Added CSI-RS resource set measurements

master
Xavier Arteaga 4 years ago committed by Xavier Arteaga
parent 3b919b4f6c
commit 751b6858b3

@ -40,18 +40,24 @@
#define SRSRAN_CSI_RS_NOF_FREQ_DOMAIN_ALLOC_OTHER 6 #define SRSRAN_CSI_RS_NOF_FREQ_DOMAIN_ALLOC_OTHER 6
/** /**
* @brief Measurement structure * @brief Describes a measurement for NZP-CSI-RS
* @note Used for fine tracking RSRP, SNR, CFO, SFO, and so on
* @note srsran_csi_measurements_t is used for CSI report generation
*/ */
typedef struct SRSRAN_API { typedef struct SRSRAN_API {
float rsrp; float rsrp; ///< Linear scale RSRP
float rsrp_dB; float rsrp_dB; ///< Logarithm scale RSRP relative to full-scale
float epre; float epre; ///< Linear scale EPRE
float epre_dB; float epre_dB; ///< Logarithm scale EPRE relative to full-scale
float n0; float n0; ///< Linear noise level
float n0_dB; float n0_dB; ///< Logarithm scale noise level relative to full-scale
float snr_dB; float snr_dB; ///< Signal to noise ratio in decibels
uint32_t nof_re; float cfo_hz; ///< Carrier frequency offset in Hz. Only set if more than 2 symbols are available in a TRS set
} srsran_csi_rs_measure_t; float cfo_hz_max; ///< Maximum CFO in Hz that can be measured. It is set to 0 if CFO cannot be estimated
float delay_us; ///< Average measured delay in microseconds
uint32_t nof_re; ///< Number of available RE for the measurement, it can be used for weighting among different
///< measurements
} srsran_csi_rs_nzp_measure_t;
/** /**
* @brief Calculates if the given periodicity implies a CSI-RS transmission in the given slot * @brief Calculates if the given periodicity implies a CSI-RS transmission in the given slot
@ -67,7 +73,7 @@ SRSRAN_API bool srsran_csi_rs_send(const srsran_csi_rs_period_and_offset_t* peri
* @brief Adds to a RE pattern list the RE used in a CSI-RS resource for all CDM grops. This is intended for generating * @brief Adds to a RE pattern list the RE used in a CSI-RS resource for all CDM grops. This is intended for generating
* reserved RE pattern for PDSCH transmission. * reserved RE pattern for PDSCH transmission.
* @param carrier Provides carrier configuration * @param carrier Provides carrier configuration
* @param resource Provides a CSI-RS resource * @param resource Provides any CSI-RS resource mapping
* @param nof_resources Provides the number of ZP-CSI-RS resources * @param nof_resources Provides the number of ZP-CSI-RS resources
* @param l Symbol index in the slot * @param l Symbol index in the slot
* @param[out] rvd_mask Provides the reserved mask * @param[out] rvd_mask Provides the reserved mask
@ -77,17 +83,121 @@ SRSRAN_API int srsran_csi_rs_append_resource_to_pattern(const srsran_carrier_nr_
const srsran_csi_rs_resource_mapping_t* resource, const srsran_csi_rs_resource_mapping_t* resource,
srsran_re_pattern_list_t* re_pattern_list); srsran_re_pattern_list_t* re_pattern_list);
SRSRAN_API int srsran_csi_rs_nzp_put(const srsran_carrier_nr_t* carrier, /**
const srsran_slot_cfg_t* slot_cfg, * @brief Puts in the provided resource grid NZP-CSI-RS signals given by a NZP-CSI-RS resource
const srsran_csi_rs_nzp_resource_t* resource, *
cf_t* grid); * @note it does not check if the provided slot matches with the periodicity of the provided NZP-CSI-RS resource
*
* @param carrier Provides carrier configuration
* @param slot_cfg Provides current slot configuration
* @param resource Provides a NZP-CSI-RS resource
* @param[out] grid Resource grid
* @return SRSLTE_SUCCESS if the arguments and the resource are valid. SRSLTE_ERROR code otherwise.
*/
SRSRAN_API int srsran_csi_rs_nzp_put_resource(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_resource_t* resource,
cf_t* grid);
/**
* @brief Puts in the provided resource grid NZP-CSI-RS signals given by a NZP-CSI-RS resource set if their periodicity
* configuration matches with the provided slot
*
* @param carrier Provides carrier configuration
* @param slot_cfg Provides current slot configuration
* @param set Provides a NZP-CSI-RS resource set
* @param[out] grid Resource grid
* @return The number of NZP-CSI-RS resources that have been scheduled for this slot if the arguments and the resource
* are valid. SRSLTE_ERROR code otherwise.
*/
SRSRAN_API int srsran_csi_rs_nzp_put_set(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_set_t* set,
cf_t* grid);
SRSRAN_API int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier, SRSRAN_API int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg, const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_resource_t* resource, const srsran_csi_rs_nzp_resource_t* resource,
const cf_t* grid, const cf_t* grid,
srsran_csi_rs_measure_t* measure); srsran_csi_rs_nzp_measure_t* measure);
SRSRAN_API uint32_t srsran_csi_rs_measure_info(const srsran_csi_rs_measure_t* measure, char* str, uint32_t str_len); /**
* @brief Performs measurements of NZP-CSI-RS resource set flagged as TRS
*
* @attention It expects:
* - The NZP-CSI-RS resource set shall be flagged as TRS; and
* - at least a pair of active NZP-CSR-RS per measurement opportunity with their first transmission symbol in ascending
* order.
*
* @note It performs the following wideband measurements:
* - RSRP (linear and dB),
* - EPRE (linear and dB),
* - Noise (linear and dB),
* - SNR (dB),
* - average delay (microseconds), and
* - CFO (Hz)
*
* @note It is intended for fine tracking of synchronization error (average delay) and carrier frequency error
*
* @param carrier Provides carrier configuration
* @param slot_cfg Provides current slot
* @param set Provides NZP-CSI-RS resource
* @param grid Resource grid
* @param measure Provides measurement
* @return The number of NZP-CSI-RS resources scheduled for this TTI if the configuration is right, SRSLTE_ERROR code if
* the configuration is invalid
*/
SRSRAN_API int srsran_csi_rs_nzp_measure_trs(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_set_t* set,
const cf_t* grid,
srsran_csi_rs_nzp_measure_t* measure);
SRSRAN_API uint32_t srsran_csi_rs_measure_info(const srsran_csi_rs_nzp_measure_t* measure, char* str, uint32_t str_len);
/**
* @brief Performs channel measurements of NZP-CSI-RS resource set for CSI reports
*
* @note It performs the following wideband measurements:
* - RSRP (dB),
* - EPRE (dB),
* - SNR (dB),
*
* @note It is intended for generating CSI wideband measurements that are used for generating CSI reporting
*
* @param carrier Provides carrier configuration
* @param slot_cfg Provides current slot
* @param set Provides NZP-CSI-RS resource
* @param grid Resource grid
* @param measure Provides CSI measurement
* @return The number of NZP-CSI-RS resources scheduled for this slot if the configuration is right, SRSLTE_ERROR code
* if the configuration is invalid
*/
SRSRAN_API int srsran_csi_rs_nzp_measure_channel(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_set_t* set,
const cf_t* grid,
srsran_csi_measurements_t* measure);
/**
* @brief Performs measurements of ZP-CSI-RS resource set for CSI reports
*
* @note It performs the following wideband measurememnts:
* - EPRE (dB)
*
* @note It is intended for measuring interference
*
* @param carrier Provides carrier configuration
* @param slot_cfg Provides current slot
* @param set Provides ZP-CSI-RS resource
* @param grid Resource grid
* @param measure Provides CSI measurement
* @return The number of ZP-CSI-RS resources scheduled for this slot if the configuration is right, SRSLTE_ERROR code if
* the configuration is invalid
*/
SRSRAN_API int srsran_csi_rs_zp_measure_channel(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_zp_set_t* set,
const cf_t* grid,
srsran_csi_measurements_t* measure);
#endif // SRSRAN_CSI_RS_H_ #endif // SRSRAN_CSI_RS_H_

@ -56,7 +56,7 @@ static int csi_rs_location_f(const srsran_csi_rs_resource_mapping_t* resource, u
} }
if (count == i) { if (count == i) {
return j * mul; return (int)(j * mul);
} }
} }
@ -177,7 +177,7 @@ static uint32_t csi_rs_cinit(const srsran_carrier_nr_t* carrier,
uint32_t n = SRSRAN_SLOT_NR_MOD(carrier->scs, slot_cfg->idx); uint32_t n = SRSRAN_SLOT_NR_MOD(carrier->scs, slot_cfg->idx);
uint32_t n_id = resource->scrambling_id; uint32_t n_id = resource->scrambling_id;
return ((SRSRAN_NSYMB_PER_SLOT_NR * n + l + 1UL) * (2UL * n_id) << 10UL) + n_id; return SRSRAN_SEQUENCE_MOD(((SRSRAN_NSYMB_PER_SLOT_NR * n + l + 1UL) * (2UL * n_id) << 10UL) + n_id);
} }
bool srsran_csi_rs_send(const srsran_csi_rs_period_and_offset_t* periodicity, const srsran_slot_cfg_t* slot_cfg) bool srsran_csi_rs_send(const srsran_csi_rs_period_and_offset_t* periodicity, const srsran_slot_cfg_t* slot_cfg)
@ -238,7 +238,6 @@ uint32_t csi_rs_count(srsran_csi_rs_density_t density, uint32_t nprb)
case srsran_csi_rs_resource_mapping_density_three: case srsran_csi_rs_resource_mapping_density_three:
return nprb * 3; return nprb * 3;
case srsran_csi_rs_resource_mapping_density_dot5_even: case srsran_csi_rs_resource_mapping_density_dot5_even:
return nprb / 2;
case srsran_csi_rs_resource_mapping_density_dot5_odd: case srsran_csi_rs_resource_mapping_density_dot5_odd:
return nprb / 2; return nprb / 2;
case srsran_csi_rs_resource_mapping_density_one: case srsran_csi_rs_resource_mapping_density_one:
@ -339,12 +338,13 @@ int srsran_csi_rs_append_resource_to_pattern(const srsran_carrier_nr_t*
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
int srsran_csi_rs_nzp_put(const srsran_carrier_nr_t* carrier, int srsran_csi_rs_nzp_put_resource(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg, const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_resource_t* resource, const srsran_csi_rs_nzp_resource_t* resource,
cf_t* grid) cf_t* grid)
{ {
if (carrier == NULL || resource == NULL || grid == NULL) { // Verify inputs
if (carrier == NULL || slot_cfg == NULL || resource == NULL || grid == NULL) {
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
@ -412,25 +412,76 @@ int srsran_csi_rs_nzp_put(const srsran_carrier_nr_t* carrier,
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier, int srsran_csi_rs_nzp_put_set(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg, const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_resource_t* resource, const srsran_csi_rs_nzp_set_t* set,
const cf_t* grid, cf_t* grid)
srsran_csi_rs_measure_t* measure)
{ {
if (carrier == NULL || resource == NULL || grid == NULL) { // Verify inputs
if (carrier == NULL || slot_cfg == NULL || set == NULL || grid == NULL) {
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
uint32_t count = 0;
// Iterate all resources in set
for (uint32_t i = 0; i < set->count; i++) {
// Skip resource
if (!srsran_csi_rs_send(&set->data[i].periodicity, slot_cfg)) {
continue;
}
// Put resource
if (srsran_csi_rs_nzp_put_resource(carrier, slot_cfg, &set->data[i], grid) < SRSRAN_SUCCESS) {
ERROR("Error putting NZP-CSI-RS resource");
return SRSRAN_ERROR;
}
count++;
}
return (int)count;
}
/**
* @brief Internal NZP-CSI-RS measurement structure
*/
typedef struct {
uint32_t cri; ///< CSI-RS resource identifier
uint32_t l0; ///< First OFDM symbol carrying CSI-RS
float epre; ///< Linear EPRE
cf_t corr; ///< Correlation
float delay_us; ///< Estimated average delay
uint32_t nof_re; ///< Total number of resource elements
} csi_rs_nzp_resource_measure_t;
static int csi_rs_nzp_measure_resource(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_resource_t* resource,
const cf_t* grid,
csi_rs_nzp_resource_measure_t* measure)
{
// Force CDM group to 0 // Force CDM group to 0
uint32_t j = 0; uint32_t j = 0;
// Get subcarrier indexes
uint32_t k_list[CSI_RS_MAX_SUBC_PRB]; uint32_t k_list[CSI_RS_MAX_SUBC_PRB];
int nof_k = csi_rs_location_get_k_list(&resource->resource_mapping, j, k_list); int nof_k = csi_rs_location_get_k_list(&resource->resource_mapping, j, k_list);
if (nof_k <= 0) { if (nof_k <= 0) {
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
// Calculate average CSI-RS RE stride
float avg_k_stride = (float)((k_list[0] + SRSRAN_NRE) - k_list[nof_k - 1]);
for (uint32_t i = 1; i < (uint32_t)nof_k; i++) {
avg_k_stride += (float)(k_list[i] - k_list[i - 1]);
}
avg_k_stride /= (float)nof_k;
if (!isnormal(avg_k_stride)) {
ERROR("Invalid avg_k_stride");
return SRSRAN_ERROR;
}
// Get symbol indexes
uint32_t l_list[CSI_RS_MAX_SYMBOLS_SLOT]; uint32_t l_list[CSI_RS_MAX_SYMBOLS_SLOT];
int nof_l = csi_rs_location_get_l_list(&resource->resource_mapping, j, l_list); int nof_l = csi_rs_location_get_l_list(&resource->resource_mapping, j, l_list);
if (nof_l <= 0) { if (nof_l <= 0) {
@ -442,11 +493,18 @@ int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier,
uint32_t rb_end = csi_rs_rb_end(carrier, &resource->resource_mapping); uint32_t rb_end = csi_rs_rb_end(carrier, &resource->resource_mapping);
uint32_t rb_stride = csi_rs_rb_stride(&resource->resource_mapping); uint32_t rb_stride = csi_rs_rb_stride(&resource->resource_mapping);
// Calculate ideal number of RE per symbol
uint32_t nof_re = csi_rs_count(resource->resource_mapping.density, rb_end - rb_begin);
// Accumulators // Accumulators
float epre_acc = 0.0f; float epre_acc = 0.0f;
cf_t rsrp_acc = 0.0f; cf_t corr_acc = 0.0f;
uint32_t count = 0; float delay_acc = 0.0f;
// Initialise measurement
SRSRAN_MEM_ZERO(measure, csi_rs_nzp_resource_measure_t, 1);
// Iterate time symbols
for (int l_idx = 0; l_idx < nof_l; l_idx++) { for (int l_idx = 0; l_idx < nof_l; l_idx++) {
// Get symbol index // Get symbol index
uint32_t l = l_list[l_idx]; uint32_t l = l_list[l_idx];
@ -459,61 +517,459 @@ int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier,
// Skip unallocated RB // Skip unallocated RB
srsran_sequence_state_advance(&sequence_state, 2 * csi_rs_count(resource->resource_mapping.density, rb_begin)); srsran_sequence_state_advance(&sequence_state, 2 * csi_rs_count(resource->resource_mapping.density, rb_begin));
// Temporal R sequence // Temporal Least Square Estimates
cf_t r[64]; cf_t lse[CSI_RS_MAX_SUBC_PRB * SRSRAN_MAX_PRB_NR];
uint32_t r_idx = 64; uint32_t count_re = 0;
// Iterate over frequency domain // Extract RE
for (uint32_t n = rb_begin; n < rb_end; n += rb_stride) { for (uint32_t n = rb_begin; n < rb_end; n += rb_stride) {
for (uint32_t k_idx = 0; k_idx < nof_k; k_idx++) { for (uint32_t k_idx = 0; k_idx < nof_k; k_idx++) {
// Calculate sub-carrier index k // Calculate sub-carrier index k
uint32_t k = SRSRAN_NRE * n + k_list[k_idx]; uint32_t k = SRSRAN_NRE * n + k_list[k_idx];
// Do we need more r? lse[count_re++] = grid[l * SRSRAN_NRE * carrier->nof_prb + k];
if (r_idx >= 64) {
// ... Generate a bunch of it!
srsran_sequence_state_gen_f(&sequence_state, M_SQRT1_2, (float*)r, 64 * 2);
r_idx = 0;
}
// Take CSI-RS from grid and measure
cf_t tmp = grid[l * SRSRAN_NRE * carrier->nof_prb + k] * conjf(r[r_idx++]);
rsrp_acc += tmp;
epre_acc += __real__ tmp * __real__ tmp + __imag__ tmp * __imag__ tmp;
count++;
} }
} }
// Verify RE count matches the expected number of RE
if (count_re == 0 || count_re != nof_re) {
ERROR("Unmatched number of RE (%d != %d)", count_re, nof_re);
return SRSRAN_ERROR;
}
// Compute LSE
srsran_sequence_state_apply_f(&sequence_state, (float*)lse, (float*)lse, 2 * count_re);
// Compute EPRE
epre_acc += srsran_vec_avg_power_cf(lse, count_re);
// Compute correlation
corr_acc += srsran_vec_acc_cc(lse, count_re) / (float)count_re;
// Compute average delay
delay_acc += srsran_vec_estimate_frequency(lse, count_re);
} }
if (count) { // Set measure fields
measure->epre = epre_acc / (float)count; measure->cri = resource->id;
rsrp_acc /= (float)count; measure->l0 = l_list[0];
measure->rsrp = (__real__ rsrp_acc * __real__ rsrp_acc + __imag__ rsrp_acc * __imag__ rsrp_acc); measure->epre = epre_acc / (float)nof_l;
if (measure->epre > measure->rsrp) { measure->corr = corr_acc / (float)nof_l;
measure->n0 = measure->epre - measure->rsrp; measure->delay_us = 1e6f * delay_acc / ((float)nof_l * SRSRAN_SUBC_SPACING_NR(carrier->scs));
} else { measure->nof_re = nof_l * nof_re;
measure->n0 = 0.0f;
return SRSRAN_SUCCESS;
}
static int csi_rs_nzp_measure_set(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_set_t* set,
const cf_t* grid,
csi_rs_nzp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET])
{
uint32_t count = 0;
// Iterate all resources in set
for (uint32_t i = 0; i < set->count; i++) {
// Skip resource
if (!srsran_csi_rs_send(&set->data[i].periodicity, slot_cfg)) {
continue;
}
// Perform measurement
if (csi_rs_nzp_measure_resource(carrier, slot_cfg, &set->data[i], grid, &measurements[count]) < SRSRAN_SUCCESS) {
ERROR("Error measuring NZP-CSI-RS resource");
return SRSRAN_ERROR;
} }
count++;
} }
return count;
}
int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_resource_t* resource,
const cf_t* grid,
srsran_csi_rs_nzp_measure_t* measure)
{
if (carrier == NULL || slot_cfg == NULL || resource == NULL || grid == NULL || measure == NULL) {
return SRSRAN_ERROR;
}
csi_rs_nzp_resource_measure_t m = {};
if (csi_rs_nzp_measure_resource(carrier, slot_cfg, resource, grid, &m) < SRSRAN_SUCCESS) {
ERROR("Error measuring NZP-CSI-RS resource");
return SRSRAN_ERROR;
}
// Copy measurements
measure->epre = m.epre;
measure->rsrp = (__real__ m.corr * __real__ m.corr + __imag__ m.corr * __imag__ m.corr);
measure->delay_us = m.delay_us;
measure->nof_re = m.nof_re;
// Estimate noise from EPRE and RSPR
if (measure->epre > measure->rsrp) {
measure->n0 = measure->epre - measure->rsrp;
} else {
measure->n0 = 0.0f;
}
// CFo cannot be estimated with a single resource
measure->cfo_hz = 0.0f;
measure->cfo_hz_max = 0.0f;
// Calculate logarithmic measurements
measure->rsrp_dB = srsran_convert_power_to_dB(measure->rsrp); measure->rsrp_dB = srsran_convert_power_to_dB(measure->rsrp);
measure->epre_dB = srsran_convert_power_to_dB(measure->epre); measure->epre_dB = srsran_convert_power_to_dB(measure->epre);
measure->n0_dB = srsran_convert_power_to_dB(measure->n0); measure->n0_dB = srsran_convert_power_to_dB(measure->n0);
measure->snr_dB = measure->rsrp_dB - measure->n0_dB; measure->snr_dB = measure->rsrp_dB - measure->n0_dB;
measure->nof_re = count;
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
uint32_t srsran_csi_rs_measure_info(const srsran_csi_rs_measure_t* measure, char* str, uint32_t str_len) int srsran_csi_rs_nzp_measure_trs(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_set_t* set,
const cf_t* grid,
srsran_csi_rs_nzp_measure_t* measure)
{
// Verify inputs
if (carrier == NULL || slot_cfg == NULL || set == NULL || grid == NULL || measure == NULL) {
return SRSRAN_ERROR;
}
// Verify it is a TRS set
if (!set->trs_info) {
ERROR("The set is not configured as TRS");
return SRSRAN_ERROR;
}
// Perform Measurements
csi_rs_nzp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET];
int ret = csi_rs_nzp_measure_set(carrier, slot_cfg, set, grid, measurements);
if (ret < SRSRAN_SUCCESS) {
ERROR("Error performing measurements");
}
uint32_t count = (uint32_t)ret;
// No NZP-CSI-RS has been scheduled for this slot
if (count == 0) {
return 0;
}
// Make sure at least 2 measurements are scheduled
if (count < 2) {
ERROR("Not enough NZP-CSI-RS (%d) have been scheduled for this slot", count);
return SRSRAN_ERROR;
}
// Make sure initial simbols are in ascending order
for (uint32_t i = 1; i < count; i++) {
if (measurements[i].l0 <= measurements[i - 1].l0) {
ERROR("NZP-CSI-RS are not in ascending order (%d <= %d)", measurements[i].l0, measurements[i - 1].l0);
return SRSRAN_ERROR;
}
}
// Average measurements
float epre_sum = 0.0f;
float rsrp_sum = 0.0f;
float delay_sum = 0.0f;
uint32_t nof_re = 0;
for (uint32_t i = 0; i < count; i++) {
epre_sum += measurements[i].epre / (float)count;
rsrp_sum += (__real__ measurements[i].corr * __real__ measurements[i].corr +
__imag__ measurements[i].corr * __imag__ measurements[i].corr) /
(float)count;
delay_sum += measurements[i].delay_us / (float)count;
nof_re += measurements[i].nof_re;
}
// Compute CFO
float cfo_sum = 0.0f;
float cfo_max = 0.0f;
for (uint32_t i = 1; i < count; i++) {
float time_diff = srsran_symbol_distance_s(measurements[i - 1].l0, measurements[i].l0, carrier->scs);
float phase_diff = cargf(measurements[i].corr * conjf(measurements[i - 1].corr));
float cfo_max_temp = 0.0f;
// Avoid zero division
if (isnormal(time_diff)) {
// Calculate maximum CFO from this pair of symbols
cfo_max_temp = 1.0f / time_diff;
// Calculate the actual CFO of this pair of symbols
cfo_sum += phase_diff / (2.0f * M_PI * time_diff * (count - 1));
}
// Select the lowest CFO
cfo_max = SRSRAN_MIN(cfo_max_temp, cfo_max);
}
// Copy measurements
measure->epre = epre_sum;
measure->rsrp = rsrp_sum;
measure->delay_us = delay_sum;
measure->cfo_hz = cfo_sum;
measure->cfo_hz_max = cfo_max;
measure->nof_re = nof_re;
// Estimate noise from EPRE and RSPR
if (measure->epre > measure->rsrp) {
measure->n0 = measure->epre - measure->rsrp;
} else {
measure->n0 = 0.0f;
}
// Calculate logarithmic measurements
measure->rsrp_dB = srsran_convert_power_to_dB(measure->rsrp);
measure->epre_dB = srsran_convert_power_to_dB(measure->epre);
measure->n0_dB = srsran_convert_power_to_dB(measure->n0);
measure->snr_dB = measure->rsrp_dB - measure->n0_dB;
return count;
}
int srsran_csi_rs_nzp_measure_channel(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_set_t* set,
const cf_t* grid,
srsran_csi_measurements_t* measure)
{ {
return srsran_print_check(str, // Verify inputs
str_len, if (carrier == NULL || slot_cfg == NULL || set == NULL || grid == NULL || measure == NULL) {
0, return SRSRAN_ERROR;
"rsrp=%+.1f, epre=%+.1f, n0=%+.1f, snr=%+.1f, nof_re=%d", }
measure->rsrp_dB,
measure->epre_dB, // Perform Measurements
measure->n0_dB, csi_rs_nzp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET];
measure->snr_dB, int ret = csi_rs_nzp_measure_set(carrier, slot_cfg, set, grid, measurements);
measure->nof_re); if (ret < SRSRAN_SUCCESS) {
ERROR("Error performing measurements");
}
uint32_t count = (uint32_t)ret;
// No NZP-CSI-RS has been scheduled for this slot
if (count == 0) {
return 0;
}
// Average measurements
float epre_sum = 0.0f;
float rsrp_sum = 0.0f;
for (uint32_t i = 0; i < count; i++) {
epre_sum += measurements[i].epre / (float)count;
rsrp_sum += (__real__ measurements[i].corr * __real__ measurements[i].corr +
__imag__ measurements[i].corr * __imag__ measurements[i].corr) /
(float)count;
}
// Estimate noise from EPRE and RSPR
float n0 = 0.0f;
if (epre_sum > rsrp_sum) {
n0 = epre_sum - rsrp_sum;
}
float n0_db = srsran_convert_power_to_dB(n0);
// Set measurements
measure->cri = measurements[0].cri;
measure->wideband_rsrp_dBm = srsran_convert_power_to_dB(rsrp_sum);
measure->wideband_epre_dBm = srsran_convert_power_to_dB(epre_sum);
measure->wideband_snr_db = measure->wideband_rsrp_dBm - n0_db;
// Set other parameters
measure->K_csi_rs = count;
measure->nof_ports = 1; // No other value is currently supported
// Return the number of active resources for this slot
return count;
}
/**
* @brief Internal ZP-CSI-RS measurement structure
*/
typedef struct {
uint32_t cri; ///< CSI-RS resource identifier
uint32_t l0; ///< First OFDM symbol carrying CSI-RS
float epre; ///< Linear EPRE
uint32_t nof_re; ///< Total number of resource elements
} csi_rs_zp_resource_measure_t;
static int csi_rs_zp_measure_resource(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_zp_resource_t* resource,
const cf_t* grid,
csi_rs_zp_resource_measure_t* measure)
{
// Force CDM group to 0
uint32_t j = 0;
// Get subcarrier indexes
uint32_t k_list[CSI_RS_MAX_SUBC_PRB];
int nof_k = csi_rs_location_get_k_list(&resource->resource_mapping, j, k_list);
if (nof_k <= 0) {
return SRSRAN_ERROR;
}
// Calculate average CSI-RS RE stride
float avg_k_stride = (float)((k_list[0] + SRSRAN_NRE) - k_list[nof_k - 1]);
for (uint32_t i = 1; i < (uint32_t)nof_k; i++) {
avg_k_stride += (float)(k_list[i] - k_list[i - 1]);
}
avg_k_stride /= (float)nof_k;
if (!isnormal(avg_k_stride)) {
ERROR("Invalid avg_k_stride");
return SRSRAN_ERROR;
}
// Get symbol indexes
uint32_t l_list[CSI_RS_MAX_SYMBOLS_SLOT];
int nof_l = csi_rs_location_get_l_list(&resource->resource_mapping, j, l_list);
if (nof_l <= 0) {
return SRSRAN_ERROR;
}
// Calculate Resource Block boundaries
uint32_t rb_begin = csi_rs_rb_begin(carrier, &resource->resource_mapping);
uint32_t rb_end = csi_rs_rb_end(carrier, &resource->resource_mapping);
uint32_t rb_stride = csi_rs_rb_stride(&resource->resource_mapping);
// Calculate ideal number of RE per symbol
uint32_t nof_re = csi_rs_count(resource->resource_mapping.density, rb_end - rb_begin);
// Accumulators
float epre_acc = 0.0f;
// Initialise measurement
SRSRAN_MEM_ZERO(measure, csi_rs_zp_resource_measure_t, 1);
// Iterate time symbols
for (int l_idx = 0; l_idx < nof_l; l_idx++) {
// Get symbol index
uint32_t l = l_list[l_idx];
// Temporal Least Square Estimates
cf_t temp[CSI_RS_MAX_SUBC_PRB * SRSRAN_MAX_PRB_NR];
uint32_t count_re = 0;
// Extract RE
for (uint32_t n = rb_begin; n < rb_end; n += rb_stride) {
for (uint32_t k_idx = 0; k_idx < nof_k; k_idx++) {
// Calculate sub-carrier index k
uint32_t k = SRSRAN_NRE * n + k_list[k_idx];
temp[count_re++] = grid[l * SRSRAN_NRE * carrier->nof_prb + k];
}
}
// Verify RE count matches the expected number of RE
if (count_re == 0 || count_re != nof_re) {
ERROR("Unmatched number of RE (%d != %d)", count_re, nof_re);
return SRSRAN_ERROR;
}
// Compute EPRE
epre_acc += srsran_vec_avg_power_cf(temp, count_re);
}
// Set measure fields
measure->cri = resource->id;
measure->l0 = l_list[0];
measure->epre = epre_acc / (float)nof_l;
measure->nof_re = nof_l * nof_re;
return SRSRAN_SUCCESS;
}
static int csi_rs_zp_measure_set(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_zp_set_t* set,
const cf_t* grid,
csi_rs_zp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET])
{
uint32_t count = 0;
// Iterate all resources in set
for (uint32_t i = 0; i < set->count; i++) {
// Skip resource
if (!srsran_csi_rs_send(&set->data[i].periodicity, slot_cfg)) {
continue;
}
// Perform measurement
if (csi_rs_zp_measure_resource(carrier, slot_cfg, &set->data[i], grid, &measurements[count]) < SRSRAN_SUCCESS) {
ERROR("Error measuring NZP-CSI-RS resource");
return SRSRAN_ERROR;
}
count++;
}
return count;
}
int srsran_csi_rs_zp_measure_channel(const srsran_carrier_nr_t* carrier,
const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_zp_set_t* set,
const cf_t* grid,
srsran_csi_measurements_t* measure)
{
// Verify inputs
if (carrier == NULL || slot_cfg == NULL || set == NULL || grid == NULL || measure == NULL) {
return SRSRAN_ERROR;
}
// Perform Measurements
csi_rs_zp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET];
int ret = csi_rs_zp_measure_set(carrier, slot_cfg, set, grid, measurements);
if (ret < SRSRAN_SUCCESS) {
ERROR("Error performing measurements");
}
uint32_t count = (uint32_t)ret;
// No NZP-CSI-RS has been scheduled for this slot
if (count == 0) {
return 0;
}
// Average measurements
float epre_sum = 0.0f;
for (uint32_t i = 0; i < count; i++) {
epre_sum += measurements[i].epre / (float)count;
}
// Set measurements
measure->cri = measurements[0].cri;
measure->wideband_rsrp_dBm = NAN;
measure->wideband_epre_dBm = srsran_convert_power_to_dB(epre_sum);
measure->wideband_snr_db = NAN;
// Set other parameters
measure->K_csi_rs = count;
measure->nof_ports = 1; // No other value is currently supported
// Return the number of active resources for this slot
return count;
}
uint32_t srsran_csi_rs_measure_info(const srsran_csi_rs_nzp_measure_t* measure, char* str, uint32_t str_len)
{
uint32_t len = 0;
len = srsran_print_check(str,
str_len,
len,
"rsrp=%+.1f epre=%+.1f n0=%+.1f snr=%+.1f delay_us=%+.1f ",
measure->rsrp_dB,
measure->epre_dB,
measure->n0_dB,
measure->snr_dB);
// Append measured CFO and the maximum CFO that can be measured
if (isnormal(measure->cfo_hz_max)) {
len = srsran_print_check(str, str_len, len, "cfo_hz=%+.1f cfo_hz_max=%+.1f", measure->cfo_hz, measure->cfo_hz_max);
}
return len;
} }

@ -34,15 +34,15 @@ static uint32_t start_rb = UINT32_MAX;
static uint32_t nof_rb = UINT32_MAX; static uint32_t nof_rb = UINT32_MAX;
static uint32_t first_symbol = UINT32_MAX; static uint32_t first_symbol = UINT32_MAX;
static int test(const srsran_slot_cfg_t* slot_cfg, static int nzp_test_case(const srsran_slot_cfg_t* slot_cfg,
const srsran_csi_rs_nzp_resource_t* resource, const srsran_csi_rs_nzp_resource_t* resource,
srsran_channel_awgn_t* awgn, srsran_channel_awgn_t* awgn,
cf_t* grid) cf_t* grid)
{ {
srsran_csi_rs_measure_t measure = {}; srsran_csi_rs_nzp_measure_t measure = {};
// Put NZP-CSI-RS // Put NZP-CSI-RS
TESTASSERT(srsran_csi_rs_nzp_put(&carrier, slot_cfg, resource, grid) == SRSRAN_SUCCESS); TESTASSERT(srsran_csi_rs_nzp_put_resource(&carrier, slot_cfg, resource, grid) == SRSRAN_SUCCESS);
// Configure N0 and add Noise // Configure N0 and add Noise
TESTASSERT(srsran_channel_awgn_set_n0(awgn, (float)resource->power_control_offset - snr_dB) == SRSRAN_SUCCESS); TESTASSERT(srsran_channel_awgn_set_n0(awgn, (float)resource->power_control_offset - snr_dB) == SRSRAN_SUCCESS);
@ -69,6 +69,267 @@ static int test(const srsran_slot_cfg_t* slot_cfg,
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
static int nzp_test_brute(srsran_channel_awgn_t* awgn, cf_t* grid)
{
// Slot configuration
srsran_slot_cfg_t slot_cfg = {};
// Initialise NZP-CSI-RS fix parameters, other params are not implemented
srsran_csi_rs_nzp_resource_t resource = {};
resource.resource_mapping.cdm = srsran_csi_rs_cdm_nocdm;
resource.resource_mapping.density = srsran_csi_rs_resource_mapping_density_three;
resource.resource_mapping.row = srsran_csi_rs_resource_mapping_row_1;
resource.resource_mapping.nof_ports = 1;
// Row 1 supported only!
uint32_t nof_freq_dom_alloc = SRSRAN_CSI_RS_NOF_FREQ_DOMAIN_ALLOC_ROW1;
uint32_t first_symbol_begin = (first_symbol != UINT32_MAX) ? first_symbol : 0;
uint32_t first_symbol_end = (first_symbol != UINT32_MAX) ? first_symbol : 13;
for (resource.resource_mapping.first_symbol_idx = first_symbol_begin;
resource.resource_mapping.first_symbol_idx <= first_symbol_end;
resource.resource_mapping.first_symbol_idx++) {
// Iterate over possible power control offset
float power_control_offset_begin = isnormal(power_control_offset) ? power_control_offset : -8.0f;
float power_control_offset_end = isnormal(power_control_offset) ? power_control_offset : 15.0f;
for (resource.power_control_offset = power_control_offset_begin;
resource.power_control_offset <= power_control_offset_end;
resource.power_control_offset += 1.0f) {
// Iterate over all possible starting number of PRB
uint32_t start_rb_begin = (start_rb != UINT32_MAX) ? start_rb : 0;
uint32_t start_rb_end = (start_rb != UINT32_MAX) ? start_rb : carrier.nof_prb - 24;
for (resource.resource_mapping.freq_band.start_rb = start_rb_begin;
resource.resource_mapping.freq_band.start_rb <= start_rb_end;
resource.resource_mapping.freq_band.start_rb += 4) {
// Iterate over all possible number of PRB
uint32_t nof_rb_begin = (nof_rb != UINT32_MAX) ? nof_rb : 24;
uint32_t nof_rb_end =
(nof_rb != UINT32_MAX) ? nof_rb : (carrier.nof_prb - resource.resource_mapping.freq_band.start_rb);
for (resource.resource_mapping.freq_band.nof_rb = nof_rb_begin;
resource.resource_mapping.freq_band.nof_rb <= nof_rb_end;
resource.resource_mapping.freq_band.nof_rb += 4) {
// Iterate for all slot numbers
for (slot_cfg.idx = 0; slot_cfg.idx < SRSRAN_NSLOTS_PER_FRAME_NR(carrier.scs); slot_cfg.idx++) {
// Steer Frequency allocation
for (uint32_t freq_dom_alloc = 0; freq_dom_alloc < nof_freq_dom_alloc; freq_dom_alloc++) {
for (uint32_t i = 0; i < nof_freq_dom_alloc; i++) {
resource.resource_mapping.frequency_domain_alloc[i] = i == freq_dom_alloc;
}
// Call actual test
TESTASSERT(nzp_test_case(&slot_cfg, &resource, awgn, grid) == SRSRAN_SUCCESS);
}
}
}
}
}
}
return SRSRAN_SUCCESS;
}
static int nzp_test_trs(srsran_channel_awgn_t* awgn, cf_t* grid)
{
// Slot configuration
srsran_slot_cfg_t slot_cfg = {};
// Item 1
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 1
// resourceMapping
// frequencyDomainAllocation: row1 (0)
// row1: 10 [bit length 4, 4 LSB pad bits, 0001 .... decimal value 1]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 4
// cdm-Type: noCDM (0)
// density: three (2)
// three: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots40 (7)
// slots40: 11
// qcl-InfoPeriodicCSI-RS: 0
srsran_csi_rs_nzp_resource_t resource1 = {};
resource1.id = 1;
resource1.resource_mapping.frequency_domain_alloc[0] = 0;
resource1.resource_mapping.frequency_domain_alloc[1] = 0;
resource1.resource_mapping.frequency_domain_alloc[2] = 0;
resource1.resource_mapping.frequency_domain_alloc[3] = 1;
resource1.resource_mapping.nof_ports = 1;
resource1.resource_mapping.first_symbol_idx = 4;
resource1.resource_mapping.cdm = srsran_csi_rs_cdm_nocdm;
resource1.resource_mapping.density = srsran_csi_rs_resource_mapping_density_three;
resource1.resource_mapping.freq_band.start_rb = 0;
resource1.resource_mapping.freq_band.nof_rb = carrier.nof_prb;
resource1.power_control_offset = 0;
resource1.power_control_offset_ss = 0;
resource1.periodicity.period = 40;
resource1.periodicity.offset = 11;
// Item 2
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 2
// resourceMapping
// frequencyDomainAllocation: row1 (0)
// row1: 10 [bit length 4, 4 LSB pad bits, 0001 .... decimal value 1]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 8
// cdm-Type: noCDM (0)
// density: three (2)
// three: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots40 (7)
// slots40: 11
// qcl-InfoPeriodicCSI-RS: 0
srsran_csi_rs_nzp_resource_t resource2 = {};
resource2.id = 1;
resource2.resource_mapping.frequency_domain_alloc[0] = 0;
resource2.resource_mapping.frequency_domain_alloc[1] = 0;
resource2.resource_mapping.frequency_domain_alloc[2] = 0;
resource2.resource_mapping.frequency_domain_alloc[3] = 1;
resource2.resource_mapping.nof_ports = 1;
resource2.resource_mapping.first_symbol_idx = 8;
resource2.resource_mapping.cdm = srsran_csi_rs_cdm_nocdm;
resource2.resource_mapping.density = srsran_csi_rs_resource_mapping_density_three;
resource2.resource_mapping.freq_band.start_rb = 0;
resource2.resource_mapping.freq_band.nof_rb = carrier.nof_prb;
resource2.power_control_offset = 0;
resource2.power_control_offset_ss = 0;
resource2.periodicity.period = 40;
resource2.periodicity.offset = 11;
// Item 3
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 3
// resourceMapping
// frequencyDomainAllocation: row1 (0)
// row1: 10 [bit length 4, 4 LSB pad bits, 0001 .... decimal value 1]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 4
// cdm-Type: noCDM (0)
// density: three (2)
// three: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots40 (7)
// slots40: 12
// qcl-InfoPeriodicCSI-RS: 0
srsran_csi_rs_nzp_resource_t resource3 = {};
resource3.id = 1;
resource3.resource_mapping.frequency_domain_alloc[0] = 0;
resource3.resource_mapping.frequency_domain_alloc[1] = 0;
resource3.resource_mapping.frequency_domain_alloc[2] = 0;
resource3.resource_mapping.frequency_domain_alloc[3] = 1;
resource3.resource_mapping.nof_ports = 1;
resource3.resource_mapping.first_symbol_idx = 4;
resource3.resource_mapping.cdm = srsran_csi_rs_cdm_nocdm;
resource3.resource_mapping.density = srsran_csi_rs_resource_mapping_density_three;
resource3.resource_mapping.freq_band.start_rb = 0;
resource3.resource_mapping.freq_band.nof_rb = carrier.nof_prb;
resource3.power_control_offset = 0;
resource3.power_control_offset_ss = 0;
resource3.periodicity.period = 40;
resource3.periodicity.offset = 12;
// Item 4
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 4
// resourceMapping
// frequencyDomainAllocation: row1 (0)
// row1: 10 [bit length 4, 4 LSB pad bits, 0001 .... decimal value 1]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 8
// cdm-Type: noCDM (0)
// density: three (2)
// three: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots40 (7)
// slots40: 12
// qcl-InfoPeriodicCSI-RS: 0
srsran_csi_rs_nzp_resource_t resource4 = {};
resource4.id = 1;
resource4.resource_mapping.frequency_domain_alloc[0] = 0;
resource4.resource_mapping.frequency_domain_alloc[1] = 0;
resource4.resource_mapping.frequency_domain_alloc[2] = 0;
resource4.resource_mapping.frequency_domain_alloc[3] = 1;
resource4.resource_mapping.nof_ports = 1;
resource4.resource_mapping.first_symbol_idx = 8;
resource4.resource_mapping.cdm = srsran_csi_rs_cdm_nocdm;
resource4.resource_mapping.density = srsran_csi_rs_resource_mapping_density_three;
resource4.resource_mapping.freq_band.start_rb = 0;
resource4.resource_mapping.freq_band.nof_rb = carrier.nof_prb;
resource4.power_control_offset = 0;
resource4.power_control_offset_ss = 0;
resource4.periodicity.period = 40;
resource4.periodicity.offset = 12;
// NZP-CSI-RS-ResourceSet
// nzp-CSI-ResourceSetId: 1
// nzp-CSI-RS-Resources: 4 items
// Item 0
// NZP-CSI-RS-ResourceId: 1
// Item 1
// NZP-CSI-RS-ResourceId: 2
// Item 2
// NZP-CSI-RS-ResourceId: 3
// Item 3
// NZP-CSI-RS-ResourceId: 4
// trs-Info: true (0)
srsran_csi_rs_nzp_set_t set = {};
set.data[set.count++] = resource1;
set.data[set.count++] = resource2;
set.data[set.count++] = resource3;
set.data[set.count++] = resource4;
set.trs_info = true;
for (slot_cfg.idx = 0; slot_cfg.idx < resource1.periodicity.period; slot_cfg.idx++) {
// Put NZP-CSI-RS TRS signals
int ret = srsran_csi_rs_nzp_put_set(&carrier, &slot_cfg, &set, grid);
// Check return
if (slot_cfg.idx == 11 || slot_cfg.idx == 12) {
TESTASSERT(ret == 2);
} else {
TESTASSERT(ret == 0);
}
// Configure N0 and add Noise
TESTASSERT(srsran_channel_awgn_set_n0(awgn, (float)set.data[0].power_control_offset - snr_dB) == SRSRAN_SUCCESS);
srsran_channel_awgn_run_c(awgn, grid, grid, SRSRAN_SLOT_LEN_RE_NR(carrier.nof_prb));
// Measure
srsran_csi_rs_nzp_measure_t measure = {};
ret = srsran_csi_rs_nzp_measure_trs(&carrier, &slot_cfg, &set, grid, &measure);
// Check return and assert measurement
if (slot_cfg.idx == 11 || slot_cfg.idx == 12) {
TESTASSERT(ret == 2);
} else {
TESTASSERT(ret == 0);
}
}
return SRSRAN_SUCCESS;
}
static void usage(char* prog) static void usage(char* prog)
{ {
printf("Usage: %s [recov]\n", prog); printf("Usage: %s [recov]\n", prog);
@ -120,10 +381,8 @@ static void parse_args(int argc, char** argv)
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
int ret = SRSRAN_ERROR; int ret = SRSRAN_ERROR;
srsran_slot_cfg_t slot_cfg = {}; srsran_channel_awgn_t awgn = {};
srsran_csi_rs_nzp_resource_t resource = {};
srsran_channel_awgn_t awgn = {};
parse_args(argc, argv); parse_args(argc, argv);
@ -138,56 +397,12 @@ int main(int argc, char** argv)
goto clean_exit; goto clean_exit;
} }
// Fixed parameters, other params are not implemented if (nzp_test_brute(&awgn, grid) < SRSRAN_SUCCESS) {
resource.resource_mapping.cdm = srsran_csi_rs_cdm_nocdm; goto clean_exit;
resource.resource_mapping.density = srsran_csi_rs_resource_mapping_density_three; }
resource.resource_mapping.row = srsran_csi_rs_resource_mapping_row_1;
resource.resource_mapping.nof_ports = 1;
// Row 1 supported only!
uint32_t nof_freq_dom_alloc = SRSRAN_CSI_RS_NOF_FREQ_DOMAIN_ALLOC_ROW1;
uint32_t first_symbol_begin = (first_symbol != UINT32_MAX) ? first_symbol : 0;
uint32_t first_symbol_end = (first_symbol != UINT32_MAX) ? first_symbol : 13;
for (resource.resource_mapping.first_symbol_idx = first_symbol_begin;
resource.resource_mapping.first_symbol_idx <= first_symbol_end;
resource.resource_mapping.first_symbol_idx++) {
// Iterate over possible power control offset
float power_control_offset_begin = isnormal(power_control_offset) ? power_control_offset : -8.0f;
float power_control_offset_end = isnormal(power_control_offset) ? power_control_offset : 15.0f;
for (resource.power_control_offset = power_control_offset_begin;
resource.power_control_offset <= power_control_offset_end;
resource.power_control_offset += 1.0f) {
// Iterate over all possible starting number of PRB
uint32_t start_rb_begin = (start_rb != UINT32_MAX) ? start_rb : 0;
uint32_t start_rb_end = (start_rb != UINT32_MAX) ? start_rb : carrier.nof_prb - 24;
for (resource.resource_mapping.freq_band.start_rb = start_rb_begin;
resource.resource_mapping.freq_band.start_rb <= start_rb_end;
resource.resource_mapping.freq_band.start_rb += 4) {
// Iterate over all possible number of PRB
uint32_t nof_rb_begin = (nof_rb != UINT32_MAX) ? nof_rb : 24;
uint32_t nof_rb_end =
(nof_rb != UINT32_MAX) ? nof_rb : (carrier.nof_prb - resource.resource_mapping.freq_band.start_rb);
for (resource.resource_mapping.freq_band.nof_rb = nof_rb_begin;
resource.resource_mapping.freq_band.nof_rb <= nof_rb_end;
resource.resource_mapping.freq_band.nof_rb += 4) {
// Iterate for all slot numbers
for (slot_cfg.idx = 0; slot_cfg.idx < SRSRAN_NSLOTS_PER_FRAME_NR(carrier.scs); slot_cfg.idx++) {
// Steer Frequency allocation
for (uint32_t freq_dom_alloc = 0; freq_dom_alloc < nof_freq_dom_alloc; freq_dom_alloc++) {
for (uint32_t i = 0; i < nof_freq_dom_alloc; i++) {
resource.resource_mapping.frequency_domain_alloc[i] = i == freq_dom_alloc;
}
// Call actual test if (nzp_test_trs(&awgn, grid) < SRSRAN_SUCCESS) {
if (test(&slot_cfg, &resource, &awgn, grid) < SRSRAN_SUCCESS) { goto clean_exit;
goto clean_exit;
}
}
}
}
}
}
} }
ret = SRSRAN_SUCCESS; ret = SRSRAN_SUCCESS;

Loading…
Cancel
Save