|
|
@ -56,7 +56,7 @@ static int csi_rs_location_f(const srsran_csi_rs_resource_mapping_t* resource, u
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (count == i) {
|
|
|
|
if (count == i) {
|
|
|
|
return j * mul;
|
|
|
|
return (int)(j * mul);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -177,7 +177,7 @@ static uint32_t csi_rs_cinit(const srsran_carrier_nr_t* carrier,
|
|
|
|
uint32_t n = SRSRAN_SLOT_NR_MOD(carrier->scs, slot_cfg->idx);
|
|
|
|
uint32_t n = SRSRAN_SLOT_NR_MOD(carrier->scs, slot_cfg->idx);
|
|
|
|
uint32_t n_id = resource->scrambling_id;
|
|
|
|
uint32_t n_id = resource->scrambling_id;
|
|
|
|
|
|
|
|
|
|
|
|
return ((SRSRAN_NSYMB_PER_SLOT_NR * n + l + 1UL) * (2UL * n_id) << 10UL) + n_id;
|
|
|
|
return SRSRAN_SEQUENCE_MOD(((SRSRAN_NSYMB_PER_SLOT_NR * n + l + 1UL) * (2UL * n_id) << 10UL) + n_id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool srsran_csi_rs_send(const srsran_csi_rs_period_and_offset_t* periodicity, const srsran_slot_cfg_t* slot_cfg)
|
|
|
|
bool srsran_csi_rs_send(const srsran_csi_rs_period_and_offset_t* periodicity, const srsran_slot_cfg_t* slot_cfg)
|
|
|
@ -238,7 +238,6 @@ uint32_t csi_rs_count(srsran_csi_rs_density_t density, uint32_t nprb)
|
|
|
|
case srsran_csi_rs_resource_mapping_density_three:
|
|
|
|
case srsran_csi_rs_resource_mapping_density_three:
|
|
|
|
return nprb * 3;
|
|
|
|
return nprb * 3;
|
|
|
|
case srsran_csi_rs_resource_mapping_density_dot5_even:
|
|
|
|
case srsran_csi_rs_resource_mapping_density_dot5_even:
|
|
|
|
return nprb / 2;
|
|
|
|
|
|
|
|
case srsran_csi_rs_resource_mapping_density_dot5_odd:
|
|
|
|
case srsran_csi_rs_resource_mapping_density_dot5_odd:
|
|
|
|
return nprb / 2;
|
|
|
|
return nprb / 2;
|
|
|
|
case srsran_csi_rs_resource_mapping_density_one:
|
|
|
|
case srsran_csi_rs_resource_mapping_density_one:
|
|
|
@ -339,12 +338,13 @@ int srsran_csi_rs_append_resource_to_pattern(const srsran_carrier_nr_t*
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int srsran_csi_rs_nzp_put(const srsran_carrier_nr_t* carrier,
|
|
|
|
int srsran_csi_rs_nzp_put_resource(const srsran_carrier_nr_t* carrier,
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
const srsran_csi_rs_nzp_resource_t* resource,
|
|
|
|
const srsran_csi_rs_nzp_resource_t* resource,
|
|
|
|
cf_t* grid)
|
|
|
|
cf_t* grid)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
if (carrier == NULL || resource == NULL || grid == NULL) {
|
|
|
|
// Verify inputs
|
|
|
|
|
|
|
|
if (carrier == NULL || slot_cfg == NULL || resource == NULL || grid == NULL) {
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -412,25 +412,76 @@ int srsran_csi_rs_nzp_put(const srsran_carrier_nr_t* carrier,
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier,
|
|
|
|
int srsran_csi_rs_nzp_put_set(const srsran_carrier_nr_t* carrier,
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
const srsran_csi_rs_nzp_resource_t* resource,
|
|
|
|
const srsran_csi_rs_nzp_set_t* set,
|
|
|
|
const cf_t* grid,
|
|
|
|
cf_t* grid)
|
|
|
|
srsran_csi_rs_measure_t* measure)
|
|
|
|
|
|
|
|
{
|
|
|
|
{
|
|
|
|
if (carrier == NULL || resource == NULL || grid == NULL) {
|
|
|
|
// Verify inputs
|
|
|
|
|
|
|
|
if (carrier == NULL || slot_cfg == NULL || set == NULL || grid == NULL) {
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t count = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Iterate all resources in set
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < set->count; i++) {
|
|
|
|
|
|
|
|
// Skip resource
|
|
|
|
|
|
|
|
if (!srsran_csi_rs_send(&set->data[i].periodicity, slot_cfg)) {
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Put resource
|
|
|
|
|
|
|
|
if (srsran_csi_rs_nzp_put_resource(carrier, slot_cfg, &set->data[i], grid) < SRSRAN_SUCCESS) {
|
|
|
|
|
|
|
|
ERROR("Error putting NZP-CSI-RS resource");
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
count++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return (int)count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* @brief Internal NZP-CSI-RS measurement structure
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
|
|
|
|
uint32_t cri; ///< CSI-RS resource identifier
|
|
|
|
|
|
|
|
uint32_t l0; ///< First OFDM symbol carrying CSI-RS
|
|
|
|
|
|
|
|
float epre; ///< Linear EPRE
|
|
|
|
|
|
|
|
cf_t corr; ///< Correlation
|
|
|
|
|
|
|
|
float delay_us; ///< Estimated average delay
|
|
|
|
|
|
|
|
uint32_t nof_re; ///< Total number of resource elements
|
|
|
|
|
|
|
|
} csi_rs_nzp_resource_measure_t;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int csi_rs_nzp_measure_resource(const srsran_carrier_nr_t* carrier,
|
|
|
|
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
|
|
|
|
const srsran_csi_rs_nzp_resource_t* resource,
|
|
|
|
|
|
|
|
const cf_t* grid,
|
|
|
|
|
|
|
|
csi_rs_nzp_resource_measure_t* measure)
|
|
|
|
|
|
|
|
{
|
|
|
|
// Force CDM group to 0
|
|
|
|
// Force CDM group to 0
|
|
|
|
uint32_t j = 0;
|
|
|
|
uint32_t j = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Get subcarrier indexes
|
|
|
|
uint32_t k_list[CSI_RS_MAX_SUBC_PRB];
|
|
|
|
uint32_t k_list[CSI_RS_MAX_SUBC_PRB];
|
|
|
|
int nof_k = csi_rs_location_get_k_list(&resource->resource_mapping, j, k_list);
|
|
|
|
int nof_k = csi_rs_location_get_k_list(&resource->resource_mapping, j, k_list);
|
|
|
|
if (nof_k <= 0) {
|
|
|
|
if (nof_k <= 0) {
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate average CSI-RS RE stride
|
|
|
|
|
|
|
|
float avg_k_stride = (float)((k_list[0] + SRSRAN_NRE) - k_list[nof_k - 1]);
|
|
|
|
|
|
|
|
for (uint32_t i = 1; i < (uint32_t)nof_k; i++) {
|
|
|
|
|
|
|
|
avg_k_stride += (float)(k_list[i] - k_list[i - 1]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
avg_k_stride /= (float)nof_k;
|
|
|
|
|
|
|
|
if (!isnormal(avg_k_stride)) {
|
|
|
|
|
|
|
|
ERROR("Invalid avg_k_stride");
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Get symbol indexes
|
|
|
|
uint32_t l_list[CSI_RS_MAX_SYMBOLS_SLOT];
|
|
|
|
uint32_t l_list[CSI_RS_MAX_SYMBOLS_SLOT];
|
|
|
|
int nof_l = csi_rs_location_get_l_list(&resource->resource_mapping, j, l_list);
|
|
|
|
int nof_l = csi_rs_location_get_l_list(&resource->resource_mapping, j, l_list);
|
|
|
|
if (nof_l <= 0) {
|
|
|
|
if (nof_l <= 0) {
|
|
|
@ -442,11 +493,18 @@ int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier,
|
|
|
|
uint32_t rb_end = csi_rs_rb_end(carrier, &resource->resource_mapping);
|
|
|
|
uint32_t rb_end = csi_rs_rb_end(carrier, &resource->resource_mapping);
|
|
|
|
uint32_t rb_stride = csi_rs_rb_stride(&resource->resource_mapping);
|
|
|
|
uint32_t rb_stride = csi_rs_rb_stride(&resource->resource_mapping);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate ideal number of RE per symbol
|
|
|
|
|
|
|
|
uint32_t nof_re = csi_rs_count(resource->resource_mapping.density, rb_end - rb_begin);
|
|
|
|
|
|
|
|
|
|
|
|
// Accumulators
|
|
|
|
// Accumulators
|
|
|
|
float epre_acc = 0.0f;
|
|
|
|
float epre_acc = 0.0f;
|
|
|
|
cf_t rsrp_acc = 0.0f;
|
|
|
|
cf_t corr_acc = 0.0f;
|
|
|
|
uint32_t count = 0;
|
|
|
|
float delay_acc = 0.0f;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Initialise measurement
|
|
|
|
|
|
|
|
SRSRAN_MEM_ZERO(measure, csi_rs_nzp_resource_measure_t, 1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Iterate time symbols
|
|
|
|
for (int l_idx = 0; l_idx < nof_l; l_idx++) {
|
|
|
|
for (int l_idx = 0; l_idx < nof_l; l_idx++) {
|
|
|
|
// Get symbol index
|
|
|
|
// Get symbol index
|
|
|
|
uint32_t l = l_list[l_idx];
|
|
|
|
uint32_t l = l_list[l_idx];
|
|
|
@ -459,61 +517,459 @@ int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier,
|
|
|
|
// Skip unallocated RB
|
|
|
|
// Skip unallocated RB
|
|
|
|
srsran_sequence_state_advance(&sequence_state, 2 * csi_rs_count(resource->resource_mapping.density, rb_begin));
|
|
|
|
srsran_sequence_state_advance(&sequence_state, 2 * csi_rs_count(resource->resource_mapping.density, rb_begin));
|
|
|
|
|
|
|
|
|
|
|
|
// Temporal R sequence
|
|
|
|
// Temporal Least Square Estimates
|
|
|
|
cf_t r[64];
|
|
|
|
cf_t lse[CSI_RS_MAX_SUBC_PRB * SRSRAN_MAX_PRB_NR];
|
|
|
|
uint32_t r_idx = 64;
|
|
|
|
uint32_t count_re = 0;
|
|
|
|
|
|
|
|
|
|
|
|
// Iterate over frequency domain
|
|
|
|
// Extract RE
|
|
|
|
for (uint32_t n = rb_begin; n < rb_end; n += rb_stride) {
|
|
|
|
for (uint32_t n = rb_begin; n < rb_end; n += rb_stride) {
|
|
|
|
for (uint32_t k_idx = 0; k_idx < nof_k; k_idx++) {
|
|
|
|
for (uint32_t k_idx = 0; k_idx < nof_k; k_idx++) {
|
|
|
|
// Calculate sub-carrier index k
|
|
|
|
// Calculate sub-carrier index k
|
|
|
|
uint32_t k = SRSRAN_NRE * n + k_list[k_idx];
|
|
|
|
uint32_t k = SRSRAN_NRE * n + k_list[k_idx];
|
|
|
|
|
|
|
|
|
|
|
|
// Do we need more r?
|
|
|
|
lse[count_re++] = grid[l * SRSRAN_NRE * carrier->nof_prb + k];
|
|
|
|
if (r_idx >= 64) {
|
|
|
|
}
|
|
|
|
// ... Generate a bunch of it!
|
|
|
|
}
|
|
|
|
srsran_sequence_state_gen_f(&sequence_state, M_SQRT1_2, (float*)r, 64 * 2);
|
|
|
|
|
|
|
|
r_idx = 0;
|
|
|
|
// Verify RE count matches the expected number of RE
|
|
|
|
|
|
|
|
if (count_re == 0 || count_re != nof_re) {
|
|
|
|
|
|
|
|
ERROR("Unmatched number of RE (%d != %d)", count_re, nof_re);
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Compute LSE
|
|
|
|
|
|
|
|
srsran_sequence_state_apply_f(&sequence_state, (float*)lse, (float*)lse, 2 * count_re);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Compute EPRE
|
|
|
|
|
|
|
|
epre_acc += srsran_vec_avg_power_cf(lse, count_re);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Compute correlation
|
|
|
|
|
|
|
|
corr_acc += srsran_vec_acc_cc(lse, count_re) / (float)count_re;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Compute average delay
|
|
|
|
|
|
|
|
delay_acc += srsran_vec_estimate_frequency(lse, count_re);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Set measure fields
|
|
|
|
|
|
|
|
measure->cri = resource->id;
|
|
|
|
|
|
|
|
measure->l0 = l_list[0];
|
|
|
|
|
|
|
|
measure->epre = epre_acc / (float)nof_l;
|
|
|
|
|
|
|
|
measure->corr = corr_acc / (float)nof_l;
|
|
|
|
|
|
|
|
measure->delay_us = 1e6f * delay_acc / ((float)nof_l * SRSRAN_SUBC_SPACING_NR(carrier->scs));
|
|
|
|
|
|
|
|
measure->nof_re = nof_l * nof_re;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int csi_rs_nzp_measure_set(const srsran_carrier_nr_t* carrier,
|
|
|
|
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
|
|
|
|
const srsran_csi_rs_nzp_set_t* set,
|
|
|
|
|
|
|
|
const cf_t* grid,
|
|
|
|
|
|
|
|
csi_rs_nzp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET])
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
uint32_t count = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Iterate all resources in set
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < set->count; i++) {
|
|
|
|
|
|
|
|
// Skip resource
|
|
|
|
|
|
|
|
if (!srsran_csi_rs_send(&set->data[i].periodicity, slot_cfg)) {
|
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Take CSI-RS from grid and measure
|
|
|
|
// Perform measurement
|
|
|
|
cf_t tmp = grid[l * SRSRAN_NRE * carrier->nof_prb + k] * conjf(r[r_idx++]);
|
|
|
|
if (csi_rs_nzp_measure_resource(carrier, slot_cfg, &set->data[i], grid, &measurements[count]) < SRSRAN_SUCCESS) {
|
|
|
|
rsrp_acc += tmp;
|
|
|
|
ERROR("Error measuring NZP-CSI-RS resource");
|
|
|
|
epre_acc += __real__ tmp * __real__ tmp + __imag__ tmp * __imag__ tmp;
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
count++;
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int srsran_csi_rs_nzp_measure(const srsran_carrier_nr_t* carrier,
|
|
|
|
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
|
|
|
|
const srsran_csi_rs_nzp_resource_t* resource,
|
|
|
|
|
|
|
|
const cf_t* grid,
|
|
|
|
|
|
|
|
srsran_csi_rs_nzp_measure_t* measure)
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
if (carrier == NULL || slot_cfg == NULL || resource == NULL || grid == NULL || measure == NULL) {
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
csi_rs_nzp_resource_measure_t m = {};
|
|
|
|
|
|
|
|
if (csi_rs_nzp_measure_resource(carrier, slot_cfg, resource, grid, &m) < SRSRAN_SUCCESS) {
|
|
|
|
|
|
|
|
ERROR("Error measuring NZP-CSI-RS resource");
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (count) {
|
|
|
|
// Copy measurements
|
|
|
|
measure->epre = epre_acc / (float)count;
|
|
|
|
measure->epre = m.epre;
|
|
|
|
rsrp_acc /= (float)count;
|
|
|
|
measure->rsrp = (__real__ m.corr * __real__ m.corr + __imag__ m.corr * __imag__ m.corr);
|
|
|
|
measure->rsrp = (__real__ rsrp_acc * __real__ rsrp_acc + __imag__ rsrp_acc * __imag__ rsrp_acc);
|
|
|
|
measure->delay_us = m.delay_us;
|
|
|
|
|
|
|
|
measure->nof_re = m.nof_re;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Estimate noise from EPRE and RSPR
|
|
|
|
if (measure->epre > measure->rsrp) {
|
|
|
|
if (measure->epre > measure->rsrp) {
|
|
|
|
measure->n0 = measure->epre - measure->rsrp;
|
|
|
|
measure->n0 = measure->epre - measure->rsrp;
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
measure->n0 = 0.0f;
|
|
|
|
measure->n0 = 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// CFo cannot be estimated with a single resource
|
|
|
|
|
|
|
|
measure->cfo_hz = 0.0f;
|
|
|
|
|
|
|
|
measure->cfo_hz_max = 0.0f;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate logarithmic measurements
|
|
|
|
|
|
|
|
measure->rsrp_dB = srsran_convert_power_to_dB(measure->rsrp);
|
|
|
|
|
|
|
|
measure->epre_dB = srsran_convert_power_to_dB(measure->epre);
|
|
|
|
|
|
|
|
measure->n0_dB = srsran_convert_power_to_dB(measure->n0);
|
|
|
|
|
|
|
|
measure->snr_dB = measure->rsrp_dB - measure->n0_dB;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int srsran_csi_rs_nzp_measure_trs(const srsran_carrier_nr_t* carrier,
|
|
|
|
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
|
|
|
|
const srsran_csi_rs_nzp_set_t* set,
|
|
|
|
|
|
|
|
const cf_t* grid,
|
|
|
|
|
|
|
|
srsran_csi_rs_nzp_measure_t* measure)
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
// Verify inputs
|
|
|
|
|
|
|
|
if (carrier == NULL || slot_cfg == NULL || set == NULL || grid == NULL || measure == NULL) {
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Verify it is a TRS set
|
|
|
|
|
|
|
|
if (!set->trs_info) {
|
|
|
|
|
|
|
|
ERROR("The set is not configured as TRS");
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Perform Measurements
|
|
|
|
|
|
|
|
csi_rs_nzp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET];
|
|
|
|
|
|
|
|
int ret = csi_rs_nzp_measure_set(carrier, slot_cfg, set, grid, measurements);
|
|
|
|
|
|
|
|
if (ret < SRSRAN_SUCCESS) {
|
|
|
|
|
|
|
|
ERROR("Error performing measurements");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t count = (uint32_t)ret;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// No NZP-CSI-RS has been scheduled for this slot
|
|
|
|
|
|
|
|
if (count == 0) {
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Make sure at least 2 measurements are scheduled
|
|
|
|
|
|
|
|
if (count < 2) {
|
|
|
|
|
|
|
|
ERROR("Not enough NZP-CSI-RS (%d) have been scheduled for this slot", count);
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Make sure initial simbols are in ascending order
|
|
|
|
|
|
|
|
for (uint32_t i = 1; i < count; i++) {
|
|
|
|
|
|
|
|
if (measurements[i].l0 <= measurements[i - 1].l0) {
|
|
|
|
|
|
|
|
ERROR("NZP-CSI-RS are not in ascending order (%d <= %d)", measurements[i].l0, measurements[i - 1].l0);
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Average measurements
|
|
|
|
|
|
|
|
float epre_sum = 0.0f;
|
|
|
|
|
|
|
|
float rsrp_sum = 0.0f;
|
|
|
|
|
|
|
|
float delay_sum = 0.0f;
|
|
|
|
|
|
|
|
uint32_t nof_re = 0;
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
|
|
|
|
|
|
epre_sum += measurements[i].epre / (float)count;
|
|
|
|
|
|
|
|
rsrp_sum += (__real__ measurements[i].corr * __real__ measurements[i].corr +
|
|
|
|
|
|
|
|
__imag__ measurements[i].corr * __imag__ measurements[i].corr) /
|
|
|
|
|
|
|
|
(float)count;
|
|
|
|
|
|
|
|
delay_sum += measurements[i].delay_us / (float)count;
|
|
|
|
|
|
|
|
nof_re += measurements[i].nof_re;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Compute CFO
|
|
|
|
|
|
|
|
float cfo_sum = 0.0f;
|
|
|
|
|
|
|
|
float cfo_max = 0.0f;
|
|
|
|
|
|
|
|
for (uint32_t i = 1; i < count; i++) {
|
|
|
|
|
|
|
|
float time_diff = srsran_symbol_distance_s(measurements[i - 1].l0, measurements[i].l0, carrier->scs);
|
|
|
|
|
|
|
|
float phase_diff = cargf(measurements[i].corr * conjf(measurements[i - 1].corr));
|
|
|
|
|
|
|
|
float cfo_max_temp = 0.0f;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Avoid zero division
|
|
|
|
|
|
|
|
if (isnormal(time_diff)) {
|
|
|
|
|
|
|
|
// Calculate maximum CFO from this pair of symbols
|
|
|
|
|
|
|
|
cfo_max_temp = 1.0f / time_diff;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate the actual CFO of this pair of symbols
|
|
|
|
|
|
|
|
cfo_sum += phase_diff / (2.0f * M_PI * time_diff * (count - 1));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Select the lowest CFO
|
|
|
|
|
|
|
|
cfo_max = SRSRAN_MIN(cfo_max_temp, cfo_max);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Copy measurements
|
|
|
|
|
|
|
|
measure->epre = epre_sum;
|
|
|
|
|
|
|
|
measure->rsrp = rsrp_sum;
|
|
|
|
|
|
|
|
measure->delay_us = delay_sum;
|
|
|
|
|
|
|
|
measure->cfo_hz = cfo_sum;
|
|
|
|
|
|
|
|
measure->cfo_hz_max = cfo_max;
|
|
|
|
|
|
|
|
measure->nof_re = nof_re;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Estimate noise from EPRE and RSPR
|
|
|
|
|
|
|
|
if (measure->epre > measure->rsrp) {
|
|
|
|
|
|
|
|
measure->n0 = measure->epre - measure->rsrp;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
measure->n0 = 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate logarithmic measurements
|
|
|
|
measure->rsrp_dB = srsran_convert_power_to_dB(measure->rsrp);
|
|
|
|
measure->rsrp_dB = srsran_convert_power_to_dB(measure->rsrp);
|
|
|
|
measure->epre_dB = srsran_convert_power_to_dB(measure->epre);
|
|
|
|
measure->epre_dB = srsran_convert_power_to_dB(measure->epre);
|
|
|
|
measure->n0_dB = srsran_convert_power_to_dB(measure->n0);
|
|
|
|
measure->n0_dB = srsran_convert_power_to_dB(measure->n0);
|
|
|
|
measure->snr_dB = measure->rsrp_dB - measure->n0_dB;
|
|
|
|
measure->snr_dB = measure->rsrp_dB - measure->n0_dB;
|
|
|
|
measure->nof_re = count;
|
|
|
|
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int srsran_csi_rs_nzp_measure_channel(const srsran_carrier_nr_t* carrier,
|
|
|
|
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
|
|
|
|
const srsran_csi_rs_nzp_set_t* set,
|
|
|
|
|
|
|
|
const cf_t* grid,
|
|
|
|
|
|
|
|
srsran_csi_measurements_t* measure)
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
// Verify inputs
|
|
|
|
|
|
|
|
if (carrier == NULL || slot_cfg == NULL || set == NULL || grid == NULL || measure == NULL) {
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Perform Measurements
|
|
|
|
|
|
|
|
csi_rs_nzp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET];
|
|
|
|
|
|
|
|
int ret = csi_rs_nzp_measure_set(carrier, slot_cfg, set, grid, measurements);
|
|
|
|
|
|
|
|
if (ret < SRSRAN_SUCCESS) {
|
|
|
|
|
|
|
|
ERROR("Error performing measurements");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t count = (uint32_t)ret;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// No NZP-CSI-RS has been scheduled for this slot
|
|
|
|
|
|
|
|
if (count == 0) {
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Average measurements
|
|
|
|
|
|
|
|
float epre_sum = 0.0f;
|
|
|
|
|
|
|
|
float rsrp_sum = 0.0f;
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
|
|
|
|
|
|
epre_sum += measurements[i].epre / (float)count;
|
|
|
|
|
|
|
|
rsrp_sum += (__real__ measurements[i].corr * __real__ measurements[i].corr +
|
|
|
|
|
|
|
|
__imag__ measurements[i].corr * __imag__ measurements[i].corr) /
|
|
|
|
|
|
|
|
(float)count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Estimate noise from EPRE and RSPR
|
|
|
|
|
|
|
|
float n0 = 0.0f;
|
|
|
|
|
|
|
|
if (epre_sum > rsrp_sum) {
|
|
|
|
|
|
|
|
n0 = epre_sum - rsrp_sum;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
float n0_db = srsran_convert_power_to_dB(n0);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Set measurements
|
|
|
|
|
|
|
|
measure->cri = measurements[0].cri;
|
|
|
|
|
|
|
|
measure->wideband_rsrp_dBm = srsran_convert_power_to_dB(rsrp_sum);
|
|
|
|
|
|
|
|
measure->wideband_epre_dBm = srsran_convert_power_to_dB(epre_sum);
|
|
|
|
|
|
|
|
measure->wideband_snr_db = measure->wideband_rsrp_dBm - n0_db;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Set other parameters
|
|
|
|
|
|
|
|
measure->K_csi_rs = count;
|
|
|
|
|
|
|
|
measure->nof_ports = 1; // No other value is currently supported
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Return the number of active resources for this slot
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* @brief Internal ZP-CSI-RS measurement structure
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
|
|
|
|
uint32_t cri; ///< CSI-RS resource identifier
|
|
|
|
|
|
|
|
uint32_t l0; ///< First OFDM symbol carrying CSI-RS
|
|
|
|
|
|
|
|
float epre; ///< Linear EPRE
|
|
|
|
|
|
|
|
uint32_t nof_re; ///< Total number of resource elements
|
|
|
|
|
|
|
|
} csi_rs_zp_resource_measure_t;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int csi_rs_zp_measure_resource(const srsran_carrier_nr_t* carrier,
|
|
|
|
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
|
|
|
|
const srsran_csi_rs_zp_resource_t* resource,
|
|
|
|
|
|
|
|
const cf_t* grid,
|
|
|
|
|
|
|
|
csi_rs_zp_resource_measure_t* measure)
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
// Force CDM group to 0
|
|
|
|
|
|
|
|
uint32_t j = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Get subcarrier indexes
|
|
|
|
|
|
|
|
uint32_t k_list[CSI_RS_MAX_SUBC_PRB];
|
|
|
|
|
|
|
|
int nof_k = csi_rs_location_get_k_list(&resource->resource_mapping, j, k_list);
|
|
|
|
|
|
|
|
if (nof_k <= 0) {
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate average CSI-RS RE stride
|
|
|
|
|
|
|
|
float avg_k_stride = (float)((k_list[0] + SRSRAN_NRE) - k_list[nof_k - 1]);
|
|
|
|
|
|
|
|
for (uint32_t i = 1; i < (uint32_t)nof_k; i++) {
|
|
|
|
|
|
|
|
avg_k_stride += (float)(k_list[i] - k_list[i - 1]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
avg_k_stride /= (float)nof_k;
|
|
|
|
|
|
|
|
if (!isnormal(avg_k_stride)) {
|
|
|
|
|
|
|
|
ERROR("Invalid avg_k_stride");
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Get symbol indexes
|
|
|
|
|
|
|
|
uint32_t l_list[CSI_RS_MAX_SYMBOLS_SLOT];
|
|
|
|
|
|
|
|
int nof_l = csi_rs_location_get_l_list(&resource->resource_mapping, j, l_list);
|
|
|
|
|
|
|
|
if (nof_l <= 0) {
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate Resource Block boundaries
|
|
|
|
|
|
|
|
uint32_t rb_begin = csi_rs_rb_begin(carrier, &resource->resource_mapping);
|
|
|
|
|
|
|
|
uint32_t rb_end = csi_rs_rb_end(carrier, &resource->resource_mapping);
|
|
|
|
|
|
|
|
uint32_t rb_stride = csi_rs_rb_stride(&resource->resource_mapping);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate ideal number of RE per symbol
|
|
|
|
|
|
|
|
uint32_t nof_re = csi_rs_count(resource->resource_mapping.density, rb_end - rb_begin);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Accumulators
|
|
|
|
|
|
|
|
float epre_acc = 0.0f;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Initialise measurement
|
|
|
|
|
|
|
|
SRSRAN_MEM_ZERO(measure, csi_rs_zp_resource_measure_t, 1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Iterate time symbols
|
|
|
|
|
|
|
|
for (int l_idx = 0; l_idx < nof_l; l_idx++) {
|
|
|
|
|
|
|
|
// Get symbol index
|
|
|
|
|
|
|
|
uint32_t l = l_list[l_idx];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Temporal Least Square Estimates
|
|
|
|
|
|
|
|
cf_t temp[CSI_RS_MAX_SUBC_PRB * SRSRAN_MAX_PRB_NR];
|
|
|
|
|
|
|
|
uint32_t count_re = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Extract RE
|
|
|
|
|
|
|
|
for (uint32_t n = rb_begin; n < rb_end; n += rb_stride) {
|
|
|
|
|
|
|
|
for (uint32_t k_idx = 0; k_idx < nof_k; k_idx++) {
|
|
|
|
|
|
|
|
// Calculate sub-carrier index k
|
|
|
|
|
|
|
|
uint32_t k = SRSRAN_NRE * n + k_list[k_idx];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
temp[count_re++] = grid[l * SRSRAN_NRE * carrier->nof_prb + k];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Verify RE count matches the expected number of RE
|
|
|
|
|
|
|
|
if (count_re == 0 || count_re != nof_re) {
|
|
|
|
|
|
|
|
ERROR("Unmatched number of RE (%d != %d)", count_re, nof_re);
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Compute EPRE
|
|
|
|
|
|
|
|
epre_acc += srsran_vec_avg_power_cf(temp, count_re);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Set measure fields
|
|
|
|
|
|
|
|
measure->cri = resource->id;
|
|
|
|
|
|
|
|
measure->l0 = l_list[0];
|
|
|
|
|
|
|
|
measure->epre = epre_acc / (float)nof_l;
|
|
|
|
|
|
|
|
measure->nof_re = nof_l * nof_re;
|
|
|
|
|
|
|
|
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
return SRSRAN_SUCCESS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t srsran_csi_rs_measure_info(const srsran_csi_rs_measure_t* measure, char* str, uint32_t str_len)
|
|
|
|
static int csi_rs_zp_measure_set(const srsran_carrier_nr_t* carrier,
|
|
|
|
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
|
|
|
|
const srsran_csi_rs_zp_set_t* set,
|
|
|
|
|
|
|
|
const cf_t* grid,
|
|
|
|
|
|
|
|
csi_rs_zp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET])
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
uint32_t count = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Iterate all resources in set
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < set->count; i++) {
|
|
|
|
|
|
|
|
// Skip resource
|
|
|
|
|
|
|
|
if (!srsran_csi_rs_send(&set->data[i].periodicity, slot_cfg)) {
|
|
|
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Perform measurement
|
|
|
|
|
|
|
|
if (csi_rs_zp_measure_resource(carrier, slot_cfg, &set->data[i], grid, &measurements[count]) < SRSRAN_SUCCESS) {
|
|
|
|
|
|
|
|
ERROR("Error measuring NZP-CSI-RS resource");
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
count++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int srsran_csi_rs_zp_measure_channel(const srsran_carrier_nr_t* carrier,
|
|
|
|
|
|
|
|
const srsran_slot_cfg_t* slot_cfg,
|
|
|
|
|
|
|
|
const srsran_csi_rs_zp_set_t* set,
|
|
|
|
|
|
|
|
const cf_t* grid,
|
|
|
|
|
|
|
|
srsran_csi_measurements_t* measure)
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
// Verify inputs
|
|
|
|
|
|
|
|
if (carrier == NULL || slot_cfg == NULL || set == NULL || grid == NULL || measure == NULL) {
|
|
|
|
|
|
|
|
return SRSRAN_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Perform Measurements
|
|
|
|
|
|
|
|
csi_rs_zp_resource_measure_t measurements[SRSRAN_PHCH_CFG_MAX_NOF_CSI_RS_PER_SET];
|
|
|
|
|
|
|
|
int ret = csi_rs_zp_measure_set(carrier, slot_cfg, set, grid, measurements);
|
|
|
|
|
|
|
|
if (ret < SRSRAN_SUCCESS) {
|
|
|
|
|
|
|
|
ERROR("Error performing measurements");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t count = (uint32_t)ret;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// No NZP-CSI-RS has been scheduled for this slot
|
|
|
|
|
|
|
|
if (count == 0) {
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Average measurements
|
|
|
|
|
|
|
|
float epre_sum = 0.0f;
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
|
|
|
|
|
|
epre_sum += measurements[i].epre / (float)count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Set measurements
|
|
|
|
|
|
|
|
measure->cri = measurements[0].cri;
|
|
|
|
|
|
|
|
measure->wideband_rsrp_dBm = NAN;
|
|
|
|
|
|
|
|
measure->wideband_epre_dBm = srsran_convert_power_to_dB(epre_sum);
|
|
|
|
|
|
|
|
measure->wideband_snr_db = NAN;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Set other parameters
|
|
|
|
|
|
|
|
measure->K_csi_rs = count;
|
|
|
|
|
|
|
|
measure->nof_ports = 1; // No other value is currently supported
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Return the number of active resources for this slot
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t srsran_csi_rs_measure_info(const srsran_csi_rs_nzp_measure_t* measure, char* str, uint32_t str_len)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
return srsran_print_check(str,
|
|
|
|
uint32_t len = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
len = srsran_print_check(str,
|
|
|
|
str_len,
|
|
|
|
str_len,
|
|
|
|
0,
|
|
|
|
len,
|
|
|
|
"rsrp=%+.1f, epre=%+.1f, n0=%+.1f, snr=%+.1f, nof_re=%d",
|
|
|
|
"rsrp=%+.1f epre=%+.1f n0=%+.1f snr=%+.1f delay_us=%+.1f ",
|
|
|
|
measure->rsrp_dB,
|
|
|
|
measure->rsrp_dB,
|
|
|
|
measure->epre_dB,
|
|
|
|
measure->epre_dB,
|
|
|
|
measure->n0_dB,
|
|
|
|
measure->n0_dB,
|
|
|
|
measure->snr_dB,
|
|
|
|
measure->snr_dB);
|
|
|
|
measure->nof_re);
|
|
|
|
|
|
|
|
|
|
|
|
// Append measured CFO and the maximum CFO that can be measured
|
|
|
|
|
|
|
|
if (isnormal(measure->cfo_hz_max)) {
|
|
|
|
|
|
|
|
len = srsran_print_check(str, str_len, len, "cfo_hz=%+.1f cfo_hz_max=%+.1f", measure->cfo_hz, measure->cfo_hz_max);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
}
|