewords in a batch. */
static int max_n_batch = 10000; /*!< \brief Max number of simulated batches. */
static int req_errors = 100; /*!< \brief Minimum number of errors for a significant simulation. */
#define BATCH_SIZE 100 /*!< \brief Number of codewords in a batch. */
#define MAX_N_BATCH 10000 /*!< \brief Max number of simulated batches. */
#define REQ_ERRORS 100 /*!< \brief Minimum number of errors for a significant simulation. */
// default values
static uint8_t code_size_log = 8; /*!< \brief \f$log_2\f$ of code size. */
static uint16_t message_size = 128; /*!< \brief Number of message bits (data and CRC). */
static uint16_t rate_matching_size = 256; /*!< \brief Number of bits of the codeword after rate matching. */
static uint8_t parity_set_size = 0; /*!< \brief Number of parity bits. */
static uint8_t nWmPC = 0; /*!< \brief Number of parity bits of minimum weight type. */
static double snr_db = 3; /*!< \brief SNR in dB (101 for no noise, 100 for scan). */
static int print_output = 0; /*!< \brief print output form (0 for detailed, 1 for 1 line, 2 for vector). */
static uint16_t K = 128; /*!< \brief Number of message bits (data and CRC). */
static uint16_t E = 256; /*!< \brief Number of bits of the codeword after rate matching. */
static uint8_t nMax = 9; /*!< \brief Maximum \f$log_2(N)\f$, where \f$N\f$ is the codeword size.*/
static uint8_t bil = 0; /*!< \brief If bil = 0 channel interleaver disabled. */
static double snr_db = 3; /*!< \brief SNR in dB (101 for no noise, 100 for scan). */
static int print_output = 0; /*!< \brief print output form (0 for detailed, 1 for one line, 2 for vector). */
/*!
* \brief Prints test help when a wrong parameter is passed as input.
*/
void usage(char* prog)
{
printf("Usage: %s [-cX] [-rX] [-mX] [-pX] [-wX] [-sX]\n", prog);
printf("\t-c log2 of the codeword length [Default %d]\n", code_size_log);
printf("\t-r Rate matching size [Default %d]\n", rate_matching_size);
printf("\t-m Message size [Default %d]\n", message_size);
printf("\t-p Parity-set size [Default %d]\n", parity_set_size);
printf("\t-w nWmPC [Default %d]\n", nWmPC);
printf("Usage: %s [-nX] [-kX] [-eX] [-iX] [-sX] [-oX]\n", prog);
printf("\t-n nMax [Default %d]\n", nMax);
printf("\t-k Message size [Default %d]\n", K);
printf("\t-e Rate matching size [Default %d]\n", E);
printf("\t-i Bit interleaver indicator [Default %d]\n", bil);
printf("\t-s SNR [dB, Default %.2f dB] -- Use 100 for scan, and 101 for noiseless\n", snr_db);
printf("\t-o Print output results [Default %d] -- Use 0 for detailed, Use 1 for 1 line, Use 2 for vector form\n",
print_output);
printf("\t-B Number of codewords in a batch. [Default %d]\n", batch_size);
printf("\t-N Max number of simulated batches. [Default %d]\n", max_n_batch);
printf("\t-E Minimum number of errors for a significant simulation. [Default %d]\n", req_errors);
}
/*!
@ -123,22 +115,20 @@ void usage(char* prog)
void parse_args(int argc, char** argv)
{
int opt = 0;
while ((opt = getopt(argc, argv, "c:r:m:p:w:e:s:t:o:B:N:E:")) != -1) {
while ((opt = getopt(argc, argv, "n:k:e:i:s:o:")) != -1) {
// printf("opt : %d\n", opt);
switch (opt) {
case 'c':
code_size_log = (int)strtol(optarg, NULL, 10);
break;
case 'r':
rate_matching_size = (int)strtol(optarg, NULL, 10);
case 'e':
E = (int)strtol(optarg, NULL, 10);
break;
case 'm':
message_size = (int)strtol(optarg, NULL, 10);
case 'k':
K = (int)strtol(optarg, NULL, 10);
break;
case 'p':
parity_set_size = (int)strtol(optarg, NULL, 10);
case 'n':
nMax = (int)strtol(optarg, NULL, 10);
break;
case 'w':
nWmPC = (int)strtol(optarg, NULL, 10);
case 'i':
bil = (int)strtol(optarg, NULL, 10);
break;
case 's':
snr_db = strtof(optarg, NULL);
@ -146,15 +136,6 @@ void parse_args(int argc, char** argv)
case 'o':
print_output = (int)strtol(optarg, NULL, 10);
break;
case 'B':
batch_size = (int)strtol(optarg, NULL, 10);
break;
case 'N':
max_n_batch = (int)strtol(optarg, NULL, 10);
break;
case 'E':
req_errors = (int)strtol(optarg, NULL, 10);
break;
default:
usage(argv[0]);
exit(-1);
@ -177,6 +158,13 @@ int main(int argc, char** argv)
uint8_t* output_enc = NULL; // output encoder
uint8_t* output_enc_avx2 = NULL; // output encoder
uint8_t* rm_codeword = NULL; // output rate-matcher
float* rm_llr = NULL; // rate-matched llr
int16_t* rm_llr_s = NULL; // rate-matched llr
int8_t* rm_llr_c = NULL; // rate-matched llr
int8_t* rm_llr_c_avx2 = NULL; // rate-matched llr
float* llr = NULL; // input decoder
int16_t* llr_s = NULL; // input decoder
int8_t* llr_c = NULL; // input decoder
@ -190,17 +178,17 @@ int main(int argc, char** argv)
double var[SNR_POINTS + 1];
double snr_db_vec[SNR_POINTS + 1];
int i = 0;
int reportinfo = 0;
int j = 0;
int snr_points = 0;
int errors_symb = 0;
int errors_symb_s = 0;
int errors_symb_c = 0;
#ifdef LV_HAVE_AVX
int errors_symb = 0;
int errors_symb_s = 0;
int errors_symb_c = 0;
int errors_symb_c_avx2 = 0;
#endif // LV_HAVE_AVX
int n_error_words[SNR_POINTS + 1];
int n_error_words_s[SNR_POINTS + 1];
@ -219,20 +207,22 @@ int main(int argc, char** argv)
double elapsed_time_enc_avx2[SNR_POINTS + 1];
// 16-bit quantizer
int16_t inf16 = (1U << 15U) - 1;
int8_t inf8 = (1U << 7U) - 1;
float gain_s = NAN;
float gain_c = NAN;
#ifdef LV_HAVE_AVX
float gain_c_avx2 = NAN;
#endif // LV_HAVE_AVX2
int16_t inf16 = (1U << 15U) - 1;
int8_t inf8 = (1U << 7U) - 1;
float gain_s = NAN;
float gain_c = NAN;
float gain_c_avx2 = NAN;
srslte_polar_sets_t sets;
srslte_subchn_alloc_t subch;
srslte_polar_code_t code;
srslte_polar_encoder_t enc;
srslte_polar_decoder_t dec;
srslte_polar_decoder_t dec_s; // 16-bit
srslte_polar_decoder_t dec_c; // 8-bit
srslte_polar_rm_t rm_tx;
srslte_polar_rm_t rm_rx_f;
srslte_polar_rm_t rm_rx_s;
srslte_polar_rm_t rm_rx_c;
#ifdef LV_HAVE_AVX2
srslte_polar_encoder_t enc_avx2;
srslte_polar_decoder_t dec_c_avx2; // 8-bit
@ -240,45 +230,40 @@ int main(int argc, char** argv)
parse_args(argc, argv);
uint16_t code_size = 1U << code_size_log;
// uinitialize polar code
srslte_polar_code_init(&code);
printf("Test POLAR chain:\n");
printf(" Final code bits -> E = %d\n", rate_matching_size);
printf(" Code bits -> N = %d\n", code_size);
printf(" CRC + Data bits -> K = %d\n", message_size);
printf(" Parity Check bits -> PC = %d \n", parity_set_size);
printf(" Code rate -> (K + PC)/N = (%d + %d)/%d = %.2f\n",
message_size,
parity_set_size,
code_size,
(double)(message_size + parity_set_size) / code_size);
// initialize encoder pipeline
srslte_polar_encoder_init(&enc, SRSLTE_POLAR_ENCODER_PIPELINED, nMax);
// read polar index sets from a file
srslte_polar_code_sets_read(&sets, message_size, code_size_log, rate_matching_size, parity_set_size, nWmPC);
// initialize rate-matcher
srslte_polar_rm_tx_init(&rm_tx);
// subchannel allocation
srslte_subchannel_allocation_init(&subch, code_size_log, message_size, sets.message_set);
// initialize rate-matcher
srslte_polar_rm_rx_init_f(&rm_rx_f);
// initialize encoder pipeline
srslte_polar_encoder_init(&enc, SRSLTE_POLAR_ENCODER_PIPELINED, code_size_log);
// initialize rate-matcher
srslte_polar_rm_rx_init_s(&rm_rx_s);
// initialize rate-matcher
srslte_polar_rm_rx_init_c(&rm_rx_c);
// initialize a POLAR decoder (float)
srslte_polar_decoder_init(&dec, SRSLTE_POLAR_DECODER_SSC_F, code_size_log, sets.frozen_set, sets.frozen_set_size);
srslte_polar_decoder_init(&dec, SRSLTE_POLAR_DECODER_SSC_F, nMax);
// initialize a POLAR decoder (16 bit)
srslte_polar_decoder_init(&dec_s, SRSLTE_POLAR_DECODER_SSC_S, code_size_log, sets.frozen_set, sets.frozen_set_size);
srslte_polar_decoder_init(&dec_s, SRSLTE_POLAR_DECODER_SSC_S, nMax);
// initialize a POLAR decoder (8 bit)
srslte_polar_decoder_init(&dec_c, SRSLTE_POLAR_DECODER_SSC_C, code_size_log, sets.frozen_set, sets.frozen_set_size);
srslte_polar_decoder_init(&dec_c, SRSLTE_POLAR_DECODER_SSC_C, nMax);
#ifdef LV_HAVE_AVX2
// initialize encoder avx2
srslte_polar_encoder_init(&enc_avx2, SRSLTE_POLAR_ENCODER_AVX2, code_size_log);
srslte_polar_encoder_init(&enc_avx2, SRSLTE_POLAR_ENCODER_AVX2, nMax);
// initialize a POLAR decoder (8 bit, avx2)
srslte_polar_decoder_init(
&dec_c_avx2, SRSLTE_POLAR_DECODER_SSC_C_AVX2, code_size_log, sets.frozen_set, sets.frozen_set_size);
srslte_polar_decoder_init(&dec_c_avx2, SRSLTE_POLAR_DECODER_SSC_C_AVX2, nMax);
#endif // LV_HAVE_AVX2
#ifdef DATA_ALL_ONES
@ -286,29 +271,36 @@ int main(int argc, char** argv)
srslte_random_t random_gen = srslte_random_init(0);
#endif
data_tx = srslte_vec_u8_malloc(message_size * batch_size);
data_rx = srslte_vec_u8_malloc(message_size * batch_size);
data_rx_s = srslte_vec_u8_malloc(message_size * batch_size);
data_rx_c = srslte_vec_u8_malloc(message_size * batch_size);
data_rx_c_avx2 = srslte_vec_u8_malloc(message_size * batch_size);
data_tx = srslte_vec_u8_malloc(K * BATCH_SIZE);
data_rx = srslte_vec_u8_malloc(K * BATCH_SIZE);
data_rx_s = srslte_vec_u8_malloc(K * BATCH_SIZE);
data_rx_c = srslte_vec_u8_malloc(K * BATCH_SIZE);
data_rx_c_avx2 = srslte_vec_u8_malloc(K * BATCH_SIZE);
input_enc = srslte_vec_u8_malloc(NMAX * BATCH_SIZE);
output_enc = srslte_vec_u8_malloc(NMAX * BATCH_SIZE);
output_enc_avx2 = srslte_vec_u8_malloc(NMAX * BATCH_SIZE);
input_enc = srslte_vec_u8_malloc(code_size * batch_size);
output_enc = srslte_vec_u8_malloc(code_size * batch_size);
output_enc_avx2 = srslte_vec_u8_malloc(code_size * batch_size);
rm_codeword = srslte_vec_u8_malloc(E * BATCH_SIZE);
llr = srslte_vec_f_malloc(code_size * batch_size);
llr_s = srslte_vec_i16_malloc(code_size * batch_size);
llr_c = srslte_vec_i8_malloc(code_size * batch_size);
llr_c_avx2 = srslte_vec_i8_malloc(code_size * batch_size);
rm_llr = srslte_vec_f_malloc(E * BATCH_SIZE);
rm_llr_s = srslte_vec_i16_malloc(E * BATCH_SIZE);
rm_llr_c = srslte_vec_i8_malloc(E * BATCH_SIZE);
rm_llr_c_avx2 = srslte_vec_i8_malloc(E * BATCH_SIZE);
output_dec = srslte_vec_u8_malloc(code_size * batch_size);
output_dec_s = srslte_vec_u8_malloc(code_size * batch_size);
output_dec_c = srslte_vec_u8_malloc(code_size * batch_size);
output_dec_c_avx2 = srslte_vec_u8_malloc(code_size * batch_size);
llr = srslte_vec_f_malloc(NMAX * BATCH_SIZE);
llr_s = srslte_vec_i16_malloc(NMAX * BATCH_SIZE);
llr_c = srslte_vec_i8_malloc(NMAX * BATCH_SIZE);
llr_c_avx2 = srslte_vec_i8_malloc(NMAX * BATCH_SIZE);
output_dec = srslte_vec_u8_malloc(NMAX * BATCH_SIZE);
output_dec_s = srslte_vec_u8_malloc(NMAX * BATCH_SIZE);
output_dec_c = srslte_vec_u8_malloc(NMAX * BATCH_SIZE);
output_dec_c_avx2 = srslte_vec_u8_malloc(NMAX * BATCH_SIZE);
if (!data_tx || !data_rx || !data_rx_s || !data_rx_c || !data_rx_c_avx2 || !input_enc || !output_enc ||
!output_enc_avx2 || !llr || !llr_s || !llr_c || !llr_c_avx2 || !output_dec || !output_dec_s || !output_dec_c ||
!output_dec_c_avx2) {
!output_enc_avx2 || !rm_codeword || !rm_llr || !rm_llr_s || !rm_llr_c || !rm_llr_c_avx2 || !llr || !llr_s ||
!llr_c || !llr_c_avx2 || !output_dec || !output_dec_s || !output_dec_c || !output_dec_c_avx2) {
perror("malloc");
exit(-1);
}
@ -364,9 +356,14 @@ int main(int argc, char** argv)
int i_batch = 0;
printf("\nBatch:\n ");
int req_errors = 0;
int max_n_batch = 0;
if (snr_db_vec[i_snr] == 101) {
req_errors = 1;
max_n_batch = 1;
} else {
req_errors = REQ_ERRORS;
max_n_batch = MAX_N_BATCH;
}
while ((n_error_words[i_snr] < req_errors) && (i_batch < max_n_batch)) {
@ -381,76 +378,104 @@ int main(int argc, char** argv)
// generate data_tx
#ifdef DATA_ALL_ONES
for (i = 0; i < batch_size; i++) {
for (j = 0; j < message_size; j++) {
data_tx[i * message_size + j] = 1;
for (i = 0; i < BATCH_SIZE; i++) {
for (j = 0; j < K; j++) {
data_tx[i * K + j] = 1;
}
}
#else
for (uint32_t i = 0; i < batch_size; i++) {
for (j = 0; j < message_size; j++) {
data_tx[i * message_size + j] = srslte_random_uniform_int_dist(random_gen, 0, 1);
for (i = 0; i < BATCH_SIZE; i++) {
for (j = 0; j < K; j++) {
data_tx[i * K + j] = srslte_random_uniform_int_dist(random_gen, 0, 1);
}
}
#endif
// get polar code, compute frozen_set (F_set), message_set (K_set) and parity bit set (PC_set)
if (srslte_polar_code_get(&code, K, E, nMax) == -1) {
return -1;
}
if (reportinfo == 0) {
reportinfo = 1;
printf("Test POLAR chain:\n");
printf(" Final code bits -> E = %d\n", E);
printf(" Code bits -> N = %d\n", code.N);
printf(" CRC + Data bits -> K = %d\n", K);
printf(" Parity Check bits -> PC = %d \n", code.nPC);
printf(" Code rate -> (K + PC)/N = (%d + %d)/%d = %.2f\n",
K,
code.nPC,
code.N,
(double)(K + code.nPC) / code.N);
}
// subchannel_allocation block
for (uint32_t i = 0; i < batch_size; i++) {
srslte_subchannel_allocation(&subch, data_tx + i * message_size, input_enc + i * code_size);
for (i = 0; i < BATCH_SIZE; i++) {
srslte_polar_chanalloc_tx(
data_tx + i * K, input_enc + i * code.N, code.N, code.K, code.nPC, code.K_set, code.PC_set);
}
// encoding pipeline
gettimeofday(&t[1], NULL);
for (j = 0; j < batch_size; j++) {
srslte_polar_encoder_encode(&enc, input_enc + j * code_size, output_enc + j * code_size, code_size_log);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_encoder_encode(&enc, input_enc + j * code.N, output_enc + j * code.N, code.n);
}
gettimeofday(&t[2], NULL);
get_time_interval(t);
elapsed_time_enc[i_snr] += t[0].tv_sec + 1e-6 * t[0].tv_usec;
// rate matcher
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_rm_tx(&rm_tx, output_enc + j * code.N, rm_codeword + j * E, code.n, E, K, bil);
}
#ifdef LV_HAVE_AVX2
// encoding avx2
gettimeofday(&t[1], NULL);
for (j = 0; j < batch_size; j++) {
srslte_polar_encoder_encode(
&enc_avx2, input_enc + j * code_size, output_enc_avx2 + j * code_size, code_size_log);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_encoder_encode(&enc_avx2, input_enc + j * code.N, output_enc_avx2 + j * code.N, code.n);
}
gettimeofday(&t[2], NULL);
get_time_interval(t);
elapsed_time_enc_avx2[i_snr] += t[0].tv_sec + 1e-6 * t[0].tv_usec;
// check encoders have the same output.
// check errors with respect the output of the pipeline encoder
for (uint32_t i = 0; i < batch_size; i++) {
if (srslte_bit_diff(output_enc + i * code_size, output_enc_avx2 + i * code_size, code_size) != 0) {
for (i = 0; i < BATCH_SIZE; i++) {
if (srslte_bit_diff(output_enc + i * code.N, output_enc_avx2 + i * code.N, code.N) != 0) {
printf("ERROR: Wrong avx2 encoder output. SNR= %f, Batch: %d\n", snr_db_vec[i_snr], i);
exit(-1);
}
}
#endif // LV_HAVE_AVX2
for (j = 0; j < code_size * batch_size; j++) {
llr[j] = output_enc[j] ? -1 : 1;
for (j = 0; j < E * BATCH_SIZE; j++) {
rm_llr[j] = rm_codeword[j] ? -1 : 1;
}
// add noise
if (snr_db_vec[i_snr] != 101) {
srslte_ch_awgn_f(llr, llr, var[i_snr], batch_size * code_size);
srslte_ch_awgn_f(rm_llr, rm_llr, var[i_snr], BATCH_SIZE * E);
// Convert symbols into LLRs
for (j = 0; j < batch_size * code_size; j++) {
llr[j] *= 2 / (var[i_snr] * var[i_snr]);
for (j = 0; j < BATCH_SIZE * code.N; j++) {
rm_llr[j] *= 2 / (var[i_snr] * var[i_snr]);
}
}
// rate-Dematcher
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_rm_rx_f(&rm_rx_f, rm_llr + j * E, llr + j * code.N, E, code.n, K, bil);
}
// decoding float point
gettimeofday(&t[1], NULL);
for (j = 0; j < batch_size; j++) {
srslte_polar_decoder_decode_f(&dec, llr + j * code_size, output_dec + j * code_size);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_decoder_decode_f(
&dec, llr + j * code.N, output_dec + j * code.N, code.n, code.F_set, code.F_set_size);
}
gettimeofday(&t[2], NULL);
@ -458,13 +483,16 @@ int main(int argc, char** argv)
elapsed_time_dec[i_snr] += t[0].tv_sec + 1e-6 * t[0].tv_usec;
// extract message bits - float decoder
for (j = 0; j < batch_size; j++) {
srslte_subchannel_deallocation(&subch, output_dec + j * code_size, data_rx + j * message_size);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_chanalloc_rx(output_dec + j * code.N, data_rx + j * K, code.K, code.nPC, code.K_set, code.PC_set);
}
// check errors - float decpder
for (uint32_t i = 0; i < batch_size; i++) {
errors_symb = srslte_bit_diff(data_tx + i * message_size, data_rx + i * message_size, message_size);
// check errors - float decpder
#ifdef debug
int i_error = 0;
#endif
for (i = 0; i < BATCH_SIZE; i++) {
errors_symb = srslte_bit_diff(data_tx + i * K, data_rx + i * K, K);
if (errors_symb != 0) {
n_error_words[i_snr]++;
@ -474,16 +502,23 @@ int main(int argc, char** argv)
// decoding 16-bit
// 16-quantization
if (snr_db_vec[i_snr] == 101) {
srslte_vec_quant_fs(llr, llr_s, 8192, 0, 32767, batch_size * code_size);
srslte_vec_quant_fs(rm_llr, rm_llr_s, 8192, 0, 32767, BATCH_SIZE * E);
} else {
gain_s = inf16 * var[i_snr] / 20 / (1 / var[i_snr] + 2);
srslte_vec_quant_fs(llr, llr_s, gain_s, 0, inf16, batch_size * code_size);
// printf("gain_s: %f, inf16:%d\n", gain_s, inf16);
srslte_vec_quant_fs(rm_llr, rm_llr_s, gain_s, 0, inf16, BATCH_SIZE * E);
}
// Rate dematcher
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_rm_rx_s(&rm_rx_s, rm_llr_s + j * E, llr_s + j * code.N, E, code.n, K, bil);
}
// decoding 16-bit
gettimeofday(&t[1], NULL);
for (j = 0; j < batch_size; j++) {
srslte_polar_decoder_decode_s(&dec_s, llr_s + j * code_size, output_dec_s + j * code_size);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_decoder_decode_s(
&dec_s, llr_s + j * code.N, output_dec_s + j * code.N, code.n, code.F_set, code.F_set_size);
}
gettimeofday(&t[2], NULL);
@ -491,13 +526,14 @@ int main(int argc, char** argv)
elapsed_time_dec_s[i_snr] += t[0].tv_sec + 1e-6 * t[0].tv_usec;
// extract message bits 16-bit decoder
for (j = 0; j < batch_size; j++) {
srslte_subchannel_deallocation(&subch, output_dec_s + j * code_size, data_rx_s + j * message_size);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_chanalloc_rx(
output_dec_s + j * code.N, data_rx_s + j * K, code.K, code.nPC, code.K_set, code.PC_set);
}
// check errors 16-bit decoder
for (uint32_t i = 0; i < batch_size; i++) {
errors_symb_s = srslte_bit_diff(data_tx + i * message_size, data_rx_s + i * message_size, message_size);
for (i = 0; i < BATCH_SIZE; i++) {
errors_symb_s = srslte_bit_diff(data_tx + i * K, data_rx_s + i * K, K);
if (errors_symb_s != 0) {
n_error_words_s[i_snr]++;
@ -507,29 +543,37 @@ int main(int argc, char** argv)
// 8-bit decoding
// 8-bit quantization
if (snr_db_vec[i_snr] == 101) {
srslte_vec_quant_fc(llr, llr_c, 32, 0, 127, batch_size * code_size);
srslte_vec_quant_fc(rm_llr, rm_llr_c, 32, 0, 127, BATCH_SIZE * E);
} else {
gain_c = inf8 * var[i_snr] / 20 / (1 / var[i_snr] + 2);
srslte_vec_quant_fc(llr, llr_c, gain_c, 0, inf8, batch_size * code_size);
srslte_vec_quant_fc(rm_llr, rm_llr_c, gain_c, 0, inf8, BATCH_SIZE * E);
}
// Rate dematcher
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_rm_rx_c(&rm_rx_c, rm_llr_c + j * E, llr_c + j * code.N, E, code.n, K, bil);
}
// Decoding
gettimeofday(&t[1], NULL);
for (j = 0; j < batch_size; j++) {
srslte_polar_decoder_decode_c(&dec_c, llr_c + j * code_size, output_dec_c + j * code_size);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_decoder_decode_c(
&dec_c, llr_c + j * code.N, output_dec_c + j * code.N, code.n, code.F_set, code.F_set_size);
}
gettimeofday(&t[2], NULL);
get_time_interval(t);
elapsed_time_dec_c[i_snr] += t[0].tv_sec + 1e-6 * t[0].tv_usec;
// extract message bits
for (j = 0; j < batch_size; j++) {
srslte_subchannel_deallocation(&subch, output_dec_c + j * code_size, data_rx_c + j * message_size);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_chanalloc_rx(
output_dec_c + j * code.N, data_rx_c + j * K, code.K, code.nPC, code.K_set, code.PC_set);
}
// check errors 8-bits decoder
for (uint32_t i = 0; i < batch_size; i++) {
for (i = 0; i < BATCH_SIZE; i++) {
errors_symb_c = srslte_bit_diff(data_tx + i * message_size, data_rx_c + i * message_size, message_size);
errors_symb_c = srslte_bit_diff(data_tx + i * K, data_rx_c + i * K, K);
if (errors_symb_c != 0) {
n_error_words_c[i_snr]++;
@ -540,30 +584,36 @@ int main(int argc, char** argv)
// 8-bit avx2 decoding
// 8-bit quantization
if (snr_db_vec[i_snr] == 101) {
srslte_vec_quant_fc(llr, llr_c_avx2, 32, 0, 127, batch_size * code_size);
srslte_vec_quant_fc(rm_llr, rm_llr_c_avx2, 32, 0, 127, BATCH_SIZE * E);
} else {
gain_c_avx2 = inf8 * var[i_snr] / 20 / (1 / var[i_snr] + 2);
srslte_vec_quant_fc(llr, llr_c_avx2, gain_c_avx2, 0, inf8, batch_size * code_size);
srslte_vec_quant_fc(rm_llr, rm_llr_c_avx2, gain_c_avx2, 0, inf8, BATCH_SIZE * E);
}
// Rate dematcher
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_rm_rx_c(&rm_rx_c, rm_llr_c_avx2 + j * E, llr_c_avx2 + j * code.N, E, code.n, K, bil);
}
gettimeofday(&t[1], NULL);
for (j = 0; j < batch_size; j++) {
srslte_polar_decoder_decode_c(&dec_c_avx2, llr_c_avx2 + j * code_size, output_dec_c_avx2 + j * code_size);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_decoder_decode_c(
&dec_c_avx2, llr_c_avx2 + j * code.N, output_dec_c_avx2 + j * code.N, code.n, code.F_set, code.F_set_size);
}
gettimeofday(&t[2], NULL);
get_time_interval(t);
elapsed_time_dec_c_avx2[i_snr] += t[0].tv_sec + 1e-6 * t[0].tv_usec;
// extract message bits
for (j = 0; j < batch_size; j++) {
srslte_subchannel_deallocation(&subch, output_dec_c_avx2 + j * code_size, data_rx_c_avx2 + j * message_size);
for (j = 0; j < BATCH_SIZE; j++) {
srslte_polar_chanalloc_rx(
output_dec_c_avx2 + j * code.N, data_rx_c_avx2 + j * K, code.K, code.nPC, code.K_set, code.PC_set);
}
// check errors 8-bits decoder
for (uint32_t i = 0; i < batch_size; i++) {
for (i = 0; i < BATCH_SIZE; i++) {
errors_symb_c_avx2 =
srslte_bit_diff(data_tx + i * message_size, data_rx_c_avx2 + i * message_size, message_size);
errors_symb_c_avx2 = srslte_bit_diff(data_tx + i * K, data_rx_c_avx2 + i * K, K);
if (errors_symb_c_avx2 != 0) {
n_error_words_c_avx2[i_snr]++;
@ -587,26 +637,26 @@ int main(int argc, char** argv)
printf("];\n");
printf("WER=[");
for (int i_snr = 0; i_snr < snr_points; i_snr++) {
printf("%e ", (float)n_error_words[i_snr] / last_i_batch[i_snr] / batch_size);
printf("%e ", (float)n_error_words[i_snr] / last_i_batch[i_snr] / BATCH_SIZE);
}
printf("];\n");
printf("WER_16=[");
for (int i_snr = 0; i_snr < snr_points; i_snr++) {
printf("%e ", (float)n_error_words_s[i_snr] / last_i_batch[i_snr] / batch_size);
printf("%e ", (float)n_error_words_s[i_snr] / last_i_batch[i_snr] / BATCH_SIZE);
}
printf("];\n");
printf("WER_8=[");
for (int i_snr = 0; i_snr < snr_points; i_snr++) {
printf("%e ", (float)n_error_words_c[i_snr] / last_i_batch[i_snr] / batch_size);
printf("%e ", (float)n_error_words_c[i_snr] / last_i_batch[i_snr] / BATCH_SIZE);
}
printf("];\n");
#ifdef LV_HAVE_AVX2
printf("WER_8_AVX2=[");
for (int i_snr = 0; i_snr < snr_points; i_snr++) {
printf("%e ", (float)n_error_words_c_avx2[i_snr] / last_i_batch[i_snr] / batch_size);
printf("%e ", (float)n_error_words_c_avx2[i_snr] / last_i_batch[i_snr] / BATCH_SIZE);
}
printf("];\n");
#endif // LV_HAVE_AVX2
@ -616,34 +666,34 @@ int main(int argc, char** argv)
printf("SNR: %3.1f\t enc_pipe_thrpt(Mbps): %.2f\t enc_avx2_thrpt(Mbps): "
"%.2f\n",
snr_db_vec[i_snr],
last_i_batch[i_snr] * batch_size * code_size / (1000000 * elapsed_time_enc[i_snr]),
last_i_batch[i_snr] * batch_size * code_size / (1000000 * elapsed_time_enc_avx2[i_snr]));
last_i_batch[i_snr] * BATCH_SIZE * code.N / (1000000 * elapsed_time_enc[i_snr]),
last_i_batch[i_snr] * BATCH_SIZE * code.N / (1000000 * elapsed_time_enc_avx2[i_snr]));
printf("SNR: %3.1f\t FLOAT WER: %.8f %d/%d \t dec_thrput(Mbps): %.2f\n",
snr_db_vec[i_snr],
(double)n_error_words[i_snr] / last_i_batch[i_snr] / batch_size,
(double)n_error_words[i_snr] / last_i_batch[i_snr] / BATCH_SIZE,
n_error_words[i_snr],
last_i_batch[i_snr] * batch_size * code_size,
last_i_batch[i_snr] * batch_size * code_size / (1000000 * elapsed_time_dec[i_snr]));
last_i_batch[i_snr] * BATCH_SIZE * code.N,
last_i_batch[i_snr] * BATCH_SIZE * code.N / (1000000 * elapsed_time_dec[i_snr]));
printf("SNR: %3.1f\t INT16 WER: %.8f %d/%d \t dec_thrput(Mbps): %.2f\n",
snr_db_vec[i_snr],
(double)n_error_words_s[i_snr] / last_i_batch[i_snr] / batch_size,
(double)n_error_words_s[i_snr] / last_i_batch[i_snr] / BATCH_SIZE,
n_error_words_s[i_snr],
last_i_batch[i_snr] * batch_size * code_size,
last_i_batch[i_snr] * batch_size * code_size / (1000000 * elapsed_time_dec_s[i_snr]));
last_i_batch[i_snr] * BATCH_SIZE * code.N,
last_i_batch[i_snr] * BATCH_SIZE * code.N / (1000000 * elapsed_time_dec_s[i_snr]));
printf("SNR: %3.1f\t INT8 WER: %.8f %d/%d \t dec_thrput(Mbps): %.2f\n",
snr_db_vec[i_snr],
(double)n_error_words_c[i_snr] / last_i_batch[i_snr] / batch_size,
(double)n_error_words_c[i_snr] / last_i_batch[i_snr] / BATCH_SIZE,
n_error_words_c[i_snr],
last_i_batch[i_snr] * batch_size * code_size,
last_i_batch[i_snr] * batch_size * code_size / (1000000 * elapsed_time_dec_c[i_snr]));
last_i_batch[i_snr] * BATCH_SIZE * code.N,
last_i_batch[i_snr] * BATCH_SIZE * code.N / (1000000 * elapsed_time_dec_c[i_snr]));
#ifdef LV_HAVE_AVX2
printf("SNR: %3.1f\t INT8-AVX2 WER: %.8f %d/%d \t dec_thrput(Mbps): %.2f\n",
snr_db_vec[i_snr],
(double)n_error_words_c_avx2[i_snr] / last_i_batch[i_snr] / batch_size,
(double)n_error_words_c_avx2[i_snr] / last_i_batch[i_snr] / BATCH_SIZE,
n_error_words_c_avx2[i_snr],
last_i_batch[i_snr] * batch_size * code_size,
last_i_batch[i_snr] * batch_size * code_size / (1000000 * elapsed_time_dec_c_avx2[i_snr]));
last_i_batch[i_snr] * BATCH_SIZE * code.N,
last_i_batch[i_snr] * BATCH_SIZE * code.N / (1000000 * elapsed_time_dec_c_avx2[i_snr]));
#endif // LV_HAVE_AVX2
printf("\n");
}
@ -654,97 +704,108 @@ int main(int argc, char** argv)
for (int i_snr = 0; i_snr < snr_points; i_snr++) {
printf("**** PIPELINE ENCODER ****\n");
printf("Estimated throughput:\n %e word/s\n %e bit/s (information)\n %e bit/s (encoded)\n",
last_i_batch[i_snr] * batch_size / elapsed_time_enc[i_snr],
last_i_batch[i_snr] * batch_size * message_size / elapsed_time_enc[i_snr],
last_i_batch[i_snr] * batch_size * code_size / elapsed_time_enc[i_snr]);
last_i_batch[i_snr] * BATCH_SIZE / elapsed_time_enc[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * K / elapsed_time_enc[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * code.N / elapsed_time_enc[i_snr]);
#ifdef LV_HAVE_AVX2
printf("\n**** AVX2 ENCODER ****\n");
printf("Estimated throughput:\n %e word/s\n %e bit/s (information)\n %e bit/s "
"(encoded)\n",
last_i_batch[i_snr] * batch_size / elapsed_time_enc_avx2[i_snr],
last_i_batch[i_snr] * batch_size * message_size / elapsed_time_enc_avx2[i_snr],
last_i_batch[i_snr] * batch_size * code_size / elapsed_time_enc_avx2[i_snr]);
last_i_batch[i_snr] * BATCH_SIZE / elapsed_time_enc_avx2[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * K / elapsed_time_enc_avx2[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * code.N / elapsed_time_enc_avx2[i_snr]);
#endif // LV_HAVE_AVX2
printf("\n**** FLOATING POINT ****");
printf("\nEstimated word error rate:\n %e (%d errors)\n",
(double)n_error_words[i_snr] / last_i_batch[i_snr] / batch_size,
(double)n_error_words[i_snr] / last_i_batch[i_snr] / BATCH_SIZE,
n_error_words[i_snr]);
printf("Estimated throughput decoder:\n %e word/s\n %e bit/s (information)\n %e bit/s (encoded)\n",
last_i_batch[i_snr] * batch_size / elapsed_time_dec[i_snr],
last_i_batch[i_snr] * batch_size * message_size / elapsed_time_dec[i_snr],
last_i_batch[i_snr] * batch_size * code_size / elapsed_time_dec[i_snr]);
last_i_batch[i_snr] * BATCH_SIZE / elapsed_time_dec[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * K / elapsed_time_dec[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * code.N / elapsed_time_dec[i_snr]);
printf("\n**** FIXED POINT (16 bits) ****");
printf("\nEstimated word error rate:\n %e (%d errors)\n",
(double)n_error_words_s[i_snr] / last_i_batch[i_snr] / batch_size,
(double)n_error_words_s[i_snr] / last_i_batch[i_snr] / BATCH_SIZE,
n_error_words_s[i_snr]);
printf("Estimated throughput decoder:\n %e word/s\n %e bit/s (information)\n %e bit/s (encoded)\n",
last_i_batch[i_snr] * batch_size / elapsed_time_dec_s[i_snr],
last_i_batch[i_snr] * batch_size * message_size / elapsed_time_dec_s[i_snr],
last_i_batch[i_snr] * batch_size * code_size / elapsed_time_dec_s[i_snr]);
last_i_batch[i_snr] * BATCH_SIZE / elapsed_time_dec_s[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * K / elapsed_time_dec_s[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * code.N / elapsed_time_dec_s[i_snr]);
printf("\n**** FIXED POINT (8 bits) ****");
printf("\nEstimated word error rate:\n %e (%d errors)\n",
(double)n_error_words_c[i_snr] / last_i_batch[i_snr] / batch_size,
(double)n_error_words_c[i_snr] / last_i_batch[i_snr] / BATCH_SIZE,
n_error_words_c[i_snr]);
printf("Estimated throughput decoder:\n %e word/s\n %e bit/s (information)\n %e bit/s (encoded)\n",
last_i_batch[i_snr] * batch_size / elapsed_time_dec_c[i_snr],
last_i_batch[i_snr] * batch_size * message_size / elapsed_time_dec_c[i_snr],
last_i_batch[i_snr] * batch_size * code_size / elapsed_time_dec_c[i_snr]);
last_i_batch[i_snr] * BATCH_SIZE / elapsed_time_dec_c[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * K / elapsed_time_dec_c[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * code.N / elapsed_time_dec_c[i_snr]);
#ifdef LV_HAVE_AVX2
printf("\n**** FIXED POINT (8 bits, AVX2) ****");
printf("\nEstimated word error rate:\n %e (%d errors)\n",
(double)n_error_words_c_avx2[i_snr] / last_i_batch[i_snr] / batch_size,
(double)n_error_words_c_avx2[i_snr] / last_i_batch[i_snr] / BATCH_SIZE,
n_error_words_c_avx2[i_snr]);
printf("Estimated throughput decoder:\n %e word/s\n %e bit/s (information)\n %e bit/s (encoded)\n",
last_i_batch[i_snr] * batch_size / elapsed_time_dec_c_avx2[i_snr],
last_i_batch[i_snr] * batch_size * message_size / elapsed_time_dec_c_avx2[i_snr],
last_i_batch[i_snr] * batch_size * code_size / elapsed_time_dec_c_avx2[i_snr]);
last_i_batch[i_snr] * BATCH_SIZE / elapsed_time_dec_c_avx2[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * K / elapsed_time_dec_c_avx2[i_snr],
last_i_batch[i_snr] * BATCH_SIZE * code.N / elapsed_time_dec_c_avx2[i_snr]);
#endif // LV_HAVE_AVX2
printf("\n");
}
break;
}
free(data_tx);
free(data_rx);
free(data_rx_s);
free(data_rx_c);
free(data_rx_c_avx2);
free(input_enc);
free(output_enc);
free(output_enc_avx2);
free(rm_codeword);
free(rm_llr);
free(rm_llr_s);
free(rm_llr_c);
free(rm_llr_c_avx2);
free(llr);
free(llr_s);
free(llr_c);
free(llr_c_avx2);
free(output_dec);
free(output_dec_s);
free(output_dec_c);
free(output_dec_c_avx2);
free(output_enc_avx2);
free(data_rx_c_avx2);
#ifdef DATA_ALL_ONES
#else
srslte_random_free(random_gen);
#endif
// free sets
srslte_polar_code_sets_free(&sets);
// free code
srslte_polar_code_free(&code);
srslte_polar_encoder_free(&enc);
srslte_polar_decoder_free(&dec);
srslte_polar_decoder_free(&dec_s);
srslte_polar_decoder_free(&dec_c);
srslte_polar_rm_rx_free_f(&rm_rx_f);
srslte_polar_rm_rx_free_s(&rm_rx_s);
srslte_polar_rm_rx_free_c(&rm_rx_c);
srslte_polar_rm_tx_free(&rm_tx);
#ifdef LV_HAVE_AVX2
srslte_polar_encoder_free(&enc_avx2);
srslte_polar_decoder_free(&dec_c_avx2);
@ -791,7 +852,7 @@ int main(int argc, char** argv)
);
} else {
for (i_snr = 0; i_snr < snr_points; i_snr++) {
for (int i_snr = 0; i_snr < snr_points; i_snr++) {
if (n_error_words_s[i_snr] > 10 * n_error_words[i_snr]) {
perror("16-bit performance at SNR = %d too low!");
exit(-1);

Loading…
Cancel
Save