this fixes an issue where commands are received out of
order and we are therefore applying configs incorrectly. if
commands include a timinginfo we are now putting the command
on a queue that the SS reads after the start of a new TTI.
the security and cell reconfig commands will be added in another
PR after the AS_security command has been fixed.
this fixes an issue in the step() function of the connection_request_proc
in which the dedicated_info_nas message was passed to RRC without
checking if its actually valid or not, i.e. contains a message at all.
because this check was missing and the step() function could be called
multiple-times, the function would overwrite the dedicated_info_nas
in RRC, and therefore causing the connection setup complete to fail
this fixes a bug in which the contention resolution timer expired
and the RA proc entered the BACKOFF state.
In the same TTI, a MAC PDU with the contention reslution ID is received
and the already aborted RA procedure succeeds. Unfortunatly with the
wront c-rnti which has already been reset before. See log excerpt
below:
16:16:36.909687 [RRC ] [D] MEAS: Processing measurement of 1 cells
16:16:36.909706 [RRC ] [I] MEAS: New measurement serving cell: rsrp=-85.00 dBm.
16:16:36.909732 [MAC ] [I] [ 6283] RA: ConRes: Contention Resolution Timer expired. Stopping PDCCH Search and going to Response Error
16:16:36.909749 [MAC ] [D] [ 6283] RA: ConRes: Backoff wait interval 143
16:16:36.909771 [MAC ] [D] [ 6282] Delivering PDU=27 bytes to Dissassemble and Demux unit (Temporal C-RNTI)
16:16:36.909799 [MAC ] [D] [ 6283] Found Contention Resolution ID CE
16:16:36.909814 [MAC ] [D] [ 6283] RA: Backof: MAC PDU Contains Contention Resolution ID CE
16:16:36.909826 [MAC ] [D] [ 6283] Msg3 buffer flushed
16:16:36.909858 [MAC ] [I] [ 6283] RA: Backof: Random Access Complete. c-rnti=0x0, ta=0
16:16:36.909871 [MAC ] [D] [ 6283] Saved MAC PDU with Temporal C-RNTI in buffer
this patch adds a buffer len paramter to the receive_samples() call
that protects the (also) provided buffer from overflowing.
currently each call to srslte_ue_sync_zerocopy() which then calls receive_samples()
relies on a buffer that is "big enough". But that buffer is sometimes
2 subframes, sometimes 3 or 5, sometimes has space for the maximum PRB size, sometimes
only for 6 PRBs (i.e. during cell search).
By extending the interface to pass the buffer size we can make sure that
only samples are received that actually fit inside the provided buffer.
If a process exits and has a controlling terminal, everything under
it gets a SIGHUP by the kernel. That's the case for instance when
running a srsUE over ssh with some specific parameters. As a result,
when the ssh client is killed, SIGHUP is sent to srsUE, which will be
killed immediatelly without proper release, which means in turn that log
buffers are not flushed.
Let's do proper shutdown when SIGHUP is received so that everyone can
get log files.
this fixes an issue in which, during cell search, the sync code
itself would set the serving cell whenever it found a new cell.
instead, only report the found cell to RRC and keep the sample
rate at 1.92 MHz. RRC may select a new serving cell and then tell
PHY to camp on it.