- Handle received E-RAB S1AP at s1ap.cc.
- Added methods to rrc.cc, rrc_ue.cc and rrc_bearer_cfg.cc to handle erab modify request.
- Made RLC add_bearer() function capable of re-creating the RLC entity.
- Send RRC reconfiguration to the UE and reply to the EPC with S1AP
modify bearer response.
This commit also adds support to srsEPC to send S1AP modify bearer request for
testing purposes.
this patch adds support for measuring the:
* SDU rx latency (Average time in ms from first RLC segment to full SDU)
* amount of buffered bytes (sum of payload of PDUs buffered in rx_window)
the implementation is using std::chrono
* Reorder DCI FORMAT enum
* Fix endianness issue
* Fix return codes in phy_ue_db
* Log members should be destructed after the layers.
* Add JSON metrics and Events. Add Alarm log channel. Simplify MAC metrics struct.
* Restore metrics_stdout change
RLC TM can't be segmented so it may happen that a PDU
cannot be sent because the grant is too small. That is not
an error and should only be logged in info.
when retrieving the RLC metrics, the number of TTIs since the last
call are passed. This allows to calculate the actual rate
based on the LTE timing rather than only the system timing.
we've only incremented the retx when retransmitting a full PDU,
but not when only retransmitting segments.
This might lead to many more retx than allowed.
- fix encoding of TPC command
- use of exponential average with irregular sampling for the ULSNR average estimate.
Turns out using a time-windowed average for the SNR was a bad idea.
If the UL grants are very sporadic, the SNR time window will never have samples
when a TPC is encoded
- update of TPC sched test
- other fixes in accumulators lib
- now bounded_vector::resize(N) works for move-only types
- bounded_vector assertions now print error messages
- fixed move ctor/assignment of bounded_vector
- created a unit test for bounded_vectors of move-only types
Before this PR, the eNB was not activating UL-64QAM if the UE release was below 12,
due to an erroneous convertion of the ASN1 EUTRA Capabilities struct into the flattened
srslte::ue_capabilities_t.
With this PR, the eNB activates UL-64QAM for the following cases:
- UE category 5
- UE category 8 and release >= 10
- UE category UL 8 and release >= 12
the RLC bearer name was empty after reestablishing a UM bearer.
we need to pass the RLF config and RB name to the internal configure()
call of the Rx entity, like we already do for the Tx side
when EVM measurements are enabled, instead of only logging them for
each decoded codeword, we also calculate the average.
this is useful for calibration.
hard killing of AGC thread causes issue on some RF devices,
such as the N310. The thread still seemed to access the device while
the radio was already killed (or the streamer object deleted).
It's unclear why this isn't causing similar issues on B210 or X310,
at least not visible, but it is obviously not the correct way to stop a thread.
The patch now correctly sets the stop flag for the AGC thread, wakes it
it up and waits until it has terminated.
the Lime has better performance when using the default LTE sample
rates due to filterering being done in the LMS RF chip.
Print a warning when using the Lime with the non-default LTE rates.
the bug causes the BSR to return a bsr_idx of 0, i.e. no data
pending, when the buff_size was reported to be 1 B only.
Instead, the UE should return BSR idx 1, i.e. between 0 < BSR <= 10.
when packing MAC PDUs, adding a new SDU might fail, for example
because RLC couldn't provide a new PDU. The muxer then needs
to delete the subheader from the PDU again.
When adding a padding BSR at the end, the same subheader is again
used to store the BSR, so any state in that subheader should be removed.
In the particular case, this was causing an issue when logging a LBSR
because the LCG buffer states are printed using the payload buffer,
which was still pointing to some memory that was used when trying
to add the new RLC PDU in the beginning.
LBSR packing is fine but this makes the eNB do wrong things
because it thinkgs LCG2 has no or too much data to send.
LCG2 is our default LCG for DRB1. One occasion we saw the issue
is doing full rate TCP DL which requires quite a bit of ACK traffic
back to the sender. With the BSR for LCG2 being wrong, providing
UL grants was delayed and so the TCP DL throuhgput was very low.
In the log below we see that the buff_size[2]=1 so there is data to send.
Interestingly, the packing was correct so Wireshark displays it correctly.
But the unpacking not, as can be seen in the MAC log below which reports
0 buffer state for all LCGs
22:08:54.804792 [MAC ] [I] [ 5084] pdu_get: sdu_len=1212, channel.sched_len=1213, bsr.buff_size[2]=1
22:08:54.804840 [MAC ] [I] [ 5084] UL LCID=3 len=1212 LBSR: b=0 0 0 0
* rlc_am: add TC for pollRetx timer handling
* rlc_am: fix stopping of pollRetx timer
stopping the pollRetx timer when receiving a status PDU
without checking the acknowledged PDUs is wrong.
if an ACK for another PDU, for which the polling bit has been set,
is still pending, it won't be rescheduled until another
PDU is transmitted that again starts the pollRetx timer.
this fixes the issue with missing RLC AM segment retx in #1992,
and #2003
* mac_test: add extended TBSR unit test
unit test to MAC UL packing after sending a TBSR
this fixes the MAC issues described in issue #2002
* mux: fix updating of LCG buffer state after packing PDU
we've previously lowered the buffer state of the LCG according
to the bytes that have been scheduled, but not according to
those that have been actually included in the PDU.
* proc_bsr: fix LCG buffer state updating for TBSR
when sending a TBSR do not update the internal buffer
state of the BSR proc.
This caused issues because the buffer state for all LCG that
are not included in the TBSR are set to zero, although at least
one LCG does have data to transmit.
* rlc_am: include LCID when logging retx of SN
I noticed that the app didn't configure the process with
RT thread prio. But it then turned out that in order to do
that we need to actually spawn a new thread. Also a few other things
didn't work out of the box.
In summary the changes are:
* fix duration to support more than 120s
* move main functionality in thread
* set high priority for radio thread
* only return success if no radio errors occured
this makes sure that the reconstructed RLC AM header
has the poll bit set when any of its segments had it set.
this triggered a bug in RLC AM because the Status PDU
isn't transmitted for a RLC PDU that was segmented and
only the first segment had the P flag set.
reported/provided by user softdev86 in https://github.com/srsLTE/srsLTE/issues/566
author tested with local 4 port cell. I am not able to verify locally but
it looks ok, we'll revise later if needed.
When using srsLTE with Lime devices, calibration was performed before any configuration steps have happened, thus making calibration values invalid. Removing Lime specific calibration step from rf_soapy_imp makes so that devices will be automatically calibrated by SoapyLMS on rf_soapy_start_stream call.
Tested and working with srsENB using LimeSDR-USB v1.4 and LimeSDR-Mini v1.2 boards.
when the default RF args are used, NULL is passed as argument
to the RF driver. In this case, we should use the previous
SoapySDRDevice_enumerate() and let Soapy pick the device
when releasing PUCCH/SRS (see 5.3.13 in 36.331) we need to reset the SR config as well.
In our case, SR is handled by MAC so we need to (re-)configure MAC, not all of
MAC though, just SR.
- s1 handover composite state simplified
- the eNB now starts a HO cancellation when it receives an invalid
Handover Command
- the FSM log now prints the current state when it receives an unhandled
event
This patch adds version string to the 'libsrslte_rf' library.
This results in the library being built as
libsrslte_rf.so.20.04.2
with the following symbolic links
libsrslte_rf.so.0 -> libsrslte_rf.so.20.04.2
libsrslte_rf.so -> libsrslte_rf.so.0
The SRSLTE_SOVERSION variable should be increased with each backwards
incompatible change of the library.
Signed-off-by: Jan Remes <jan.remes@invasys.com>
this patch adds a check to drop all PDCP control PDUs
in order to prevent handling them as data PDUs.
This could happen when the size exceeded the arbitrary length check.
This should fix#1787
* Fix deadlock caused by update_measurements calling in_sync
* Fix overlapping SRS condition
* Do not use shortened PUSCH in transmissions and retx from RAR
* Revert "Fix deadlock caused by update_measurements calling in_sync"
This reverts commit f58c8c8c766f8f95baa3a3bf8287d8e25b2057ba.
* Take into account CRS from neigbhour cells when measuring interference
* fix std::isnormal compilation
* Fixed compilation of test
* Address comments
* Remove unused overrides
* Make PHY non-blocking and fefactor HO procedure
* makes entire PHY non-blocking through command interface
* adds dedicated queue for cell_search/cell_select commands
* refactor HO procedure to run faster, in one stack cycle. Looks closer to the specs
* force ue to always apply SIB2 configuration during reestablishment
* Run update_measurements in all workers
Co-authored-by: Ismael Gomez <ismagom@gmail.com>
before epoll can handle signals, the calling thread needs to block
them. the blocking needs to happen before any other threads get
spawned so they inherit the mask.
the Tx SDU has been set to 128 PDUs because this gives approx.
150kByte UL buffer state (max value for Rel 8 BSR).
Previously, however, we've always reported too much pending UL
data because we weren't subtracting the transmitted data from
the reported data.
with this newer BSR reporting, however, even with full buffers we would
never report full buffers because the queues size is too short.
This seems to cause issues for iperf TCP sessions not resulting
in full DL rate, see isse #1703. It seems that the TCP bandwitdh
probing works better with larger buffers (in our case this can
only be achieved with more PDUs in the pool).
This should fix#1703
this patch refactors the MAC PDU class, the main changes are:
* add to_string() method to pretty print PDU and subheaders
This allows to have a single log entry per MAC PDU with all its
contents.
It removes the C-style fprint() method
* Simplity payload vs. w_payload_ce
Before we've used payload when reading the PDU and w_payload_ce
as a buffer when writing. In all getters we needed to differentiate
between both. Now payload points to w_payload_ce initially and is
only updated when parsing a new PDU.
* add various helpers, e.g. to get subheader index, update a BSR, ..
* fix PDU test to use new to_string() method
simplify logic to check whether a BSR fits and, if so, which type.
before the check has been done in two places.
we now also accomodate for the CE subheader size.
with the B210 and 2 RF ports, i.e. MIMO mode, we have stopped the
Rx stream after changing the rx_samp_rate but didn't start it again.
Either the issue doesn't exist in SISO mode or we never saw it but for MIMO
it can be reproduced easily with rate changes during streaming, i.e.:
$ ./lib/src/radio/test/benchmark_radio -p 2 -t 10 -x -y -s 23.04e6
Instantiating objects and allocating memory...
Initialising instances...
Opening 2 channels in RF device= with args=default
[INFO] [UHD] linux; GNU C++ version 9.2.1 20200304; Boost_107100; UHD_3.15.0.0-2build5
[INFO] [LOGGING] Fastpath logging disabled at runtime.
Opening USRP channels=2, args: type=b200,master_clock_rate=23.04e6
[INFO] [B200] Detected Device: B210
[INFO] [B200] Operating over USB 3.
[INFO] [B200] Initialize CODEC control...
[INFO] [B200] Initialize Radio control...
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Performing register loopback test...
[INFO] [B200] Register loopback test passed
[INFO] [B200] Asking for clock rate 23.040000 MHz...
[INFO] [B200] Actually got clock rate 23.040000 MHz.
[INFO] [MULTI_USRP] 1) catch time transition at pps edge
[INFO] [MULTI_USRP] 2) set times next pps (synchronously)
Warning: TX gain was not set. Using open-loop power control (not working properly)
Setting manual TX/RX offset to 0 samples
Start capturing 10000 frames of 23040 samples...
Changing sampling rate to 23.04 Msamps/s
Setting manual TX/RX offset to 0 samples
Changing sampling rate to 1.92 Msamps/s
Setting manual TX/RX offset to 0 samples
/home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1211: Error timed out while receiving samples from UHD.
/home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1211: Error timed out while receiving samples from UHD.
/home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1211: Error timed out while receiving samples from UHD.
/home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1211: Error timed out while receiving samples from UHD.
/home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1211: Error timed out while receiving samples from UHD.
it fixes#1623.
this happens more often with MIMO since lates are more likely here.
after a late, the Rx stream must not be stopped on the B2xx either.
<log>
RF status: O=3, U=0, L=1
/home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1209: Error timed out while receiving samples from UHD.
stop rx stream
./home/anpu/src/srsLTE/lib/src/phy/rf/rf_uhd_imp.cc.1209: Error timed out while receiving samples from UHD.
stop rx stream
/home/anpu/src/srsLTE/lib/src/phy/ue/ue_sync.c.775: Error receiving samples
/home/anpu/src/srsLTE/lib/src/phy/ue/ue_cell_search.c.312: Error calling srslte_ue_sync_work()
/home/anpu/src/srsLTE/lib/src/phy/ue/ue_cell_search.c.272: Error searching cell
</log>
before the BSR was extracted but the actual index (between 0 and 63)
was not stored but directly converted into bytes.
for log parsing and debugging it is easier to follow the index
value. this patch therefore adds both values to the log message
and extends the API accordingly.
commit #51c6e8d1 introduced a regression in which the 2nd antenna
port was never considered. All MIMO ZMQ based tests therefore failed.
this fixes#1608