You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

783 lines
26 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <math.h>
#include <srslte/phy/phch/uci.h>
#include "srslte/phy/phch/uci.h"
#include "srslte/phy/fec/cbsegm.h"
#include "srslte/phy/fec/convcoder.h"
#include "srslte/phy/fec/crc.h"
#include "srslte/phy/fec/rm_conv.h"
#include "srslte/phy/common/phy_common.h"
#include "srslte/phy/utils/vector.h"
#include "srslte/phy/utils/bit.h"
#include "srslte/phy/utils/debug.h"
/* Table 5.2.2.6.4-1: Basis sequence for (32, O) code */
static uint8_t M_basis_seq[32][11]={
{1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
{1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 },
{1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1 },
{1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1 },
{1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1 },
{1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1 },
{1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1 },
{1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1 },
{1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1 },
{1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1 },
{1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1 },
{1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1 },
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1 },
{1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1 },
{1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1 },
{1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1 },
{1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0 },
{1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0 },
{1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0 },
{1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 },
{1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 },
{1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1 },
{1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1 },
{1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1 },
{1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0 },
{1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1 },
{1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0 },
{1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0 },
{1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0 },
{1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0 },
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
};
static uint8_t M_basis_seq_pucch[20][13]={
{1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0},
{1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0},
{1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1},
{1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1},
{1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1},
{1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1},
{1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1},
{1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1},
{1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1},
{1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1},
{1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1},
{1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1},
{1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1},
{1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1},
{1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1},
{1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0},
};
void srslte_uci_cqi_pucch_init(srslte_uci_cqi_pucch_t *q) {
uint8_t word[16];
uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH;
q->cqi_table = srslte_vec_malloc(nwords * sizeof(int8_t *));
q->cqi_table_s = srslte_vec_malloc(nwords * sizeof(int16_t *));
for (uint32_t w = 0; w < nwords; w++) {
q->cqi_table[w] = srslte_vec_malloc(SRSLTE_UCI_CQI_CODED_PUCCH_B * sizeof(int8_t));
q->cqi_table_s[w] = srslte_vec_malloc(SRSLTE_UCI_CQI_CODED_PUCCH_B * sizeof(int16_t));
uint8_t *ptr = word;
srslte_bit_unpack(w, &ptr, SRSLTE_UCI_MAX_CQI_LEN_PUCCH);
srslte_uci_encode_cqi_pucch(word, SRSLTE_UCI_MAX_CQI_LEN_PUCCH, q->cqi_table[w]);
for (int j = 0; j < SRSLTE_UCI_CQI_CODED_PUCCH_B; j++) {
q->cqi_table_s[w][j] = (int16_t)(2 * q->cqi_table[w][j] - 1);
}
}
}
void srslte_uci_cqi_pucch_free(srslte_uci_cqi_pucch_t *q) {
uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH;
for (uint32_t w=0;w<nwords;w++) {
if (q->cqi_table[w]) {
free(q->cqi_table[w]);
}
if (q->cqi_table_s[w]) {
free(q->cqi_table_s[w]);
}
}
free(q->cqi_table);
free(q->cqi_table_s);
}
/* Encode UCI CQI/PMI as described in 5.2.3.3 of 36.212
*/
int srslte_uci_encode_cqi_pucch(uint8_t *cqi_data, uint32_t cqi_len, uint8_t b_bits[SRSLTE_UCI_CQI_CODED_PUCCH_B])
{
if (cqi_len <= SRSLTE_UCI_MAX_CQI_LEN_PUCCH) {
for (uint32_t i=0;i<SRSLTE_UCI_CQI_CODED_PUCCH_B;i++) {
uint64_t x=0;
for (uint32_t n=0;n<cqi_len;n++) {
x += cqi_data[n]*M_basis_seq_pucch[i][n];
}
b_bits[i] = (uint8_t) (x%2);
}
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
int srslte_uci_encode_cqi_pucch_from_table(srslte_uci_cqi_pucch_t *q, uint8_t *cqi_data, uint32_t cqi_len, uint8_t b_bits[SRSLTE_UCI_CQI_CODED_PUCCH_B])
{
if (cqi_len <= SRSLTE_UCI_MAX_CQI_LEN_PUCCH) {
bzero(&cqi_data[cqi_len], SRSLTE_UCI_MAX_CQI_LEN_PUCCH - cqi_len);
uint8_t *ptr = cqi_data;
uint32_t packed = srslte_bit_pack(&ptr, SRSLTE_UCI_MAX_CQI_LEN_PUCCH);
memcpy(b_bits, q->cqi_table[packed], SRSLTE_UCI_CQI_CODED_PUCCH_B);
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
/* Decode UCI CQI/PMI over PUCCH
*/
int16_t srslte_uci_decode_cqi_pucch(srslte_uci_cqi_pucch_t *q, int16_t b_bits[32], uint8_t *cqi_data, uint32_t cqi_len)
{
if (cqi_len < SRSLTE_UCI_MAX_CQI_LEN_PUCCH &&
b_bits != NULL &&
cqi_data != NULL)
{
uint32_t max_w = 0;
int32_t max_corr = INT32_MIN;
uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH;
for (uint32_t w=0;w<nwords;w += 1<<(SRSLTE_UCI_MAX_CQI_LEN_PUCCH - cqi_len)) {
// Calculate correlation with pregenerated word and select maximum
int32_t corr = srslte_vec_dot_prod_sss(q->cqi_table_s[w], b_bits, SRSLTE_UCI_CQI_CODED_PUCCH_B);
if (corr > max_corr) {
max_corr = corr;
max_w = w;
}
}
// Convert word to bits again
uint8_t *ptr = cqi_data;
srslte_bit_unpack(max_w, &ptr, SRSLTE_UCI_MAX_CQI_LEN_PUCCH);
INFO("Decoded CQI: w=%d, corr=%d\n", max_w, max_corr);
return max_corr;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
void encode_cqi_pusch_block(srslte_uci_cqi_pusch_t *q, uint8_t *data, uint32_t nof_bits, uint8_t output[32]) {
for (int i=0;i<32;i++) {
output[i] = 0;
for (int n=0;n<nof_bits;n++) {
output[i] = (output[i] + data[n] * M_basis_seq[i][n])%2;
}
}
}
void cqi_pusch_pregen(srslte_uci_cqi_pusch_t *q) {
uint8_t word[11];
for (int i=0;i<11;i++) {
uint32_t nwords = (1<<(i+1));
q->cqi_table[i] = srslte_vec_malloc(sizeof(uint8_t)*nwords*32);
q->cqi_table_s[i] = srslte_vec_malloc(sizeof(int16_t)*nwords*32);
for (uint32_t w=0;w<nwords;w++) {
uint8_t *ptr = word;
srslte_bit_unpack(w, &ptr, i+1);
encode_cqi_pusch_block(q, word, i+1, &q->cqi_table[i][32*w]);
for (int j=0;j<32;j++) {
q->cqi_table_s[i][32*w+j] = 2*q->cqi_table[i][32*w+j]-1;
}
}
}
}
void cqi_pusch_pregen_free(srslte_uci_cqi_pusch_t *q) {
for (int i=0;i<11;i++) {
if (q->cqi_table[i]) {
free(q->cqi_table[i]);
}
if (q->cqi_table_s[i]) {
free(q->cqi_table_s[i]);
}
}
}
int srslte_uci_cqi_init(srslte_uci_cqi_pusch_t *q) {
if (srslte_crc_init(&q->crc, SRSLTE_LTE_CRC8, 8)) {
return SRSLTE_ERROR;
}
int poly[3] = { 0x6D, 0x4F, 0x57 };
if (srslte_viterbi_init(&q->viterbi, SRSLTE_VITERBI_37, poly, SRSLTE_UCI_MAX_CQI_LEN_PUSCH, true)) {
return SRSLTE_ERROR;
}
cqi_pusch_pregen(q);
return SRSLTE_SUCCESS;
}
void srslte_uci_cqi_free(srslte_uci_cqi_pusch_t *q)
{
srslte_viterbi_free(&q->viterbi);
cqi_pusch_pregen_free(q);
}
static uint32_t Q_prime_cqi(srslte_pusch_cfg_t *cfg,
uint32_t O, float beta, uint32_t Q_prime_ri)
{
uint32_t K = cfg->cb_segm.C1*cfg->cb_segm.K1 + cfg->cb_segm.C2*cfg->cb_segm.K2;
uint32_t Q_prime = 0;
uint32_t L = (O<11)?0:8;
uint32_t x = 999999;
if (K > 0) {
x = (uint32_t) ceilf((float) (O+L)*cfg->grant.M_sc_init*cfg->nbits.nof_symb*beta/K);
}
Q_prime = SRSLTE_MIN(x, cfg->grant.M_sc * cfg->nbits.nof_symb - Q_prime_ri);
return Q_prime;
}
/* Encode UCI CQI/PMI for payloads equal or lower to 11 bits (Sec 5.2.2.6.4)
*/
int encode_cqi_short(srslte_uci_cqi_pusch_t *q, uint8_t *data, uint32_t nof_bits, uint8_t *q_bits, uint32_t Q)
{
if (nof_bits <= 11 &&
nof_bits > 0 &&
q != NULL &&
data != NULL &&
q_bits != NULL)
{
uint8_t *ptr = data;
uint32_t w = srslte_bit_pack(&ptr, nof_bits);
for (int i=0;i<Q;i++) {
q_bits[i] = q->cqi_table[nof_bits-1][w*32+(i%32)];
}
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
// For decoding the block-encoded CQI we use ML decoding
int decode_cqi_short(srslte_uci_cqi_pusch_t *q, int16_t *q_bits, uint32_t Q, uint8_t *data, uint32_t nof_bits)
{
if (nof_bits <= 11 &&
nof_bits > 0 &&
q != NULL &&
data != NULL &&
q_bits != NULL)
{
// Accumulate all copies of the 32-length sequence
if (Q>32) {
int i=1;
for (;i<Q/32;i++) {
srslte_vec_sum_sss(&q_bits[i*32], q_bits, q_bits, 32);
}
srslte_vec_sum_sss(&q_bits[i*32], q_bits, q_bits, Q%32);
}
uint32_t max_w = 0;
int32_t max_corr = INT32_MIN;
for (uint32_t w=0;w<(1<<nof_bits);w++) {
// Calculate correlation with pregenerated word and select maximum
int32_t corr = srslte_vec_dot_prod_sss(&q->cqi_table_s[nof_bits-1][w*32], q_bits, 32);
if (corr > max_corr) {
max_corr = corr;
max_w = w;
}
}
// Convert word to bits again
uint8_t *ptr = data;
srslte_bit_unpack(max_w, &ptr, nof_bits);
INFO("Decoded CQI: w=%d, corr=%d\n", max_w, max_corr);
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
/* Encode UCI CQI/PMI for payloads greater than 11 bits (go through CRC, conv coder and rate match)
*/
int encode_cqi_long(srslte_uci_cqi_pusch_t *q, uint8_t *data, uint32_t nof_bits, uint8_t *q_bits, uint32_t Q)
{
srslte_convcoder_t encoder;
if (nof_bits + 8 < SRSLTE_UCI_MAX_CQI_LEN_PUSCH &&
q != NULL &&
data != NULL &&
q_bits != NULL)
{
int poly[3] = { 0x6D, 0x4F, 0x57 };
encoder.K = 7;
encoder.R = 3;
encoder.tail_biting = true;
memcpy(encoder.poly, poly, 3 * sizeof(int));
memcpy(q->tmp_cqi, data, sizeof(uint8_t) * nof_bits);
srslte_crc_attach(&q->crc, q->tmp_cqi, nof_bits);
DEBUG("cqi_crc_tx=", 0);
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_b(stdout, q->tmp_cqi, nof_bits+8);
}
srslte_convcoder_encode(&encoder, q->tmp_cqi, q->encoded_cqi, nof_bits + 8);
DEBUG("cconv_tx=", 0);
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_b(stdout, q->encoded_cqi, 3 * (nof_bits + 8));
}
srslte_rm_conv_tx(q->encoded_cqi, 3 * (nof_bits + 8), q_bits, Q);
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
int decode_cqi_long(srslte_uci_cqi_pusch_t *q, int16_t *q_bits, uint32_t Q,
uint8_t *data, uint32_t nof_bits)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (nof_bits + 8 < SRSLTE_UCI_MAX_CQI_LEN_PUSCH &&
q != NULL &&
data != NULL &&
q_bits != NULL)
{
srslte_rm_conv_rx_s(q_bits, Q, q->encoded_cqi_s, 3 * (nof_bits + 8));
DEBUG("cconv_rx=", 0);
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_s(stdout, q->encoded_cqi_s, 3 * (nof_bits + 8));
}
srslte_viterbi_decode_s(&q->viterbi, q->encoded_cqi_s, q->tmp_cqi, nof_bits + 8);
DEBUG("cqi_crc_rx=", 0);
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_b(stdout, q->tmp_cqi, nof_bits+8);
}
ret = srslte_crc_checksum(&q->crc, q->tmp_cqi, nof_bits + 8);
if (ret == 0) {
memcpy(data, q->tmp_cqi, nof_bits*sizeof(uint8_t));
ret = 1;
} else {
ret = 0;
}
}
return ret;
}
/* Encode UCI CQI/PMI
*/
int srslte_uci_decode_cqi_pusch(srslte_uci_cqi_pusch_t *q, srslte_pusch_cfg_t *cfg,
int16_t *q_bits,
float beta, uint32_t Q_prime_ri, uint32_t cqi_len,
uint8_t *cqi_data, bool *cqi_ack)
{
if (beta < 0) {
fprintf(stderr, "Error beta is reserved\n");
return -1;
}
uint32_t Q_prime = Q_prime_cqi(cfg, cqi_len, beta, Q_prime_ri);
int ret = SRSLTE_ERROR;
if (cqi_len <= 11) {
ret = decode_cqi_short(q, q_bits, Q_prime*cfg->grant.Qm, cqi_data, cqi_len);
} else {
ret = decode_cqi_long(q, q_bits, Q_prime*cfg->grant.Qm, cqi_data, cqi_len);
if (ret == 1) {
if (cqi_ack) {
*cqi_ack = true;
}
ret = 0;
} else if (ret == 0) {
if (cqi_ack) {
*cqi_ack = false;
}
}
}
if (ret) {
return ret;
} else {
return (int) Q_prime;
}
return Q_prime;
}
/* Encode UCI CQI/PMI as described in 5.2.2.6 of 36.212
*/
int srslte_uci_encode_cqi_pusch(srslte_uci_cqi_pusch_t *q, srslte_pusch_cfg_t *cfg,
uint8_t *cqi_data, uint32_t cqi_len,
float beta, uint32_t Q_prime_ri,
uint8_t *q_bits)
{
if (beta < 0) {
fprintf(stderr, "Error beta is reserved\n");
return -1;
}
uint32_t Q_prime = Q_prime_cqi(cfg, cqi_len, beta, Q_prime_ri);
int ret = SRSLTE_ERROR;
if (cqi_len <= 11) {
ret = encode_cqi_short(q, cqi_data, cqi_len, q_bits, Q_prime*cfg->grant.Qm);
} else {
ret = encode_cqi_long(q, cqi_data, cqi_len, q_bits, Q_prime*cfg->grant.Qm);
}
if (ret) {
return ret;
} else {
return (int) Q_prime;
}
}
static void uci_ulsch_interleave_put(srslte_uci_bit_type_t ack_coded_bits[6], uint32_t Qm, srslte_uci_bit_t *ack_bits)
{
for(uint32_t k=0; k<Qm; k++) {
ack_bits[k].type = ack_coded_bits[k];
}
}
/* Generates UCI-ACK bits and computes position in q bits */
static int uci_ulsch_interleave_ack_gen(uint32_t ack_q_bit_idx,
uint32_t Qm, uint32_t H_prime_total, uint32_t N_pusch_symbs, srslte_cp_t cp,
srslte_uci_bit_t *ack_bits)
{
const uint32_t ack_column_set_norm[4] = {2, 3, 8, 9};
const uint32_t ack_column_set_ext[4] = {1, 2, 6, 7};
if (H_prime_total/N_pusch_symbs >= 1+ack_q_bit_idx/4) {
uint32_t row = H_prime_total/N_pusch_symbs-1-ack_q_bit_idx/4;
uint32_t colidx = (3*ack_q_bit_idx)%4;
uint32_t col = SRSLTE_CP_ISNORM(cp)?ack_column_set_norm[colidx]:ack_column_set_ext[colidx];
for(uint32_t k=0; k<Qm; k++) {
ack_bits[k].position = row *Qm + (H_prime_total/N_pusch_symbs)*col*Qm + k;
}
return SRSLTE_SUCCESS;
} else {
fprintf(stderr, "Error interleaving UCI-ACK bit idx %d for H_prime_total=%d and N_pusch_symbs=%d\n",
ack_q_bit_idx, H_prime_total, N_pusch_symbs);
return SRSLTE_ERROR;
}
}
/* Inserts UCI-RI bits into the correct positions in the g buffer before interleaving */
static int uci_ulsch_interleave_ri_gen(uint32_t ri_q_bit_idx,
uint32_t Qm, uint32_t H_prime_total, uint32_t N_pusch_symbs, srslte_cp_t cp,
srslte_uci_bit_t *ri_bits)
{
static uint32_t ri_column_set_norm[4] = {1, 4, 7, 10};
static uint32_t ri_column_set_ext[4] = {0, 3, 5, 8};
if (H_prime_total/N_pusch_symbs >= 1+ri_q_bit_idx/4) {
uint32_t row = H_prime_total/N_pusch_symbs-1-ri_q_bit_idx/4;
uint32_t colidx = (3*ri_q_bit_idx)%4;
uint32_t col = SRSLTE_CP_ISNORM(cp)?ri_column_set_norm[colidx]:ri_column_set_ext[colidx];
for(uint32_t k=0; k<Qm; k++) {
ri_bits[k].position = row *Qm + (H_prime_total/N_pusch_symbs)*col*Qm + k;
}
return SRSLTE_SUCCESS;
} else {
fprintf(stderr, "Error interleaving UCI-RI bit idx %d for H_prime_total=%d and N_pusch_symbs=%d\n",
ri_q_bit_idx, H_prime_total, N_pusch_symbs);
return SRSLTE_ERROR;
}
}
static uint32_t Q_prime_ri_ack(srslte_pusch_cfg_t *cfg,
uint32_t O, uint32_t O_cqi, float beta) {
if (beta < 0) {
fprintf(stderr, "Error beta is reserved\n");
return -1;
}
uint32_t K = cfg->cb_segm.C1*cfg->cb_segm.K1 + cfg->cb_segm.C2*cfg->cb_segm.K2;
// If not carrying UL-SCH, get Q_prime according to 5.2.4.1
if (K == 0) {
if (O_cqi <= 11) {
K = O_cqi;
} else {
K = O_cqi+8;
}
}
uint32_t x = (uint32_t) ceilf((float) O*cfg->grant.M_sc_init*cfg->nbits.nof_symb*beta/K);
uint32_t Q_prime = SRSLTE_MIN(x, 4*cfg->grant.M_sc);
return Q_prime;
}
static uint32_t encode_ri_ack(uint8_t data[2], uint32_t data_len, srslte_uci_bit_type_t q_encoded_bits[18], uint8_t Qm)
{
uint32_t i = 0;
if (data_len == 1) {
q_encoded_bits[i++] = data[0] ? UCI_BIT_1 : UCI_BIT_0;
q_encoded_bits[i++] = UCI_BIT_REPETITION;
while(i < Qm) {
q_encoded_bits[i++] = UCI_BIT_PLACEHOLDER;
}
} else {
q_encoded_bits[i++] = data[0] ? UCI_BIT_1 : UCI_BIT_0;
q_encoded_bits[i++] = data[1] ? UCI_BIT_1 : UCI_BIT_0;
while(i<Qm) {
q_encoded_bits[i++] = UCI_BIT_PLACEHOLDER;
}
q_encoded_bits[i++] = (data[0]^data[1]) ? UCI_BIT_1 : UCI_BIT_0;
q_encoded_bits[i++] = data[0] ? UCI_BIT_1 : UCI_BIT_0;
while(i<Qm*2) {
q_encoded_bits[i++] = UCI_BIT_PLACEHOLDER;
}
q_encoded_bits[i++] = data[1] ? UCI_BIT_1 : UCI_BIT_0;
q_encoded_bits[i++] = (data[0]^data[1]) ? UCI_BIT_1 : UCI_BIT_0;
while(i<Qm*3) {
q_encoded_bits[i++] = UCI_BIT_PLACEHOLDER;
}
}
return i;
}
/* Decode UCI HARQ/ACK bits as described in 5.2.2.6 of 36.212
* Currently only supporting 1-bit HARQ
*/
#ifndef MIMO_ENB
static int32_t decode_ri_ack(int16_t *q_bits, uint8_t *c_seq, srslte_uci_bit_t *pos)
{
uint32_t p0 = pos[0].position;
uint32_t p1 = pos[1].position;
uint32_t q0 = c_seq[p0]?q_bits[p0]:-q_bits[p0];
uint32_t q1 = c_seq[p0]?q_bits[p1]:-q_bits[p1];
return -(q0+q1);
}
int srslte_uci_decode_ack(srslte_pusch_cfg_t *cfg, int16_t *q_bits, uint8_t *c_seq,
float beta, uint32_t H_prime_total,
uint32_t O_cqi, srslte_uci_bit_t *ack_bits, uint8_t acks[2], uint32_t nof_acks)
{
int32_t rx_ack = 0;
if (beta < 0) {
fprintf(stderr, "Error beta is reserved\n");
return -1;
}
uint32_t Qprime = Q_prime_ri_ack(cfg, 1, O_cqi, beta);
// Use the same interleaver function to get the HARQ bit position
for (uint32_t i=0;i<Qprime;i++) {
uci_ulsch_interleave_ack_gen(i, cfg->grant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ack_bits[cfg->grant.Qm*i]);
rx_ack += (int32_t) decode_ri_ack(q_bits, c_seq, &ack_bits[cfg->grant.Qm*i]);
}
if (acks) {
acks[0] = rx_ack>0;
}
return (int) Qprime;
}
#else
static void decode_ri_ack(int16_t *q_bits, uint8_t *c_seq, srslte_uci_bit_t *pos, uint32_t Qm, int32_t data[3])
{
uint32_t p0 = pos[Qm * 0 + 0].position;
uint32_t p1 = pos[Qm * 0 + 1].position;
uint32_t p2 = pos[Qm * 1 + 0].position;
uint32_t p3 = pos[Qm * 1 + 1].position;
uint32_t p4 = pos[Qm * 2 + 0].position;
uint32_t p5 = pos[Qm * 2 + 1].position;
int32_t q0 = c_seq[p0] ? q_bits[p0] : -q_bits[p0];
int32_t q1 = c_seq[p1] ? q_bits[p1] : -q_bits[p1];
int32_t q2 = c_seq[p2] ? q_bits[p2] : -q_bits[p2];
int32_t q3 = c_seq[p3] ? q_bits[p3] : -q_bits[p3];
int32_t q4 = c_seq[p4] ? q_bits[p4] : -q_bits[p4];
int32_t q5 = c_seq[p5] ? q_bits[p5] : -q_bits[p5];
data[0] -= q0 + q3;
data[1] -= q1 + q4;
data[2] -= q2 + q5;
}
int srslte_uci_decode_ack(srslte_pusch_cfg_t *cfg, int16_t *q_bits, uint8_t *c_seq,
float beta, uint32_t H_prime_total,
uint32_t O_cqi, srslte_uci_bit_t *ack_bits, uint8_t acks[2], uint32_t nof_acks)
{
int32_t acks_sum[3] = {0, 0, 0};
if (beta < 0) {
fprintf(stderr, "Error beta is reserved\n");
return -1;
}
uint32_t Qprime = Q_prime_ri_ack(cfg, nof_acks, O_cqi, beta);
// Use the same interleaver function to get the HARQ bit position
for (uint32_t i = 0; i < Qprime; i++) {
uci_ulsch_interleave_ack_gen(i, cfg->grant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ack_bits[cfg->grant.Qm*i]);
if ((i % 3 == 0) && i > 0) {
decode_ri_ack(q_bits, &c_seq[0], &ack_bits[cfg->grant.Qm*(i-3)], cfg->grant.Qm, acks_sum);
}
}
if (acks) {
acks[0] = (uint8_t)(acks_sum[0] > 0);
acks[1] = (uint8_t)(acks_sum[1] > 0);
// TODO: Do something with acks_sum[2]
}
return (int) Qprime;
}
#endif
/* Encode UCI HARQ/ACK bits as described in 5.2.2.6 of 36.212
* Currently only supporting 1-bit HARQ
*/
int srslte_uci_encode_ack(srslte_pusch_cfg_t *cfg, uint8_t acks[2], uint32_t nof_acks,
uint32_t O_cqi, float beta, uint32_t H_prime_total,
srslte_uci_bit_t *ack_bits)
{
if (beta < 0) {
fprintf(stderr, "Error beta is reserved\n");
return -1;
}
uint32_t Qprime = Q_prime_ri_ack(cfg, nof_acks, O_cqi, beta);
srslte_uci_bit_type_t q_encoded_bits[18];
uint32_t nof_encoded_bits = encode_ri_ack(acks, nof_acks, q_encoded_bits, cfg->grant.Qm);
for (uint32_t i=0;i<Qprime;i++) {
uci_ulsch_interleave_ack_gen(i, cfg->grant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ack_bits[cfg->grant.Qm*i]);
uci_ulsch_interleave_put(&q_encoded_bits[(i*cfg->grant.Qm)%nof_encoded_bits], cfg->grant.Qm, &ack_bits[cfg->grant.Qm*i]);
}
return (int) Qprime;
}
/* Encode UCI RI bits as described in 5.2.2.6 of 36.212
* Currently only supporting 1-bit RI
*/
int srslte_uci_decode_ri(srslte_pusch_cfg_t *cfg, int16_t *q_bits, uint8_t *c_seq,
float beta, uint32_t H_prime_total,
uint32_t O_cqi, srslte_uci_bit_t *ri_bits, uint8_t *data)
{
int32_t ri_sum[3] = {0, 0, 0};
if (beta < 0) {
fprintf(stderr, "Error beta is reserved\n");
return -1;
}
uint32_t Qprime = Q_prime_ri_ack(cfg, 1, O_cqi, beta);
// Use the same interleaver function to get the HARQ bit position
for (uint32_t i=0;i<Qprime;i++) {
uci_ulsch_interleave_ri_gen(i, cfg->grant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ri_bits[cfg->grant.Qm*i]);
if ((i % 3 == 0) && i > 0) {
//decode_ri_ack(q_bits, &c_seq[0], &ri_bits[cfg->grant.Qm*(i-3)], cfg->grant.Qm, ri_sum);
}
}
if (data) {
*data = (uint8_t) ((ri_sum[0] + ri_sum[1] + ri_sum[2]) > 0);
}
return (int) Qprime;
}
/* Encode UCI RI bits as described in 5.2.2.6 of 36.212
* Currently only supporting 1-bit RI
*/
int srslte_uci_encode_ri(srslte_pusch_cfg_t *cfg,
uint8_t ri,
uint32_t O_cqi, float beta, uint32_t H_prime_total,
srslte_uci_bit_t *ri_bits)
{
// FIXME: It supports RI of 1 bit only
uint8_t data[2] = {ri, 0};
if (beta < 0) {
fprintf(stderr, "Error beta is reserved\n");
return -1;
}
uint32_t Qprime = Q_prime_ri_ack(cfg, 1, O_cqi, beta);
srslte_uci_bit_type_t q_encoded_bits[18];
uint32_t nof_encoded_bits = encode_ri_ack(data, 1, q_encoded_bits, cfg->grant.Qm);
for (uint32_t i=0;i<Qprime;i++) {
uci_ulsch_interleave_ri_gen(i, cfg->grant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ri_bits[cfg->grant.Qm*i]);
uci_ulsch_interleave_put(&q_encoded_bits[(i*cfg->grant.Qm)%nof_encoded_bits], cfg->grant.Qm, &ri_bits[cfg->grant.Qm*i]);
}
return (int) Qprime;
}