/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include "srslte/sync/pss.h" #include "srslte/dft/dft.h" #include "srslte/utils/vector.h" #include "srslte/utils/convolution.h" #include "srslte/utils/debug.h" int srslte_pss_synch_init_N_id_2(cf_t *pss_signal_freq, cf_t *pss_signal_time, uint32_t N_id_2, uint32_t fft_size, int cfo_i) { srslte_dft_plan_t plan; cf_t pss_signal_pad[2048]; int ret = SRSLTE_ERROR_INVALID_INPUTS; if (srslte_N_id_2_isvalid(N_id_2) && fft_size <= 2048) { srslte_pss_generate(pss_signal_freq, N_id_2); bzero(pss_signal_pad, fft_size * sizeof(cf_t)); bzero(pss_signal_time, fft_size * sizeof(cf_t)); memcpy(&pss_signal_pad[(fft_size-SRSLTE_PSS_LEN)/2+cfo_i], pss_signal_freq, SRSLTE_PSS_LEN * sizeof(cf_t)); /* Convert signal into the time domain */ if (srslte_dft_plan(&plan, fft_size, SRSLTE_DFT_BACKWARD, SRSLTE_DFT_COMPLEX)) { return SRSLTE_ERROR; } srslte_dft_plan_set_mirror(&plan, true); srslte_dft_plan_set_dc(&plan, true); srslte_dft_plan_set_norm(&plan, true); srslte_dft_run_c(&plan, pss_signal_pad, pss_signal_time); srslte_vec_conj_cc(pss_signal_time, pss_signal_time, fft_size); srslte_vec_sc_prod_cfc(pss_signal_time, 1.0/SRSLTE_PSS_LEN, pss_signal_time, fft_size); srslte_dft_plan_free(&plan); ret = SRSLTE_SUCCESS; } return ret; } /* Initializes the PSS synchronization object with fft_size=128 */ int srslte_pss_synch_init(srslte_pss_synch_t *q, uint32_t frame_size) { return srslte_pss_synch_init_fft(q, frame_size, 128); } int srslte_pss_synch_init_fft(srslte_pss_synch_t *q, uint32_t frame_size, uint32_t fft_size) { return srslte_pss_synch_init_fft_offset(q, frame_size, fft_size, 0); } /* Initializes the PSS synchronization object. * * It correlates a signal of frame_size samples with the PSS sequence in the frequency * domain. The PSS sequence is transformed using fft_size samples. */ int srslte_pss_synch_init_fft_offset(srslte_pss_synch_t *q, uint32_t frame_size, uint32_t fft_size, int offset) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL) { ret = SRSLTE_ERROR; uint32_t N_id_2; uint32_t buffer_size; int decimation_factor = q->decimate; bzero(q, sizeof(srslte_pss_synch_t)); q->N_id_2 = 10; q->ema_alpha = 0.2; q->decimate = decimation_factor; fft_size = fft_size/q->decimate; frame_size = frame_size/q->decimate; q->fft_size = fft_size; q->frame_size = frame_size; buffer_size = fft_size + frame_size + 1; if(q->decimate > 1) { int filter_order = 3; srslte_filt_decim_cc_init(&q->filter,q->decimate,filter_order); q->filter.filter_output = srslte_vec_malloc((buffer_size) * sizeof(cf_t)); q->filter.downsampled_input = srslte_vec_malloc((buffer_size + filter_order) * sizeof(cf_t)); printf("decimation for the PSS search is %d \n",q->decimate); } if (srslte_dft_plan(&q->dftp_input, fft_size, SRSLTE_DFT_FORWARD, SRSLTE_DFT_COMPLEX)) { fprintf(stderr, "Error creating DFT plan \n"); goto clean_and_exit; } srslte_dft_plan_set_mirror(&q->dftp_input, true); srslte_dft_plan_set_dc(&q->dftp_input, true); srslte_dft_plan_set_norm(&q->dftp_input, true); q->tmp_input = srslte_vec_malloc((buffer_size + frame_size*(q->decimate - 1)) * sizeof(cf_t)); if (!q->tmp_input) { fprintf(stderr, "Error allocating memory\n"); goto clean_and_exit; } bzero(&q->tmp_input[q->frame_size], q->fft_size * sizeof(cf_t)); q->conv_output = srslte_vec_malloc(buffer_size * sizeof(cf_t)); if (!q->conv_output) { fprintf(stderr, "Error allocating memory\n"); goto clean_and_exit; } bzero(q->conv_output, sizeof(cf_t) * buffer_size); q->conv_output_avg = srslte_vec_malloc(buffer_size * sizeof(float)); if (!q->conv_output_avg) { fprintf(stderr, "Error allocating memory\n"); goto clean_and_exit; } bzero(q->conv_output_avg, sizeof(float) * buffer_size); #ifdef SRSLTE_PSS_ACCUMULATE_ABS q->conv_output_abs = srslte_vec_malloc(buffer_size * sizeof(float)); if (!q->conv_output_abs) { fprintf(stderr, "Error allocating memory\n"); goto clean_and_exit; } bzero(q->conv_output_abs, sizeof(float) * buffer_size); #endif for (N_id_2=0;N_id_2<3;N_id_2++) { q->pss_signal_time[N_id_2] = srslte_vec_malloc(buffer_size * sizeof(cf_t)); if (!q->pss_signal_time[N_id_2]) { fprintf(stderr, "Error allocating memory\n"); goto clean_and_exit; } /* The PSS is translated into the time domain for each N_id_2 */ if (srslte_pss_synch_init_N_id_2(q->pss_signal_freq[N_id_2], q->pss_signal_time[N_id_2], N_id_2, fft_size, offset)) { fprintf(stderr, "Error initiating PSS detector for N_id_2=%d fft_size=%d\n", N_id_2, fft_size); goto clean_and_exit; } bzero(&q->pss_signal_time[N_id_2][q->fft_size], q->frame_size * sizeof(cf_t)); } #ifdef CONVOLUTION_FFT for(N_id_2 = 0; N_id_2<3; N_id_2++) q->conv_fft.pss_signal_time[N_id_2] = q->pss_signal_time[N_id_2]; if (srslte_conv_fft_cc_init(&q->conv_fft, frame_size, fft_size)) { fprintf(stderr, "Error initiating convolution FFT\n"); goto clean_and_exit; } #endif srslte_pss_synch_reset(q); ret = SRSLTE_SUCCESS; } clean_and_exit: if (ret == SRSLTE_ERROR) { srslte_pss_synch_free(q); } return ret; } void srslte_pss_synch_free(srslte_pss_synch_t *q) { uint32_t i; if (q) { for (i=0;i<3;i++) { if (q->pss_signal_time[i]) { free(q->pss_signal_time[i]); } } #ifdef CONVOLUTION_FFT srslte_conv_fft_cc_free(&q->conv_fft); #endif if (q->tmp_input) { free(q->tmp_input); } if (q->conv_output) { free(q->conv_output); } if (q->conv_output_abs) { free(q->conv_output_abs); } if (q->conv_output_avg) { free(q->conv_output_avg); } srslte_dft_plan_free(&q->dftp_input); if(q->decimate > 1) { srslte_filt_decim_cc_free(&q->filter); free(q->filter.filter_output); free(q->filter.downsampled_input); } bzero(q, sizeof(srslte_pss_synch_t)); } } void srslte_pss_synch_reset(srslte_pss_synch_t *q) { uint32_t buffer_size = q->fft_size + q->frame_size + 1; bzero(q->conv_output_avg, sizeof(float) * buffer_size); } /** * This function calculates the Zadoff-Chu sequence. * @param signal Output array. */ int srslte_pss_generate(cf_t *signal, uint32_t N_id_2) { int i; float arg; const float root_value[] = { 25.0, 29.0, 34.0 }; int root_idx; int sign = -1; if (N_id_2 > 2) { fprintf(stderr, "Invalid N_id_2 %d\n", N_id_2); return -1; } root_idx = N_id_2; for (i = 0; i < SRSLTE_PSS_LEN / 2; i++) { arg = (float) sign * M_PI * root_value[root_idx] * ((float) i * ((float) i + 1.0)) / 63.0; __real__ signal[i] = cosf(arg); __imag__ signal[i] = sinf(arg); } for (i = SRSLTE_PSS_LEN / 2; i < SRSLTE_PSS_LEN; i++) { arg = (float) sign * M_PI * root_value[root_idx] * (((float) i + 2.0) * ((float) i + 1.0)) / 63.0; __real__ signal[i] = cosf(arg); __imag__ signal[i] = sinf(arg); } return 0; } /** 36.211 10.3 section 6.11.1.2 */ void srslte_pss_put_slot(cf_t *pss_signal, cf_t *slot, uint32_t nof_prb, srslte_cp_t cp) { int k; k = (SRSLTE_CP_NSYMB(cp) - 1) * nof_prb * SRSLTE_NRE + nof_prb * SRSLTE_NRE / 2 - 31; memset(&slot[k - 5], 0, 5 * sizeof(cf_t)); memcpy(&slot[k], pss_signal, SRSLTE_PSS_LEN * sizeof(cf_t)); memset(&slot[k + SRSLTE_PSS_LEN], 0, 5 * sizeof(cf_t)); } void srslte_pss_get_slot(cf_t *slot, cf_t *pss_signal, uint32_t nof_prb, srslte_cp_t cp) { int k; k = (SRSLTE_CP_NSYMB(cp) - 1) * nof_prb * SRSLTE_NRE + nof_prb * SRSLTE_NRE / 2 - 31; memcpy(pss_signal, &slot[k], SRSLTE_PSS_LEN * sizeof(cf_t)); } /** Sets the current N_id_2 value. Returns -1 on error, 0 otherwise */ int srslte_pss_synch_set_N_id_2(srslte_pss_synch_t *q, uint32_t N_id_2) { if (!srslte_N_id_2_isvalid((N_id_2))) { fprintf(stderr, "Invalid N_id_2 %d\n", N_id_2); return -1; } else { q->N_id_2 = N_id_2; return 0; } } /* Sets the weight factor alpha for the exponential moving average of the PSS correlation output */ void srslte_pss_synch_set_ema_alpha(srslte_pss_synch_t *q, float alpha) { q->ema_alpha = alpha; } /** Performs time-domain PSS correlation. * Returns the index of the PSS correlation peak in a subframe. * The frame starts at corr_peak_pos-subframe_size/2. * The value of the correlation is stored in corr_peak_value. * * Input buffer must be subframe_size long. */ int srslte_pss_synch_find_pss(srslte_pss_synch_t *q, cf_t *input, float *corr_peak_value) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL && input != NULL) { uint32_t corr_peak_pos; uint32_t conv_output_len; if (!srslte_N_id_2_isvalid(q->N_id_2)) { fprintf(stderr, "Error finding PSS peak, Must set N_id_2 first\n"); return SRSLTE_ERROR; } /* Correlate input with PSS sequence * * We do not reverse time-domain PSS signal because it's conjugate is symmetric. * The conjugate operation on pss_signal_time has been done in srslte_pss_synch_init_N_id_2 * This is why we can use FFT-based convolution */ if (q->frame_size >= q->fft_size) { #ifdef CONVOLUTION_FFT memcpy(q->tmp_input, input, (q->frame_size * q->decimate) * sizeof(cf_t)); if(q->decimate > 1) { srslte_filt_decim_cc_execute(&(q->filter), q->tmp_input, q->filter.downsampled_input, q->filter.filter_output , (q->frame_size * q->decimate)); conv_output_len = srslte_conv_fft_cc_run_opt(&q->conv_fft, q->filter.filter_output, q->N_id_2, q->conv_output); } else { conv_output_len = srslte_conv_fft_cc_run_opt(&q->conv_fft, q->tmp_input, q->N_id_2, q->conv_output); } #else conv_output_len = srslte_conv_cc(input, q->pss_signal_time[q->N_id_2], q->conv_output, q->frame_size, q->fft_size); #endif } else { for (int i=0;iframe_size;i++) { q->conv_output[i] = srslte_vec_dot_prod_ccc(q->pss_signal_time[q->N_id_2], &input[i], q->fft_size); } conv_output_len = q->frame_size; } #ifdef SRSLTE_PSS_ABS_SQUARE srslte_vec_abs_square_cf(q->conv_output, q->conv_output_abs, conv_output_len-1); #else srslte_vec_abs_cf(q->conv_output, q->conv_output_abs, conv_output_len-1); #endif if (q->ema_alpha < 1.0 && q->ema_alpha > 0.0) { srslte_vec_sc_prod_fff(q->conv_output_abs, q->ema_alpha, q->conv_output_abs, conv_output_len-1); srslte_vec_sc_prod_fff(q->conv_output_avg, 1-q->ema_alpha, q->conv_output_avg, conv_output_len-1); srslte_vec_sum_fff(q->conv_output_abs, q->conv_output_avg, q->conv_output_avg, conv_output_len-1); } else { memcpy(q->conv_output_avg, q->conv_output_abs, sizeof(float)*(conv_output_len-1)); } /* Find maximum of the absolute value of the correlation */ corr_peak_pos = srslte_vec_max_fi(q->conv_output_avg, conv_output_len-1); // save absolute value q->peak_value = q->conv_output_avg[corr_peak_pos]; #ifdef SRSLTE_PSS_RETURN_PSR // Find second side lobe // Find end of peak lobe to the right int pl_ub = corr_peak_pos+1; while(q->conv_output_avg[pl_ub+1] <= q->conv_output_avg[pl_ub] && pl_ub < conv_output_len) { pl_ub ++; } // Find end of peak lobe to the left int pl_lb; if (corr_peak_pos > 2) { pl_lb = corr_peak_pos-1; while(q->conv_output_avg[pl_lb-1] <= q->conv_output_avg[pl_lb] && pl_lb > 1) { pl_lb --; } } else { pl_lb = 0; } int sl_distance_right = conv_output_len-1-pl_ub; if (sl_distance_right < 0) { sl_distance_right = 0; } int sl_distance_left = pl_lb; int sl_right = pl_ub+srslte_vec_max_fi(&q->conv_output_avg[pl_ub], sl_distance_right); int sl_left = srslte_vec_max_fi(q->conv_output_avg, sl_distance_left); float side_lobe_value = SRSLTE_MAX(q->conv_output_avg[sl_right], q->conv_output_avg[sl_left]); if (corr_peak_value) { *corr_peak_value = q->conv_output_avg[corr_peak_pos]/side_lobe_value; if (*corr_peak_value < 10) DEBUG("peak_pos=%2d, pl_ub=%2d, pl_lb=%2d, sl_right: %2d, sl_left: %2d, PSR: %.2f/%.2f=%.2f\n", corr_peak_pos, pl_ub, pl_lb, sl_right,sl_left, q->conv_output_avg[corr_peak_pos], side_lobe_value,*corr_peak_value); } #else if (corr_peak_value) { *corr_peak_value = q->conv_output_avg[corr_peak_pos]; } #endif if(q->decimate >1) { int decimation_correction = (q->filter.num_taps -2); corr_peak_pos = corr_peak_pos - decimation_correction; corr_peak_pos = corr_peak_pos*q->decimate; } if (q->frame_size >= q->fft_size) { ret = (int) corr_peak_pos; } else { ret = (int) corr_peak_pos + q->fft_size; } } return ret; } /* Computes frequency-domain channel estimation of the PSS symbol * input signal is in the time-domain. * ce is the returned frequency-domain channel estimates. */ int srslte_pss_synch_chest(srslte_pss_synch_t *q, cf_t *input, cf_t ce[SRSLTE_PSS_LEN]) { int ret = SRSLTE_ERROR_INVALID_INPUTS; cf_t input_fft[SRSLTE_SYMBOL_SZ_MAX]; if (q != NULL && input != NULL) { if (!srslte_N_id_2_isvalid(q->N_id_2)) { fprintf(stderr, "Error finding PSS peak, Must set N_id_2 first\n"); return SRSLTE_ERROR; } /* Transform to frequency-domain */ srslte_dft_run_c(&q->dftp_input, input, input_fft); /* Compute channel estimate taking the PSS sequence as reference */ srslte_vec_prod_conj_ccc(&input_fft[(q->fft_size-SRSLTE_PSS_LEN)/2], q->pss_signal_freq[q->N_id_2], ce, SRSLTE_PSS_LEN); ret = SRSLTE_SUCCESS; } return ret; } /* Returns the CFO estimation given a PSS received sequence * * Source: An Efficient CFO Estimation Algorithm for the Downlink of 3GPP-LTE * Feng Wang and Yu Zhu */ float srslte_pss_synch_cfo_compute(srslte_pss_synch_t* q, cf_t *pss_recv) { cf_t y0, y1, yr; y0 = srslte_vec_dot_prod_ccc(q->pss_signal_time[q->N_id_2], pss_recv, q->fft_size/2); y1 = srslte_vec_dot_prod_ccc(&q->pss_signal_time[q->N_id_2][q->fft_size/2], &pss_recv[q->fft_size/2], q->fft_size/2); yr = conjf(y0) * y1; return atan2f(__imag__ yr, __real__ yr) / M_PI; }