Added LUT-based turbo coder

master
ismagom 9 years ago
parent 67a5e0f0f1
commit ff1efb7b17

@ -49,6 +49,7 @@
typedef struct SRSLTE_API { typedef struct SRSLTE_API {
uint32_t max_long_cb; uint32_t max_long_cb;
uint8_t *temp;
srslte_tc_interl_t interl; srslte_tc_interl_t interl;
} srslte_tcod_t; } srslte_tcod_t;
@ -62,5 +63,12 @@ SRSLTE_API int srslte_tcod_encode(srslte_tcod_t *h,
uint8_t *output, uint8_t *output,
uint32_t long_cb); uint32_t long_cb);
SRSLTE_API int srslte_tcod_encode_lut(srslte_tcod_t *h,
uint8_t *input,
uint8_t *output,
uint32_t long_cb);
SRSLTE_API void srslte_tcod_gentable();
#endif #endif

@ -28,14 +28,22 @@
#include <stdio.h> #include <stdio.h>
#include <stdint.h> #include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "srslte/fec/cbsegm.h"
#include "srslte/fec/turbocoder.h" #include "srslte/fec/turbocoder.h"
#include "srslte/utils/bit.h"
#include "srslte/utils/vector.h"
#define NOF_REGS 3 #define NOF_REGS 3
#define RATE 3 #define RATE 3
#define TOTALTAIL 12 #define TOTALTAIL 12
uint8_t tcod_lut_next_state[188][8][256];
uint8_t tcod_lut_output[188][8][256];
uint16_t tcod_per_fw[188][6114];
int srslte_tcod_init(srslte_tcod_t *h, uint32_t max_long_cb) { int srslte_tcod_init(srslte_tcod_t *h, uint32_t max_long_cb) {
@ -43,15 +51,21 @@ int srslte_tcod_init(srslte_tcod_t *h, uint32_t max_long_cb) {
return -1; return -1;
} }
h->max_long_cb = max_long_cb; h->max_long_cb = max_long_cb;
h->temp = srslte_vec_malloc(max_long_cb/8);
return 0; return 0;
} }
void srslte_tcod_free(srslte_tcod_t *h) { void srslte_tcod_free(srslte_tcod_t *h) {
srslte_tc_interl_free(&h->interl); srslte_tc_interl_free(&h->interl);
h->max_long_cb = 0; h->max_long_cb = 0;
if (h->temp) {
free(h->temp);
}
} }
int srslte_tcod_encode(srslte_tcod_t *h, uint8_t *input, uint8_t *output, uint32_t long_cb) { /* Expects bits (1 byte = 1 bit) and produces bits. The systematic and parity bits are interlaced in the output */
int srslte_tcod_encode(srslte_tcod_t *h, uint8_t *input, uint8_t *output, uint32_t long_cb)
{
uint8_t reg1_0, reg1_1, reg1_2, reg2_0, reg2_1, reg2_2; uint8_t reg1_0, reg1_1, reg1_2, reg2_0, reg2_1, reg2_2;
uint32_t i, k = 0, j; uint32_t i, k = 0, j;
@ -120,7 +134,6 @@ int srslte_tcod_encode(srslte_tcod_t *h, uint8_t *input, uint8_t *output, uint32
output[k] = out; output[k] = out;
k++; k++;
} }
k = 3 * long_cb; k = 3 * long_cb;
@ -163,3 +176,149 @@ int srslte_tcod_encode(srslte_tcod_t *h, uint8_t *input, uint8_t *output, uint32
return 0; return 0;
} }
/* Expects bytes and produces bytes. The systematic and parity bits are interlaced in the output */
int srslte_tcod_encode_lut(srslte_tcod_t *h, uint8_t *input, uint8_t *output, uint32_t long_cb)
{
if (long_cb % 8) {
fprintf(stderr, "Turbo coder LUT implementation long_cb must be multiple of 8\n");
return -1;
}
int ret = srslte_cbsegm_cbindex(long_cb);
if (ret < 0) {
return -1;
}
uint8_t len_idx = (uint8_t) ret;
/* Parity bits for the 1st constituent encoders */
uint8_t state0 = 0;
for (uint32_t i=0;i<long_cb/8;i++) {
output[i] = tcod_lut_output[len_idx][state0][input[i]];
state0 = tcod_lut_next_state[len_idx][state0][input[i]] % 8;
}
/* Interleave input */
for (uint32_t i=0;i<long_cb/8;i++) {
h->temp[i] = 0;
for (uint32_t j=0;j<8;j++) {
uint32_t i_p = tcod_per_fw[len_idx][i*8+j];
if (input[i_p/8] & (1<<(7-i_p%8))) {
h->temp[i] |= 1<<(7-j);
}
}
}
/* Parity bits for the 2nd constituent encoders */
uint8_t state1 = 0;
for (uint32_t i=0;i<long_cb/8;i++) {
output[long_cb/8+i] = tcod_lut_output[len_idx][state1][h->temp[i]];
state1 = tcod_lut_next_state[len_idx][state1][h->temp[i]] % 8;
}
/* Tail bits */
uint8_t reg1_0, reg1_1, reg1_2, reg2_0, reg2_1, reg2_2;
uint8_t bit, in, out;
uint8_t k=0;
uint8_t tail[12];
reg2_0 = (state1&4)>>2;
reg2_1 = (state1&2)>>1;
reg2_2 = state1&1;
reg1_0 = (state0&4)>>2;
reg1_1 = (state0&2)>>1;
reg1_2 = state0&1;
/* TAILING CODER #1 */
for (uint32_t j = 0; j < NOF_REGS; j++) {
bit = reg1_2 ^ reg1_1;
tail[k] = bit;
k++;
in = bit ^ (reg1_2 ^ reg1_1);
out = reg1_2 ^ (reg1_0 ^ in);
reg1_2 = reg1_1;
reg1_1 = reg1_0;
reg1_0 = in;
tail[k] = out;
k++;
}
/* TAILING CODER #2 */
for (uint32_t j = 0; j < NOF_REGS; j++) {
bit = reg2_2 ^ reg2_1;
tail[k] = bit;
k++;
in = bit ^ (reg2_2 ^ reg2_1);
out = reg2_2 ^ (reg2_0 ^ in);
reg2_2 = reg2_1;
reg2_1 = reg2_0;
reg2_0 = in;
tail[k] = out;
k++;
}
srslte_bit_unpack_vector(tail, &output[2*(long_cb/8)], TOTALTAIL);
return 2*long_cb+TOTALTAIL;
}
void srslte_tcod_gentable() {
srslte_tc_interl_t interl;
if (srslte_tc_interl_init(&interl, 6144)) {
fprintf(stderr, "Error initiating interleave\n");
return;
}
for (uint32_t len=0;len<188;len++) {
uint32_t long_cb = srslte_cbsegm_cbsize(len);
if (srslte_tc_interl_LTE_gen(&interl, long_cb)) {
fprintf(stderr, "Error initiating TC interleaver for long_cb=%d\n", long_cb);
return;
}
// Save fw/bw permutation tables
for (uint32_t i=0;i<long_cb;i++) {
tcod_per_fw[len][i] = interl.forward[i];
}
for (uint32_t i=long_cb;i<6144;i++) {
tcod_per_fw[len][i] = 0;
}
// Compute state transitions
for (uint32_t state=0;state<8;state++) {
for (uint32_t data=0;data<256;data++) {
uint8_t reg_0, reg_1, reg_2;
reg_0 = (state&4)>>2;
reg_1 = (state&2)>>1;
reg_2 = state&1;
tcod_lut_output[len][state][data] = 0;
uint8_t bit, in, out;
for (uint32_t i = 0; i < 8; i++) {
bit = (data&(1<<(7-i)))?1:0;
in = bit ^ (reg_2 ^ reg_1);
out = reg_2 ^ (reg_0 ^ in);
reg_2 = reg_1;
reg_1 = reg_0;
reg_0 = in;
tcod_lut_output[len][state][data] |= out<<(7-i);
}
tcod_lut_next_state[len][state][data] = reg_0<<2 | reg_1<<1 | reg_2;
}
}
}
srslte_tc_interl_free(&interl);
}

@ -53,6 +53,11 @@ ADD_TEST(turbodecoder_test_known turbodecoder_test -n 1 -s 1 -k -e 0.5)
BuildMex(MEXNAME turbodecoder SOURCES turbodecoder_test_mex.c LIBRARIES srslte srslte_mex) BuildMex(MEXNAME turbodecoder SOURCES turbodecoder_test_mex.c LIBRARIES srslte srslte_mex)
ADD_EXECUTABLE(turbocoder_test turbocoder_test.c)
TARGET_LINK_LIBRARIES(turbocoder_test srslte)
ADD_TEST(turbocoder_test_40 turbocoder_test -l 40)
ADD_TEST(turbocoder_test_6114 turbocoder_test -l 6114)
######################################################################## ########################################################################
# Viterbi TEST # Viterbi TEST
######################################################################## ########################################################################

@ -0,0 +1,141 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 The srsLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <math.h>
#include <time.h>
#include <sys/time.h>
#include <time.h>
#include "srslte/srslte.h"
uint32_t long_cb = 0;
void usage(char *prog) {
printf("Usage: %s\n", prog);
printf("\t-l long_cb [Default check all]\n", long_cb);
}
void parse_args(int argc, char **argv) {
int opt;
while ((opt = getopt(argc, argv, "lv")) != -1) {
switch (opt) {
case 'l':
long_cb = atoi(argv[optind]);
break;
case 'v':
srslte_verbose++;
break;
default:
usage(argv[0]);
exit(-1);
}
}
}
uint8_t input_bytes[6144/8];
uint8_t input_bits[6144];
uint8_t output_bits[3*6144+12];
uint8_t output_bytes[3*6144+12];
uint8_t output_bits2[3*6144+12];
uint8_t output_bits3[3*6144+12];
int main(int argc, char **argv) {
parse_args(argc, argv);
srslte_tcod_gentable();
srslte_tcod_t tcod;
srslte_tcod_init(&tcod, 6144);
uint32_t st=0, end=187;
if (long_cb) {
st=srslte_cbsegm_cbindex(long_cb);
end=st;
}
for (uint32_t len=st;len<=end;len++) {
long_cb = srslte_cbsegm_cbsize(len);
printf("Checking long_cb=%d\n", long_cb);
for (int i=0;i<long_cb/8;i++) {
input_bytes[i] = rand()%256;
}
srslte_bit_pack_vector(input_bytes, input_bits, long_cb);
if (SRSLTE_VERBOSE_ISINFO()) {
printf("Input bits:\n");
for (int i=0;i<long_cb/8;i++) {
srslte_vec_fprint_b(stdout, &input_bits[i*8], 8);
}
}
srslte_tcod_encode(&tcod, input_bits, output_bits, long_cb);
srslte_tcod_encode_lut(&tcod, input_bytes, output_bytes, long_cb);
srslte_bit_pack_vector(output_bytes, output_bits2, 2*long_cb+12);
/* de-Interleace bits for comparison */
for (int i=0;i<long_cb;i++) {
for (int j=0;j<2;j++) {
output_bits3[j*long_cb+i] = output_bits[3*i+j+1];
}
}
// copy tail
memcpy(&output_bits3[2*long_cb], &output_bits[3*long_cb], 12);
if (SRSLTE_VERBOSE_ISINFO()) {
printf("1st encoder\n");
srslte_vec_fprint_b(stdout, output_bits2, long_cb);
srslte_vec_fprint_b(stdout, output_bits3, long_cb);
printf("2nd encoder\n");
srslte_vec_fprint_b(stdout, &output_bits2[long_cb], long_cb);
srslte_vec_fprint_b(stdout, &output_bits3[long_cb], long_cb);
printf("tail\n");
srslte_vec_fprint_b(stdout, &output_bits2[2*long_cb], 12);
srslte_vec_fprint_b(stdout, &output_bits3[2*long_cb], 12);
printf("\n");
}
for (int i=0;i<2*long_cb+12;i++) {
if (output_bits2[i] != output_bits3[i]) {
printf("error in bit %d, len=%d\n", i, len);
exit(-1);
}
}
}
srslte_tcod_free(&tcod);
printf("Done\n");
exit(0);
}
Loading…
Cancel
Save