You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

278 lines
7.0 KiB
Matlab

%% LTE Downlink Channel Estimation and Equalization
%% Cell-Wide Settings
clear
plot_noise_estimation_only=false;
SNR_values_db=linspace(0,20,8);
Nrealizations=10;
w1=0.1;
w2=0.3;
enb.NDLRB = 25; % Number of resource blocks
enb.CellRefP = 1; % One transmit antenna port
enb.NCellID = 0; % Cell ID
enb.CyclicPrefix = 'Normal'; % Normal cyclic prefix
enb.DuplexMode = 'FDD'; % FDD
K=enb.NDLRB*12;
P=K/6;
%% Channel Model Configuration
cfg.Seed = 0; % Random channel seed
cfg.InitTime = 0;
cfg.NRxAnts = 1; % 1 receive antenna
cfg.DelayProfile = 'EVA';
% doppler 5, 70 300
cfg.DopplerFreq = 5; % 120Hz Doppler frequency
cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
cfg.NTerms = 16; % Oscillators used in fading model
cfg.ModelType = 'GMEDS'; % Rayleigh fading model type
cfg.InitPhase = 'Random'; % Random initial phases
cfg.NormalizePathGains = 'On'; % Normalize delay profile power
cfg.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
%% Channel Estimator Configuration
cec = struct; % Channel estimation config structure
cec.PilotAverage = 'UserDefined'; % Type of pilot symbol averaging
cec.FreqWindow = 9; % Frequency window size
cec.TimeWindow = 9; % Time window size
cec.InterpType = 'Linear'; % 2D interpolation type
cec.InterpWindow = 'Causal'; % Interpolation window type
cec.InterpWinSize = 1; % Interpolation window size
%% Subframe Resource Grid Size
gridsize = lteDLResourceGridSize(enb);
Ks = gridsize(1); % Number of subcarriers
L = gridsize(2); % Number of OFDM symbols in one subframe
Ports = gridsize(3); % Number of transmit antenna ports
%% Allocate memory
Ntests=2;
hest=cell(1,Ntests);
tmpnoise=cell(1,Ntests);
for i=1:Ntests
hest{i}=zeros(K,140);
tmpnoise{i}=zeros(1,10);
end
hls=zeros(4,4*P*10);
MSE=zeros(Ntests,Nrealizations,length(SNR_values_db));
noiseEst=zeros(Ntests,Nrealizations,length(SNR_values_db));
legends={'matlab','ls',num2str(w1),num2str(w2)};
colors={'bo-','rx-','m*-','k+-','c+-'};
colors2={'b-','r-','m-','k-','c-'};
addpath('../../build/srslte/lib/ch_estimation/test')
offset=-1;
for nreal=1:Nrealizations
%% Transmit Resource Grid
txGrid = [];
%% Payload Data Generation
% Number of bits needed is size of resource grid (K*L*P) * number of bits
% per symbol (2 for QPSK)
numberOfBits = Ks*L*Ports*2;
% Create random bit stream
inputBits = randi([0 1], numberOfBits, 1);
% Modulate input bits
inputSym = lteSymbolModulate(inputBits,'QPSK');
%% Frame Generation
% For all subframes within the frame
for sf = 0:10
% Set subframe number
enb.NSubframe = mod(sf,10);
% Generate empty subframe
subframe = lteDLResourceGrid(enb);
% Map input symbols to grid
subframe(:) = inputSym;
% Generate synchronizing signals
pssSym = ltePSS(enb);
sssSym = lteSSS(enb);
pssInd = ltePSSIndices(enb);
sssInd = lteSSSIndices(enb);
% Map synchronizing signals to the grid
subframe(pssInd) = pssSym;
subframe(sssInd) = sssSym;
% Generate cell specific reference signal symbols and indices
cellRsSym = lteCellRS(enb);
cellRsInd = lteCellRSIndices(enb);
% Map cell specific reference signal to grid
subframe(cellRsInd) = cellRsSym;
% Append subframe to grid to be transmitted
txGrid = [txGrid subframe]; %#ok
end
txGrid([1:5 68:72],6:7) = ones(10,2);
%% OFDM Modulation
[txWaveform,info] = lteOFDMModulate(enb,txGrid);
txGrid = txGrid(:,1:140);
%% SNR Configuration
for snr_idx=1:length(SNR_values_db)
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
SNR = 10^(SNRdB/20); % Linear SNR
fprintf('SNR=%.1f dB\n',SNRdB)
%% Fading Channel
cfg.SamplingRate = info.SamplingRate;
[rxWaveform, chinfo] = lteFadingChannel(cfg,txWaveform);
%% Additive Noise
% Calculate noise gain
N0 = 1/(sqrt(2.0*enb.CellRefP*double(info.Nfft))*SNR);
% Create additive white Gaussian noise
noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));
% Add noise to the received time domain waveform
rxWaveform_nonoise = rxWaveform;
rxWaveform = rxWaveform + noise;
%% Synchronization
if (offset==-1)
offset = lteDLFrameOffset(enb,rxWaveform);
end
rxWaveform = rxWaveform(1+offset:end,:);
rxWaveform_nonoise = rxWaveform_nonoise(1+offset:end,:);
%% OFDM Demodulation
rxGrid = lteOFDMDemodulate(enb,rxWaveform);
rxGrid = rxGrid(:,1:140);
rxGrid_nonoise = lteOFDMDemodulate(enb,rxWaveform_nonoise);
rxGrid_nonoise = rxGrid_nonoise(:,1:140);
% True channel
h=rxGrid_nonoise./(txGrid);
for i=1:10
enb.NSubframe=i-1;
rxGrid_sf = rxGrid(:,(i-1)*14+1:i*14);
%% Channel Estimation with Matlab
[hest{1}(:,(1:14)+(i-1)*14), tmpnoise{1}(i)] = ...
lteDLChannelEstimate(enb,cec,rxGrid_sf);
tmpnoise{1}(i)=tmpnoise{1}(i)*sqrt(2)*enb.CellRefP;
%% LS-Linear estimation with srsLTE
[hest{2}(:,(1:14)+(i-1)*14), tmpnoise{2}(i)] = srslte_chest_dl(enb,rxGrid_sf);
%% LS-Linear + averaging with srsLTE
[hest{3}(:,(1:14)+(i-1)*14), tmpnoise{3}(i)] = srslte_chest_dl(enb,rxGrid_sf,w1);
%% LS-Linear + more averaging with srsLTE
[hest{4}(:,(1:14)+(i-1)*14), tmpnoise{4}(i)] = srslte_chest_dl(enb,rxGrid_sf,w2);
end
%% Average noise estimates over all frame
for i=1:Ntests
noiseEst(i,nreal,snr_idx)=mean(tmpnoise{i});
end
%% Compute MSE
for i=1:Ntests
MSE(i,nreal,snr_idx)=mean(mean(abs(h-hest{i}).^2));
fprintf('MSE test %d: %f\n',i, 10*log10(MSE(i,nreal,snr_idx)));
end
%% Plot a single realization
if (length(SNR_values_db) == 1)
sym=1;
ref_idx=1:P;
ref_idx_x=[1:6:K];% (292:6:360)-216];% 577:6:648];
n=1:(K*length(sym));
for i=1:Ntests
plot(n,abs(reshape(hest{i}(:,sym),1,[])),colors2{i});
hold on;
end
plot(n, abs(h(:,sym)),'g-')
% plot(ref_idx_x,real(hls(3,ref_idx)),'ro');
hold off;
tmp=cell(Ntests+1,1);
for i=1:Ntests
tmp{i}=legends{i};
end
tmp{Ntests+1}='Real';
legend(tmp)
xlabel('Sample')
ylabel('Channel Gain')
grid on;
% fprintf('Mean MMSE Robust %.2f dB\n', 10*log10(MSE(4,nreal,snr_idx)))
% fprintf('Mean MMSE matlab %.2f dB\n', 10*log10(MSE(1,nreal,snr_idx)))
end
end
end
%% Compute average MSE and noise estimation
mean_mse=mean(MSE,2);
mean_snr=10*log10(1./mean(noiseEst,2));
%% Plot average over all SNR values
if (length(SNR_values_db) > 1)
subplot(1,2,1)
for i=1:Ntests
plot(SNR_values_db, 10*log10(mean_mse(i,:)),colors{i})
hold on;
end
hold off;
legend(legends);
grid on
xlabel('SNR (dB)')
ylabel('MSE (dB)')
subplot(1,2,2)
plot(SNR_values_db, SNR_values_db,'k:')
hold on;
for i=1:Ntests
plot(SNR_values_db, mean_snr(i,:), colors{i})
end
hold off
tmp=cell(Ntests+1,1);
tmp{1}='Theory';
for i=2:Ntests+1
tmp{i}=legends{i-1};
end
legend(tmp)
grid on
xlabel('SNR (dB)')
ylabel('Estimated SNR (dB)')
end