%% LTE Downlink Channel Estimation and Equalization %% Cell-Wide Settings clear plot_noise_estimation_only=false; SNR_values_db=linspace(0,20,8); Nrealizations=10; w1=0.1; w2=0.3; enb.NDLRB = 25; % Number of resource blocks enb.CellRefP = 1; % One transmit antenna port enb.NCellID = 0; % Cell ID enb.CyclicPrefix = 'Normal'; % Normal cyclic prefix enb.DuplexMode = 'FDD'; % FDD K=enb.NDLRB*12; P=K/6; %% Channel Model Configuration cfg.Seed = 0; % Random channel seed cfg.InitTime = 0; cfg.NRxAnts = 1; % 1 receive antenna cfg.DelayProfile = 'EVA'; % doppler 5, 70 300 cfg.DopplerFreq = 5; % 120Hz Doppler frequency cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation cfg.NTerms = 16; % Oscillators used in fading model cfg.ModelType = 'GMEDS'; % Rayleigh fading model type cfg.InitPhase = 'Random'; % Random initial phases cfg.NormalizePathGains = 'On'; % Normalize delay profile power cfg.NormalizeTxAnts = 'On'; % Normalize for transmit antennas %% Channel Estimator Configuration cec = struct; % Channel estimation config structure cec.PilotAverage = 'UserDefined'; % Type of pilot symbol averaging cec.FreqWindow = 9; % Frequency window size cec.TimeWindow = 9; % Time window size cec.InterpType = 'Linear'; % 2D interpolation type cec.InterpWindow = 'Causal'; % Interpolation window type cec.InterpWinSize = 1; % Interpolation window size %% Subframe Resource Grid Size gridsize = lteDLResourceGridSize(enb); Ks = gridsize(1); % Number of subcarriers L = gridsize(2); % Number of OFDM symbols in one subframe Ports = gridsize(3); % Number of transmit antenna ports %% Allocate memory Ntests=2; hest=cell(1,Ntests); tmpnoise=cell(1,Ntests); for i=1:Ntests hest{i}=zeros(K,140); tmpnoise{i}=zeros(1,10); end hls=zeros(4,4*P*10); MSE=zeros(Ntests,Nrealizations,length(SNR_values_db)); noiseEst=zeros(Ntests,Nrealizations,length(SNR_values_db)); legends={'matlab','ls',num2str(w1),num2str(w2)}; colors={'bo-','rx-','m*-','k+-','c+-'}; colors2={'b-','r-','m-','k-','c-'}; addpath('../../build/srslte/lib/ch_estimation/test') offset=-1; for nreal=1:Nrealizations %% Transmit Resource Grid txGrid = []; %% Payload Data Generation % Number of bits needed is size of resource grid (K*L*P) * number of bits % per symbol (2 for QPSK) numberOfBits = Ks*L*Ports*2; % Create random bit stream inputBits = randi([0 1], numberOfBits, 1); % Modulate input bits inputSym = lteSymbolModulate(inputBits,'QPSK'); %% Frame Generation % For all subframes within the frame for sf = 0:10 % Set subframe number enb.NSubframe = mod(sf,10); % Generate empty subframe subframe = lteDLResourceGrid(enb); % Map input symbols to grid subframe(:) = inputSym; % Generate synchronizing signals pssSym = ltePSS(enb); sssSym = lteSSS(enb); pssInd = ltePSSIndices(enb); sssInd = lteSSSIndices(enb); % Map synchronizing signals to the grid subframe(pssInd) = pssSym; subframe(sssInd) = sssSym; % Generate cell specific reference signal symbols and indices cellRsSym = lteCellRS(enb); cellRsInd = lteCellRSIndices(enb); % Map cell specific reference signal to grid subframe(cellRsInd) = cellRsSym; % Append subframe to grid to be transmitted txGrid = [txGrid subframe]; %#ok end txGrid([1:5 68:72],6:7) = ones(10,2); %% OFDM Modulation [txWaveform,info] = lteOFDMModulate(enb,txGrid); txGrid = txGrid(:,1:140); %% SNR Configuration for snr_idx=1:length(SNR_values_db) SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB SNR = 10^(SNRdB/20); % Linear SNR fprintf('SNR=%.1f dB\n',SNRdB) %% Fading Channel cfg.SamplingRate = info.SamplingRate; [rxWaveform, chinfo] = lteFadingChannel(cfg,txWaveform); %% Additive Noise % Calculate noise gain N0 = 1/(sqrt(2.0*enb.CellRefP*double(info.Nfft))*SNR); % Create additive white Gaussian noise noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform))); % Add noise to the received time domain waveform rxWaveform_nonoise = rxWaveform; rxWaveform = rxWaveform + noise; %% Synchronization if (offset==-1) offset = lteDLFrameOffset(enb,rxWaveform); end rxWaveform = rxWaveform(1+offset:end,:); rxWaveform_nonoise = rxWaveform_nonoise(1+offset:end,:); %% OFDM Demodulation rxGrid = lteOFDMDemodulate(enb,rxWaveform); rxGrid = rxGrid(:,1:140); rxGrid_nonoise = lteOFDMDemodulate(enb,rxWaveform_nonoise); rxGrid_nonoise = rxGrid_nonoise(:,1:140); % True channel h=rxGrid_nonoise./(txGrid); for i=1:10 enb.NSubframe=i-1; rxGrid_sf = rxGrid(:,(i-1)*14+1:i*14); %% Channel Estimation with Matlab [hest{1}(:,(1:14)+(i-1)*14), tmpnoise{1}(i)] = ... lteDLChannelEstimate(enb,cec,rxGrid_sf); tmpnoise{1}(i)=tmpnoise{1}(i)*sqrt(2)*enb.CellRefP; %% LS-Linear estimation with srsLTE [hest{2}(:,(1:14)+(i-1)*14), tmpnoise{2}(i)] = srslte_chest_dl(enb,rxGrid_sf); %% LS-Linear + averaging with srsLTE [hest{3}(:,(1:14)+(i-1)*14), tmpnoise{3}(i)] = srslte_chest_dl(enb,rxGrid_sf,w1); %% LS-Linear + more averaging with srsLTE [hest{4}(:,(1:14)+(i-1)*14), tmpnoise{4}(i)] = srslte_chest_dl(enb,rxGrid_sf,w2); end %% Average noise estimates over all frame for i=1:Ntests noiseEst(i,nreal,snr_idx)=mean(tmpnoise{i}); end %% Compute MSE for i=1:Ntests MSE(i,nreal,snr_idx)=mean(mean(abs(h-hest{i}).^2)); fprintf('MSE test %d: %f\n',i, 10*log10(MSE(i,nreal,snr_idx))); end %% Plot a single realization if (length(SNR_values_db) == 1) sym=1; ref_idx=1:P; ref_idx_x=[1:6:K];% (292:6:360)-216];% 577:6:648]; n=1:(K*length(sym)); for i=1:Ntests plot(n,abs(reshape(hest{i}(:,sym),1,[])),colors2{i}); hold on; end plot(n, abs(h(:,sym)),'g-') % plot(ref_idx_x,real(hls(3,ref_idx)),'ro'); hold off; tmp=cell(Ntests+1,1); for i=1:Ntests tmp{i}=legends{i}; end tmp{Ntests+1}='Real'; legend(tmp) xlabel('Sample') ylabel('Channel Gain') grid on; % fprintf('Mean MMSE Robust %.2f dB\n', 10*log10(MSE(4,nreal,snr_idx))) % fprintf('Mean MMSE matlab %.2f dB\n', 10*log10(MSE(1,nreal,snr_idx))) end end end %% Compute average MSE and noise estimation mean_mse=mean(MSE,2); mean_snr=10*log10(1./mean(noiseEst,2)); %% Plot average over all SNR values if (length(SNR_values_db) > 1) subplot(1,2,1) for i=1:Ntests plot(SNR_values_db, 10*log10(mean_mse(i,:)),colors{i}) hold on; end hold off; legend(legends); grid on xlabel('SNR (dB)') ylabel('MSE (dB)') subplot(1,2,2) plot(SNR_values_db, SNR_values_db,'k:') hold on; for i=1:Ntests plot(SNR_values_db, mean_snr(i,:), colors{i}) end hold off tmp=cell(Ntests+1,1); tmp{1}='Theory'; for i=2:Ntests+1 tmp{i}=legends{i-1}; end legend(tmp) grid on xlabel('SNR (dB)') ylabel('Estimated SNR (dB)') end