/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include #include "srslte/phy/phch/uci.h" #include "srslte/phy/fec/cbsegm.h" #include "srslte/phy/fec/convcoder.h" #include "srslte/phy/fec/crc.h" #include "srslte/phy/fec/rm_conv.h" #include "srslte/phy/common/phy_common.h" #include "srslte/phy/utils/vector.h" #include "srslte/phy/utils/bit.h" #include "srslte/phy/utils/debug.h" /* Table 5.2.2.6.4-1: Basis sequence for (32, O) code */ static uint8_t M_basis_seq[32][11]={ {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, {1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 }, {1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1 }, {1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1 }, {1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1 }, {1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1 }, {1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1 }, {1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1 }, {1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1 }, {1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1 }, {1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1 }, {1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1 }, {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1 }, {1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1 }, {1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1 }, {1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0 }, {1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0 }, {1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0 }, {1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 }, {1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }, {1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1 }, {1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1 }, {1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1 }, {1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0 }, {1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1 }, {1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0 }, {1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0 }, {1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0 }, {1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0 }, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, }; static uint8_t M_basis_seq_pucch[20][13]={ {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0}, {1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}, {1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1}, {1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1}, {1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1}, {1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1}, {1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1}, {1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1}, {1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1}, {1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}, {1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1}, {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1}, {1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1}, {1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1}, {1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1}, {1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1}, {1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1}, {1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0}, }; void srslte_uci_cqi_pucch_init(srslte_uci_cqi_pucch_t *q) { uint8_t word[16]; uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH; q->cqi_table = srslte_vec_malloc(nwords * sizeof(int8_t *)); q->cqi_table_s = srslte_vec_malloc(nwords * sizeof(int16_t *)); for (uint32_t w = 0; w < nwords; w++) { q->cqi_table[w] = srslte_vec_malloc(SRSLTE_UCI_CQI_CODED_PUCCH_B * sizeof(int8_t)); q->cqi_table_s[w] = srslte_vec_malloc(SRSLTE_UCI_CQI_CODED_PUCCH_B * sizeof(int16_t)); uint8_t *ptr = word; srslte_bit_unpack(w, &ptr, SRSLTE_UCI_MAX_CQI_LEN_PUCCH); srslte_uci_encode_cqi_pucch(word, SRSLTE_UCI_MAX_CQI_LEN_PUCCH, q->cqi_table[w]); for (int j = 0; j < SRSLTE_UCI_CQI_CODED_PUCCH_B; j++) { q->cqi_table_s[w][j] = (int16_t)(2 * q->cqi_table[w][j] - 1); } } } void srslte_uci_cqi_pucch_free(srslte_uci_cqi_pucch_t *q) { uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH; for (uint32_t w=0;wcqi_table[w]) { free(q->cqi_table[w]); } if (q->cqi_table_s[w]) { free(q->cqi_table_s[w]); } } free(q->cqi_table); free(q->cqi_table_s); } /* Encode UCI CQI/PMI as described in 5.2.3.3 of 36.212 */ int srslte_uci_encode_cqi_pucch(uint8_t *cqi_data, uint32_t cqi_len, uint8_t b_bits[SRSLTE_UCI_CQI_CODED_PUCCH_B]) { if (cqi_len <= SRSLTE_UCI_MAX_CQI_LEN_PUCCH) { for (uint32_t i=0;icqi_table[packed], SRSLTE_UCI_CQI_CODED_PUCCH_B); return SRSLTE_SUCCESS; } else { return SRSLTE_ERROR_INVALID_INPUTS; } } /* Decode UCI CQI/PMI over PUCCH */ int16_t srslte_uci_decode_cqi_pucch(srslte_uci_cqi_pucch_t *q, int16_t b_bits[32], uint8_t *cqi_data, uint32_t cqi_len) { if (cqi_len < SRSLTE_UCI_MAX_CQI_LEN_PUCCH && b_bits != NULL && cqi_data != NULL) { uint32_t max_w = 0; int32_t max_corr = INT32_MIN; uint32_t nwords = 1 << SRSLTE_UCI_MAX_CQI_LEN_PUCCH; for (uint32_t w=0;wcqi_table_s[w], b_bits, SRSLTE_UCI_CQI_CODED_PUCCH_B); if (corr > max_corr) { max_corr = corr; max_w = w; } } // Convert word to bits again uint8_t *ptr = cqi_data; srslte_bit_unpack(max_w, &ptr, SRSLTE_UCI_MAX_CQI_LEN_PUCCH); INFO("Decoded CQI: w=%d, corr=%d\n", max_w, max_corr); return max_corr; } else { return SRSLTE_ERROR_INVALID_INPUTS; } } void encode_cqi_pusch_block(srslte_uci_cqi_pusch_t *q, uint8_t *data, uint32_t nof_bits, uint8_t output[32]) { for (int i=0;i<32;i++) { output[i] = 0; for (int n=0;ncqi_table[i] = srslte_vec_malloc(sizeof(uint8_t)*nwords*32); q->cqi_table_s[i] = srslte_vec_malloc(sizeof(int16_t)*nwords*32); for (uint32_t w=0;wcqi_table[i][32*w]); for (int j=0;j<32;j++) { q->cqi_table_s[i][32*w+j] = 2*q->cqi_table[i][32*w+j]-1; } } } } void cqi_pusch_pregen_free(srslte_uci_cqi_pusch_t *q) { for (int i=0;i<11;i++) { if (q->cqi_table[i]) { free(q->cqi_table[i]); } if (q->cqi_table_s[i]) { free(q->cqi_table_s[i]); } } } int srslte_uci_cqi_init(srslte_uci_cqi_pusch_t *q) { if (srslte_crc_init(&q->crc, SRSLTE_LTE_CRC8, 8)) { return SRSLTE_ERROR; } int poly[3] = { 0x6D, 0x4F, 0x57 }; if (srslte_viterbi_init(&q->viterbi, SRSLTE_VITERBI_37, poly, SRSLTE_UCI_MAX_CQI_LEN_PUSCH, true)) { return SRSLTE_ERROR; } cqi_pusch_pregen(q); return SRSLTE_SUCCESS; } void srslte_uci_cqi_free(srslte_uci_cqi_pusch_t *q) { srslte_viterbi_free(&q->viterbi); cqi_pusch_pregen_free(q); } static uint32_t Q_prime_cqi(srslte_pusch_cfg_t *cfg, uint32_t O, float beta, uint32_t Q_prime_ri) { uint32_t K = cfg->cb_segm.C1*cfg->cb_segm.K1 + cfg->cb_segm.C2*cfg->cb_segm.K2; uint32_t Q_prime = 0; uint32_t L = (O<11)?0:8; uint32_t x = 999999; if (K > 0) { x = (uint32_t) ceilf((float) (O+L)*cfg->grant.M_sc_init*cfg->nbits.nof_symb*beta/K); } Q_prime = SRSLTE_MIN(x, cfg->grant.M_sc * cfg->nbits.nof_symb - Q_prime_ri); return Q_prime; } /* Encode UCI CQI/PMI for payloads equal or lower to 11 bits (Sec 5.2.2.6.4) */ int encode_cqi_short(srslte_uci_cqi_pusch_t *q, uint8_t *data, uint32_t nof_bits, uint8_t *q_bits, uint32_t Q) { if (nof_bits <= 11 && nof_bits > 0 && q != NULL && data != NULL && q_bits != NULL) { uint8_t *ptr = data; uint32_t w = srslte_bit_pack(&ptr, nof_bits); for (int i=0;icqi_table[nof_bits-1][w*32+(i%32)]; } return SRSLTE_SUCCESS; } else { return SRSLTE_ERROR_INVALID_INPUTS; } } // For decoding the block-encoded CQI we use ML decoding int decode_cqi_short(srslte_uci_cqi_pusch_t *q, int16_t *q_bits, uint32_t Q, uint8_t *data, uint32_t nof_bits) { if (nof_bits <= 11 && nof_bits > 0 && q != NULL && data != NULL && q_bits != NULL) { // Accumulate all copies of the 32-length sequence if (Q>32) { int i=1; for (;icqi_table_s[nof_bits-1][w*32], q_bits, 32); if (corr > max_corr) { max_corr = corr; max_w = w; } } // Convert word to bits again uint8_t *ptr = data; srslte_bit_unpack(max_w, &ptr, nof_bits); INFO("Decoded CQI: w=%d, corr=%d\n", max_w, max_corr); return SRSLTE_SUCCESS; } else { return SRSLTE_ERROR_INVALID_INPUTS; } } /* Encode UCI CQI/PMI for payloads greater than 11 bits (go through CRC, conv coder and rate match) */ int encode_cqi_long(srslte_uci_cqi_pusch_t *q, uint8_t *data, uint32_t nof_bits, uint8_t *q_bits, uint32_t Q) { srslte_convcoder_t encoder; if (nof_bits + 8 < SRSLTE_UCI_MAX_CQI_LEN_PUSCH && q != NULL && data != NULL && q_bits != NULL) { int poly[3] = { 0x6D, 0x4F, 0x57 }; encoder.K = 7; encoder.R = 3; encoder.tail_biting = true; memcpy(encoder.poly, poly, 3 * sizeof(int)); memcpy(q->tmp_cqi, data, sizeof(uint8_t) * nof_bits); srslte_crc_attach(&q->crc, q->tmp_cqi, nof_bits); DEBUG("cqi_crc_tx=", 0); if (SRSLTE_VERBOSE_ISDEBUG()) { srslte_vec_fprint_b(stdout, q->tmp_cqi, nof_bits+8); } srslte_convcoder_encode(&encoder, q->tmp_cqi, q->encoded_cqi, nof_bits + 8); DEBUG("cconv_tx=", 0); if (SRSLTE_VERBOSE_ISDEBUG()) { srslte_vec_fprint_b(stdout, q->encoded_cqi, 3 * (nof_bits + 8)); } srslte_rm_conv_tx(q->encoded_cqi, 3 * (nof_bits + 8), q_bits, Q); return SRSLTE_SUCCESS; } else { return SRSLTE_ERROR_INVALID_INPUTS; } } int decode_cqi_long(srslte_uci_cqi_pusch_t *q, int16_t *q_bits, uint32_t Q, uint8_t *data, uint32_t nof_bits) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (nof_bits + 8 < SRSLTE_UCI_MAX_CQI_LEN_PUSCH && q != NULL && data != NULL && q_bits != NULL) { srslte_rm_conv_rx_s(q_bits, Q, q->encoded_cqi_s, 3 * (nof_bits + 8)); DEBUG("cconv_rx=", 0); if (SRSLTE_VERBOSE_ISDEBUG()) { srslte_vec_fprint_s(stdout, q->encoded_cqi_s, 3 * (nof_bits + 8)); } srslte_viterbi_decode_s(&q->viterbi, q->encoded_cqi_s, q->tmp_cqi, nof_bits + 8); DEBUG("cqi_crc_rx=", 0); if (SRSLTE_VERBOSE_ISDEBUG()) { srslte_vec_fprint_b(stdout, q->tmp_cqi, nof_bits+8); } ret = srslte_crc_checksum(&q->crc, q->tmp_cqi, nof_bits + 8); if (ret == 0) { memcpy(data, q->tmp_cqi, nof_bits*sizeof(uint8_t)); ret = 1; } else { ret = 0; } } return ret; } /* Encode UCI CQI/PMI */ int srslte_uci_decode_cqi_pusch(srslte_uci_cqi_pusch_t *q, srslte_pusch_cfg_t *cfg, int16_t *q_bits, float beta, uint32_t Q_prime_ri, uint32_t cqi_len, uint8_t *cqi_data, bool *cqi_ack) { if (beta < 0) { fprintf(stderr, "Error beta is reserved\n"); return -1; } uint32_t Q_prime = Q_prime_cqi(cfg, cqi_len, beta, Q_prime_ri); int ret = SRSLTE_ERROR; if (cqi_len <= 11) { ret = decode_cqi_short(q, q_bits, Q_prime*cfg->grant.Qm, cqi_data, cqi_len); } else { ret = decode_cqi_long(q, q_bits, Q_prime*cfg->grant.Qm, cqi_data, cqi_len); if (ret == 1) { if (cqi_ack) { *cqi_ack = true; } ret = 0; } else if (ret == 0) { if (cqi_ack) { *cqi_ack = false; } } } if (ret) { return ret; } else { return (int) Q_prime; } return Q_prime; } /* Encode UCI CQI/PMI as described in 5.2.2.6 of 36.212 */ int srslte_uci_encode_cqi_pusch(srslte_uci_cqi_pusch_t *q, srslte_pusch_cfg_t *cfg, uint8_t *cqi_data, uint32_t cqi_len, float beta, uint32_t Q_prime_ri, uint8_t *q_bits) { if (beta < 0) { fprintf(stderr, "Error beta is reserved\n"); return -1; } uint32_t Q_prime = Q_prime_cqi(cfg, cqi_len, beta, Q_prime_ri); int ret = SRSLTE_ERROR; if (cqi_len <= 11) { ret = encode_cqi_short(q, cqi_data, cqi_len, q_bits, Q_prime*cfg->grant.Qm); } else { ret = encode_cqi_long(q, cqi_data, cqi_len, q_bits, Q_prime*cfg->grant.Qm); } if (ret) { return ret; } else { return (int) Q_prime; } } static void uci_ulsch_interleave_put(srslte_uci_bit_type_t ack_coded_bits[6], uint32_t Qm, srslte_uci_bit_t *ack_bits) { for(uint32_t k=0; k= 1+ack_q_bit_idx/4) { uint32_t row = H_prime_total/N_pusch_symbs-1-ack_q_bit_idx/4; uint32_t colidx = (3*ack_q_bit_idx)%4; uint32_t col = SRSLTE_CP_ISNORM(cp)?ack_column_set_norm[colidx]:ack_column_set_ext[colidx]; for(uint32_t k=0; k= 1+ri_q_bit_idx/4) { uint32_t row = H_prime_total/N_pusch_symbs-1-ri_q_bit_idx/4; uint32_t colidx = (3*ri_q_bit_idx)%4; uint32_t col = SRSLTE_CP_ISNORM(cp)?ri_column_set_norm[colidx]:ri_column_set_ext[colidx]; for(uint32_t k=0; kcb_segm.C1*cfg->cb_segm.K1 + cfg->cb_segm.C2*cfg->cb_segm.K2; // If not carrying UL-SCH, get Q_prime according to 5.2.4.1 if (K == 0) { if (O_cqi <= 11) { K = O_cqi; } else { K = O_cqi+8; } } uint32_t x = (uint32_t) ceilf((float) O*cfg->grant.M_sc_init*cfg->nbits.nof_symb*beta/K); uint32_t Q_prime = SRSLTE_MIN(x, 4*cfg->grant.M_sc); return Q_prime; } static uint32_t encode_ri_ack(uint8_t data[2], uint32_t data_len, srslte_uci_bit_type_t q_encoded_bits[18], uint8_t Qm) { uint32_t i = 0; if (data_len == 1) { q_encoded_bits[i++] = data[0] ? UCI_BIT_1 : UCI_BIT_0; q_encoded_bits[i++] = UCI_BIT_REPETITION; while(i < Qm) { q_encoded_bits[i++] = UCI_BIT_PLACEHOLDER; } } else { q_encoded_bits[i++] = data[0] ? UCI_BIT_1 : UCI_BIT_0; q_encoded_bits[i++] = data[1] ? UCI_BIT_1 : UCI_BIT_0; while(igrant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ack_bits[cfg->grant.Qm*i]); rx_ack += (int32_t) decode_ri_ack(q_bits, c_seq, &ack_bits[cfg->grant.Qm*i]); } if (acks) { acks[0] = rx_ack>0; } return (int) Qprime; } #else static void decode_ri_ack(int16_t *q_bits, uint8_t *c_seq, srslte_uci_bit_t *pos, uint32_t Qm, int32_t data[3]) { uint32_t p0 = pos[Qm * 0 + 0].position; uint32_t p1 = pos[Qm * 0 + 1].position; uint32_t p2 = pos[Qm * 1 + 0].position; uint32_t p3 = pos[Qm * 1 + 1].position; uint32_t p4 = pos[Qm * 2 + 0].position; uint32_t p5 = pos[Qm * 2 + 1].position; int32_t q0 = c_seq[p0] ? q_bits[p0] : -q_bits[p0]; int32_t q1 = c_seq[p1] ? q_bits[p1] : -q_bits[p1]; int32_t q2 = c_seq[p2] ? q_bits[p2] : -q_bits[p2]; int32_t q3 = c_seq[p3] ? q_bits[p3] : -q_bits[p3]; int32_t q4 = c_seq[p4] ? q_bits[p4] : -q_bits[p4]; int32_t q5 = c_seq[p5] ? q_bits[p5] : -q_bits[p5]; data[0] -= q0 + q3; data[1] -= q1 + q4; data[2] -= q2 + q5; } int srslte_uci_decode_ack(srslte_pusch_cfg_t *cfg, int16_t *q_bits, uint8_t *c_seq, float beta, uint32_t H_prime_total, uint32_t O_cqi, srslte_uci_bit_t *ack_bits, uint8_t acks[2], uint32_t nof_acks) { int32_t acks_sum[3] = {0, 0, 0}; if (beta < 0) { fprintf(stderr, "Error beta is reserved\n"); return -1; } uint32_t Qprime = Q_prime_ri_ack(cfg, nof_acks, O_cqi, beta); // Use the same interleaver function to get the HARQ bit position for (uint32_t i = 0; i < Qprime; i++) { uci_ulsch_interleave_ack_gen(i, cfg->grant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ack_bits[cfg->grant.Qm*i]); if ((i % 3 == 0) && i > 0) { decode_ri_ack(q_bits, &c_seq[0], &ack_bits[cfg->grant.Qm*(i-3)], cfg->grant.Qm, acks_sum); } } if (acks) { acks[0] = (uint8_t)(acks_sum[0] > 0); acks[1] = (uint8_t)(acks_sum[1] > 0); // TODO: Do something with acks_sum[2] } return (int) Qprime; } #endif /* Encode UCI HARQ/ACK bits as described in 5.2.2.6 of 36.212 * Currently only supporting 1-bit HARQ */ int srslte_uci_encode_ack(srslte_pusch_cfg_t *cfg, uint8_t acks[2], uint32_t nof_acks, uint32_t O_cqi, float beta, uint32_t H_prime_total, srslte_uci_bit_t *ack_bits) { if (beta < 0) { fprintf(stderr, "Error beta is reserved\n"); return -1; } uint32_t Qprime = Q_prime_ri_ack(cfg, nof_acks, O_cqi, beta); srslte_uci_bit_type_t q_encoded_bits[18]; uint32_t nof_encoded_bits = encode_ri_ack(acks, nof_acks, q_encoded_bits, cfg->grant.Qm); for (uint32_t i=0;igrant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ack_bits[cfg->grant.Qm*i]); uci_ulsch_interleave_put(&q_encoded_bits[(i*cfg->grant.Qm)%nof_encoded_bits], cfg->grant.Qm, &ack_bits[cfg->grant.Qm*i]); } return (int) Qprime; } /* Encode UCI RI bits as described in 5.2.2.6 of 36.212 * Currently only supporting 1-bit RI */ int srslte_uci_decode_ri(srslte_pusch_cfg_t *cfg, int16_t *q_bits, uint8_t *c_seq, float beta, uint32_t H_prime_total, uint32_t O_cqi, srslte_uci_bit_t *ri_bits, uint8_t *data) { int32_t ri_sum[3] = {0, 0, 0}; if (beta < 0) { fprintf(stderr, "Error beta is reserved\n"); return -1; } uint32_t Qprime = Q_prime_ri_ack(cfg, 1, O_cqi, beta); // Use the same interleaver function to get the HARQ bit position for (uint32_t i=0;igrant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ri_bits[cfg->grant.Qm*i]); if ((i % 3 == 0) && i > 0) { //decode_ri_ack(q_bits, &c_seq[0], &ri_bits[cfg->grant.Qm*(i-3)], cfg->grant.Qm, ri_sum); } } if (data) { *data = (uint8_t) ((ri_sum[0] + ri_sum[1] + ri_sum[2]) > 0); } return (int) Qprime; } /* Encode UCI RI bits as described in 5.2.2.6 of 36.212 * Currently only supporting 1-bit RI */ int srslte_uci_encode_ri(srslte_pusch_cfg_t *cfg, uint8_t ri, uint32_t O_cqi, float beta, uint32_t H_prime_total, srslte_uci_bit_t *ri_bits) { // FIXME: It supports RI of 1 bit only uint8_t data[2] = {ri, 0}; if (beta < 0) { fprintf(stderr, "Error beta is reserved\n"); return -1; } uint32_t Qprime = Q_prime_ri_ack(cfg, 1, O_cqi, beta); srslte_uci_bit_type_t q_encoded_bits[18]; uint32_t nof_encoded_bits = encode_ri_ack(data, 1, q_encoded_bits, cfg->grant.Qm); for (uint32_t i=0;igrant.Qm, H_prime_total, cfg->nbits.nof_symb, cfg->cp, &ri_bits[cfg->grant.Qm*i]); uci_ulsch_interleave_put(&q_encoded_bits[(i*cfg->grant.Qm)%nof_encoded_bits], cfg->grant.Qm, &ri_bits[cfg->grant.Qm*i]); } return (int) Qprime; }