You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

492 lines
15 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <complex.h>
#include <math.h>
#include "srslte/sync/pss.h"
#include "srslte/dft/dft.h"
#include "srslte/utils/vector.h"
#include "srslte/utils/convolution.h"
#include "srslte/utils/debug.h"
int srslte_pss_synch_init_N_id_2(cf_t *pss_signal_freq, cf_t *pss_signal_time,
uint32_t N_id_2, uint32_t fft_size, int cfo_i) {
srslte_dft_plan_t plan;
cf_t pss_signal_pad[2048];
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (srslte_N_id_2_isvalid(N_id_2) &&
fft_size <= 2048)
{
srslte_pss_generate(pss_signal_freq, N_id_2);
bzero(pss_signal_pad, fft_size * sizeof(cf_t));
bzero(pss_signal_time, fft_size * sizeof(cf_t));
memcpy(&pss_signal_pad[(fft_size-SRSLTE_PSS_LEN)/2+cfo_i], pss_signal_freq, SRSLTE_PSS_LEN * sizeof(cf_t));
/* Convert signal into the time domain */
if (srslte_dft_plan(&plan, fft_size, SRSLTE_DFT_BACKWARD, SRSLTE_DFT_COMPLEX)) {
return SRSLTE_ERROR;
}
srslte_dft_plan_set_mirror(&plan, true);
srslte_dft_plan_set_dc(&plan, true);
srslte_dft_plan_set_norm(&plan, true);
srslte_dft_run_c(&plan, pss_signal_pad, pss_signal_time);
srslte_vec_conj_cc(pss_signal_time, pss_signal_time, fft_size);
srslte_vec_sc_prod_cfc(pss_signal_time, 1.0/SRSLTE_PSS_LEN, pss_signal_time, fft_size);
srslte_dft_plan_free(&plan);
ret = SRSLTE_SUCCESS;
}
return ret;
}
/* Initializes the PSS synchronization object with fft_size=128
*/
int srslte_pss_synch_init(srslte_pss_synch_t *q, uint32_t frame_size) {
return srslte_pss_synch_init_fft(q, frame_size, 128);
}
int srslte_pss_synch_init_fft(srslte_pss_synch_t *q, uint32_t frame_size, uint32_t fft_size) {
return srslte_pss_synch_init_fft_offset(q, frame_size, fft_size, 0);
}
/* Initializes the PSS synchronization object.
*
* It correlates a signal of frame_size samples with the PSS sequence in the frequency
* domain. The PSS sequence is transformed using fft_size samples.
*/
int srslte_pss_synch_init_fft_offset(srslte_pss_synch_t *q, uint32_t frame_size, uint32_t fft_size, int offset) {
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q != NULL) {
ret = SRSLTE_ERROR;
uint32_t N_id_2;
uint32_t buffer_size;
int decimation_factor = q->decimate;
bzero(q, sizeof(srslte_pss_synch_t));
q->N_id_2 = 10;
q->ema_alpha = 0.2;
q->decimate = decimation_factor;
fft_size = fft_size/q->decimate;
frame_size = frame_size/q->decimate;
q->fft_size = fft_size;
q->frame_size = frame_size;
buffer_size = fft_size + frame_size + 1;
if(q->decimate > 1)
{
int filter_order = 3;
srslte_filt_decim_cc_init(&q->filter,q->decimate,filter_order);
q->filter.filter_output = srslte_vec_malloc((buffer_size) * sizeof(cf_t));
q->filter.downsampled_input = srslte_vec_malloc((buffer_size + filter_order) * sizeof(cf_t));
printf("decimation for the PSS search is %d \n",q->decimate);
}
if (srslte_dft_plan(&q->dftp_input, fft_size, SRSLTE_DFT_FORWARD, SRSLTE_DFT_COMPLEX)) {
fprintf(stderr, "Error creating DFT plan \n");
goto clean_and_exit;
}
srslte_dft_plan_set_mirror(&q->dftp_input, true);
srslte_dft_plan_set_dc(&q->dftp_input, true);
srslte_dft_plan_set_norm(&q->dftp_input, true);
q->tmp_input = srslte_vec_malloc((buffer_size + frame_size*(q->decimate - 1)) * sizeof(cf_t));
if (!q->tmp_input) {
fprintf(stderr, "Error allocating memory\n");
goto clean_and_exit;
}
bzero(&q->tmp_input[q->frame_size], q->fft_size * sizeof(cf_t));
q->conv_output = srslte_vec_malloc(buffer_size * sizeof(cf_t));
if (!q->conv_output) {
fprintf(stderr, "Error allocating memory\n");
goto clean_and_exit;
}
bzero(q->conv_output, sizeof(cf_t) * buffer_size);
q->conv_output_avg = srslte_vec_malloc(buffer_size * sizeof(float));
if (!q->conv_output_avg) {
fprintf(stderr, "Error allocating memory\n");
goto clean_and_exit;
}
bzero(q->conv_output_avg, sizeof(float) * buffer_size);
#ifdef SRSLTE_PSS_ACCUMULATE_ABS
q->conv_output_abs = srslte_vec_malloc(buffer_size * sizeof(float));
if (!q->conv_output_abs) {
fprintf(stderr, "Error allocating memory\n");
goto clean_and_exit;
}
bzero(q->conv_output_abs, sizeof(float) * buffer_size);
#endif
for (N_id_2=0;N_id_2<3;N_id_2++) {
q->pss_signal_time[N_id_2] = srslte_vec_malloc(buffer_size * sizeof(cf_t));
if (!q->pss_signal_time[N_id_2]) {
fprintf(stderr, "Error allocating memory\n");
goto clean_and_exit;
}
/* The PSS is translated into the time domain for each N_id_2 */
if (srslte_pss_synch_init_N_id_2(q->pss_signal_freq[N_id_2], q->pss_signal_time[N_id_2], N_id_2, fft_size, offset)) {
fprintf(stderr, "Error initiating PSS detector for N_id_2=%d fft_size=%d\n", N_id_2, fft_size);
goto clean_and_exit;
}
bzero(&q->pss_signal_time[N_id_2][q->fft_size], q->frame_size * sizeof(cf_t));
}
#ifdef CONVOLUTION_FFT
for(N_id_2 = 0; N_id_2<3; N_id_2++)
q->conv_fft.pss_signal_time[N_id_2] = q->pss_signal_time[N_id_2];
if (srslte_conv_fft_cc_init(&q->conv_fft, frame_size, fft_size)) {
fprintf(stderr, "Error initiating convolution FFT\n");
goto clean_and_exit;
}
#endif
srslte_pss_synch_reset(q);
ret = SRSLTE_SUCCESS;
}
clean_and_exit:
if (ret == SRSLTE_ERROR) {
srslte_pss_synch_free(q);
}
return ret;
}
void srslte_pss_synch_free(srslte_pss_synch_t *q) {
uint32_t i;
if (q) {
for (i=0;i<3;i++) {
if (q->pss_signal_time[i]) {
free(q->pss_signal_time[i]);
}
}
#ifdef CONVOLUTION_FFT
srslte_conv_fft_cc_free(&q->conv_fft);
#endif
if (q->tmp_input) {
free(q->tmp_input);
}
if (q->conv_output) {
free(q->conv_output);
}
if (q->conv_output_abs) {
free(q->conv_output_abs);
}
if (q->conv_output_avg) {
free(q->conv_output_avg);
}
srslte_dft_plan_free(&q->dftp_input);
if(q->decimate > 1)
{
srslte_filt_decim_cc_free(&q->filter);
free(q->filter.filter_output);
free(q->filter.downsampled_input);
}
bzero(q, sizeof(srslte_pss_synch_t));
}
}
void srslte_pss_synch_reset(srslte_pss_synch_t *q) {
uint32_t buffer_size = q->fft_size + q->frame_size + 1;
bzero(q->conv_output_avg, sizeof(float) * buffer_size);
}
/**
* This function calculates the Zadoff-Chu sequence.
* @param signal Output array.
*/
int srslte_pss_generate(cf_t *signal, uint32_t N_id_2) {
int i;
float arg;
const float root_value[] = { 25.0, 29.0, 34.0 };
int root_idx;
int sign = -1;
if (N_id_2 > 2) {
fprintf(stderr, "Invalid N_id_2 %d\n", N_id_2);
return -1;
}
root_idx = N_id_2;
for (i = 0; i < SRSLTE_PSS_LEN / 2; i++) {
arg = (float) sign * M_PI * root_value[root_idx]
* ((float) i * ((float) i + 1.0)) / 63.0;
__real__ signal[i] = cosf(arg);
__imag__ signal[i] = sinf(arg);
}
for (i = SRSLTE_PSS_LEN / 2; i < SRSLTE_PSS_LEN; i++) {
arg = (float) sign * M_PI * root_value[root_idx]
* (((float) i + 2.0) * ((float) i + 1.0)) / 63.0;
__real__ signal[i] = cosf(arg);
__imag__ signal[i] = sinf(arg);
}
return 0;
}
/** 36.211 10.3 section 6.11.1.2
*/
void srslte_pss_put_slot(cf_t *pss_signal, cf_t *slot, uint32_t nof_prb, srslte_cp_t cp) {
int k;
k = (SRSLTE_CP_NSYMB(cp) - 1) * nof_prb * SRSLTE_NRE + nof_prb * SRSLTE_NRE / 2 - 31;
memset(&slot[k - 5], 0, 5 * sizeof(cf_t));
memcpy(&slot[k], pss_signal, SRSLTE_PSS_LEN * sizeof(cf_t));
memset(&slot[k + SRSLTE_PSS_LEN], 0, 5 * sizeof(cf_t));
}
void srslte_pss_get_slot(cf_t *slot, cf_t *pss_signal, uint32_t nof_prb, srslte_cp_t cp) {
int k;
k = (SRSLTE_CP_NSYMB(cp) - 1) * nof_prb * SRSLTE_NRE + nof_prb * SRSLTE_NRE / 2 - 31;
memcpy(pss_signal, &slot[k], SRSLTE_PSS_LEN * sizeof(cf_t));
}
/** Sets the current N_id_2 value. Returns -1 on error, 0 otherwise
*/
int srslte_pss_synch_set_N_id_2(srslte_pss_synch_t *q, uint32_t N_id_2) {
if (!srslte_N_id_2_isvalid((N_id_2))) {
fprintf(stderr, "Invalid N_id_2 %d\n", N_id_2);
return -1;
} else {
q->N_id_2 = N_id_2;
return 0;
}
}
/* Sets the weight factor alpha for the exponential moving average of the PSS correlation output
*/
void srslte_pss_synch_set_ema_alpha(srslte_pss_synch_t *q, float alpha) {
q->ema_alpha = alpha;
}
/** Performs time-domain PSS correlation.
* Returns the index of the PSS correlation peak in a subframe.
* The frame starts at corr_peak_pos-subframe_size/2.
* The value of the correlation is stored in corr_peak_value.
*
* Input buffer must be subframe_size long.
*/
int srslte_pss_synch_find_pss(srslte_pss_synch_t *q, cf_t *input, float *corr_peak_value)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q != NULL &&
input != NULL)
{
uint32_t corr_peak_pos;
uint32_t conv_output_len;
if (!srslte_N_id_2_isvalid(q->N_id_2)) {
fprintf(stderr, "Error finding PSS peak, Must set N_id_2 first\n");
return SRSLTE_ERROR;
}
/* Correlate input with PSS sequence
*
* We do not reverse time-domain PSS signal because it's conjugate is symmetric.
* The conjugate operation on pss_signal_time has been done in srslte_pss_synch_init_N_id_2
* This is why we can use FFT-based convolution
*/
if (q->frame_size >= q->fft_size) {
#ifdef CONVOLUTION_FFT
memcpy(q->tmp_input, input, (q->frame_size * q->decimate) * sizeof(cf_t));
if(q->decimate > 1)
{
srslte_filt_decim_cc_execute(&(q->filter), q->tmp_input, q->filter.downsampled_input, q->filter.filter_output , (q->frame_size * q->decimate));
conv_output_len = srslte_conv_fft_cc_run_opt(&q->conv_fft, q->filter.filter_output, q->N_id_2, q->conv_output);
}
else
{
conv_output_len = srslte_conv_fft_cc_run_opt(&q->conv_fft, q->tmp_input, q->N_id_2, q->conv_output);
}
#else
conv_output_len = srslte_conv_cc(input, q->pss_signal_time[q->N_id_2], q->conv_output, q->frame_size, q->fft_size);
#endif
} else {
for (int i=0;i<q->frame_size;i++) {
q->conv_output[i] = srslte_vec_dot_prod_ccc(q->pss_signal_time[q->N_id_2], &input[i], q->fft_size);
}
conv_output_len = q->frame_size;
}
#ifdef SRSLTE_PSS_ABS_SQUARE
srslte_vec_abs_square_cf(q->conv_output, q->conv_output_abs, conv_output_len-1);
#else
srslte_vec_abs_cf(q->conv_output, q->conv_output_abs, conv_output_len-1);
#endif
if (q->ema_alpha < 1.0 && q->ema_alpha > 0.0) {
srslte_vec_sc_prod_fff(q->conv_output_abs, q->ema_alpha, q->conv_output_abs, conv_output_len-1);
srslte_vec_sc_prod_fff(q->conv_output_avg, 1-q->ema_alpha, q->conv_output_avg, conv_output_len-1);
srslte_vec_sum_fff(q->conv_output_abs, q->conv_output_avg, q->conv_output_avg, conv_output_len-1);
} else {
memcpy(q->conv_output_avg, q->conv_output_abs, sizeof(float)*(conv_output_len-1));
}
/* Find maximum of the absolute value of the correlation */
corr_peak_pos = srslte_vec_max_fi(q->conv_output_avg, conv_output_len-1);
// save absolute value
q->peak_value = q->conv_output_avg[corr_peak_pos];
#ifdef SRSLTE_PSS_RETURN_PSR
// Find second side lobe
// Find end of peak lobe to the right
int pl_ub = corr_peak_pos+1;
while(q->conv_output_avg[pl_ub+1] <= q->conv_output_avg[pl_ub] && pl_ub < conv_output_len) {
pl_ub ++;
}
// Find end of peak lobe to the left
int pl_lb;
if (corr_peak_pos > 2) {
pl_lb = corr_peak_pos-1;
while(q->conv_output_avg[pl_lb-1] <= q->conv_output_avg[pl_lb] && pl_lb > 1) {
pl_lb --;
}
} else {
pl_lb = 0;
}
int sl_distance_right = conv_output_len-1-pl_ub;
if (sl_distance_right < 0) {
sl_distance_right = 0;
}
int sl_distance_left = pl_lb;
int sl_right = pl_ub+srslte_vec_max_fi(&q->conv_output_avg[pl_ub], sl_distance_right);
int sl_left = srslte_vec_max_fi(q->conv_output_avg, sl_distance_left);
float side_lobe_value = SRSLTE_MAX(q->conv_output_avg[sl_right], q->conv_output_avg[sl_left]);
if (corr_peak_value) {
*corr_peak_value = q->conv_output_avg[corr_peak_pos]/side_lobe_value;
if (*corr_peak_value < 10)
DEBUG("peak_pos=%2d, pl_ub=%2d, pl_lb=%2d, sl_right: %2d, sl_left: %2d, PSR: %.2f/%.2f=%.2f\n", corr_peak_pos, pl_ub, pl_lb,
sl_right,sl_left, q->conv_output_avg[corr_peak_pos], side_lobe_value,*corr_peak_value);
}
#else
if (corr_peak_value) {
*corr_peak_value = q->conv_output_avg[corr_peak_pos];
}
#endif
if(q->decimate >1)
{
int decimation_correction = (q->filter.num_taps -2);
corr_peak_pos = corr_peak_pos - decimation_correction;
corr_peak_pos = corr_peak_pos*q->decimate;
}
if (q->frame_size >= q->fft_size) {
ret = (int) corr_peak_pos;
} else {
ret = (int) corr_peak_pos + q->fft_size;
}
}
return ret;
}
/* Computes frequency-domain channel estimation of the PSS symbol
* input signal is in the time-domain.
* ce is the returned frequency-domain channel estimates.
*/
int srslte_pss_synch_chest(srslte_pss_synch_t *q, cf_t *input, cf_t ce[SRSLTE_PSS_LEN]) {
int ret = SRSLTE_ERROR_INVALID_INPUTS;
cf_t input_fft[SRSLTE_SYMBOL_SZ_MAX];
if (q != NULL &&
input != NULL)
{
if (!srslte_N_id_2_isvalid(q->N_id_2)) {
fprintf(stderr, "Error finding PSS peak, Must set N_id_2 first\n");
return SRSLTE_ERROR;
}
/* Transform to frequency-domain */
srslte_dft_run_c(&q->dftp_input, input, input_fft);
/* Compute channel estimate taking the PSS sequence as reference */
srslte_vec_prod_conj_ccc(&input_fft[(q->fft_size-SRSLTE_PSS_LEN)/2], q->pss_signal_freq[q->N_id_2], ce, SRSLTE_PSS_LEN);
ret = SRSLTE_SUCCESS;
}
return ret;
}
/* Returns the CFO estimation given a PSS received sequence
*
* Source: An Efficient CFO Estimation Algorithm for the Downlink of 3GPP-LTE
* Feng Wang and Yu Zhu
*/
float srslte_pss_synch_cfo_compute(srslte_pss_synch_t* q, cf_t *pss_recv) {
cf_t y0, y1, yr;
y0 = srslte_vec_dot_prod_ccc(q->pss_signal_time[q->N_id_2], pss_recv, q->fft_size/2);
y1 = srslte_vec_dot_prod_ccc(&q->pss_signal_time[q->N_id_2][q->fft_size/2], &pss_recv[q->fft_size/2], q->fft_size/2);
yr = conjf(y0) * y1;
return atan2f(__imag__ yr, __real__ yr) / M_PI;
}