improved design to avoid data structures, and allow guarded start/stop even in lambdas

master
Francisco Paisana 5 years ago committed by Francisco Paisana
parent 8a54aef89d
commit deb76d5dbd

@ -29,89 +29,110 @@
namespace srslte { namespace srslte {
struct tprof_handler { template <typename Prof>
explicit tprof_handler(const char* name_) : name(name_) { log_ptr->set_level(LOG_LEVEL_INFO); } class tprof
virtual void process(long sample) = 0; {
public:
using tpoint = std::chrono::time_point<std::chrono::high_resolution_clock>;
std::mutex mutex; struct measure {
srslte::log_ref log_ptr = srslte::logmap::get("TPROF"); public:
std::string name; measure(tprof<Prof>* h_) : t1(std::chrono::high_resolution_clock::now()), h(h_) {}
}; ~measure()
{
if (deferred) {
stop();
}
}
void stop()
{
auto t2 = std::chrono::high_resolution_clock::now();
h->process(std::chrono::duration_cast<std::chrono::nanoseconds>(t2 - t1).count());
}
void defer_stop() { deferred = true; }
struct avg_tprof : public tprof_handler { tpoint t1;
avg_tprof(const char* name_, size_t print_period_) : tprof_handler(name_), print_period(print_period_) {} tprof<Prof>* h;
bool deferred = false;
};
void process(long duration) final template <typename... Args>
explicit tprof(Args&&... args) : prof(std::forward<Args>(args)...)
{ {
count++; srslte::logmap::get("TPROF")->set_level(LOG_LEVEL_INFO);
avg_val = avg_val * (count - 1) / count + static_cast<double>(duration) / count;
max_val = std::max(max_val, duration);
min_val = std::min(min_val, duration);
if (count % print_period == 0) {
log_ptr->info("%s: Mean=%0.1fusec, Max=%ldusec, Min=%ldusec, nof_samples=%ld",
name.c_str(),
avg_val / 1e3,
max_val / 1000,
min_val / 1000,
count);
}
} }
double avg_val = 1; measure start() { return measure{this}; }
long count = 0, max_val = 0, min_val = std::numeric_limits<long>::max();
long print_period;
};
struct tprof_measure { virtual void process(long duration) { prof.process(duration); }
using tpoint = std::chrono::time_point<std::chrono::high_resolution_clock>;
explicit tprof_measure(tprof_handler* h_) : h(h_) {} Prof prof;
};
void start() { t1 = std::chrono::high_resolution_clock::now(); }
void stop() template <typename Prof>
struct mutexed_tprof : public tprof<Prof> {
using tprof<Prof>::tprof;
void process(long duration) final
{ {
auto t2 = std::chrono::high_resolution_clock::now(); std::lock_guard<std::mutex> lock(mutex);
std::lock_guard<std::mutex> lock(h->mutex); tprof<Prof>::prof.process(duration);
h->process(std::chrono::duration_cast<std::chrono::nanoseconds>(t2 - t1).count());
} }
std::mutex mutex;
private:
tprof_handler* h;
tpoint t1;
};
struct tprof_measure_guard {
tprof_measure_guard(tprof_handler* h_) : tmeas(h_) { tmeas.start(); }
~tprof_measure_guard() { tmeas.stop(); }
tprof_measure_guard(const tprof_measure_guard&) = delete;
tprof_measure_guard& operator=(const tprof_measure_guard&) = delete;
private:
tprof_measure tmeas;
}; };
#else #else
namespace srslte { namespace srslte {
struct tprof_handler { template <typename Prof>
}; struct tprof {
struct measure {
public:
void stop() {}
void defer_stop() {}
};
struct avg_tprof : public tprof_handler { template <typename... Args>
avg_tprof(const char*, size_t) {} explicit tprof(Args&&... args)
}; {
}
class tprof_measure measure start() { return measure{}; }
{
public: private:
explicit tprof_measure(tprof_handler* h_) {} void process(long duration) {}
void start() {}
void stop() {}
}; };
template <typename Prof>
using mutexed_tprof = tprof<Prof>;
#endif #endif
struct avg_time_stats {
avg_time_stats(const char* name_, size_t print_period_) : name(name_), print_period(print_period_) {}
void process(long duration)
{
count++;
avg_val = avg_val * (count - 1) / count + static_cast<double>(duration) / count;
max_val = std::max(max_val, duration);
min_val = std::min(min_val, duration);
if (count % print_period == 0) {
log_ptr->info("%s: Mean=%0.1fusec, Max=%ldusec, Min=%ldusec, nof_samples=%ld",
name.c_str(),
avg_val / 1e3,
max_val / 1000,
min_val / 1000,
count);
}
}
srslte::log_ref log_ptr = srslte::logmap::get("TPROF");
std::string name;
double avg_val = 1;
long count = 0, max_val = 0, min_val = std::numeric_limits<long>::max();
long print_period;
};
} // namespace srslte } // namespace srslte
#endif // SRSLTE_TIME_PROF_H #endif // SRSLTE_TIME_PROF_H

@ -445,11 +445,10 @@ int mac::sr_detected(uint32_t tti, uint16_t rnti)
void mac::rach_detected(uint32_t tti, uint32_t enb_cc_idx, uint32_t preamble_idx, uint32_t time_adv) void mac::rach_detected(uint32_t tti, uint32_t enb_cc_idx, uint32_t preamble_idx, uint32_t time_adv)
{ {
static srslte::avg_tprof rach_tprof("RACH", 1); static srslte::mutexed_tprof<srslte::avg_time_stats> rach_tprof("RACH", 1);
log_h->step(tti); log_h->step(tti);
uint16_t rnti; uint16_t rnti;
srslte::tprof_measure tprof_meas{&rach_tprof}; auto rach_tprof_meas = rach_tprof.start();
tprof_meas.start();
{ {
srslte::rwlock_write_guard lock(rwlock); srslte::rwlock_write_guard lock(rwlock);
@ -473,7 +472,8 @@ void mac::rach_detected(uint32_t tti, uint32_t enb_cc_idx, uint32_t preamble_idx
} }
} }
stack_task_queue.push([this, rnti, tti, enb_cc_idx, preamble_idx, time_adv, tprof_meas]() mutable { stack_task_queue.push([this, rnti, tti, enb_cc_idx, preamble_idx, time_adv, rach_tprof_meas]() mutable {
rach_tprof_meas.defer_stop();
// Generate RAR data // Generate RAR data
sched_interface::dl_sched_rar_info_t rar_info = {}; sched_interface::dl_sched_rar_info_t rar_info = {};
rar_info.preamble_idx = preamble_idx; rar_info.preamble_idx = preamble_idx;
@ -491,7 +491,6 @@ void mac::rach_detected(uint32_t tti, uint32_t enb_cc_idx, uint32_t preamble_idx
ue_cfg.dl_cfg.tm = SRSLTE_TM1; ue_cfg.dl_cfg.tm = SRSLTE_TM1;
if (scheduler.ue_cfg(rnti, ue_cfg) != SRSLTE_SUCCESS) { if (scheduler.ue_cfg(rnti, ue_cfg) != SRSLTE_SUCCESS) {
Error("Registering new user rnti=0x%x to SCHED\n", rnti); Error("Registering new user rnti=0x%x to SCHED\n", rnti);
tprof_meas.stop();
return; return;
} }
@ -501,15 +500,12 @@ void mac::rach_detected(uint32_t tti, uint32_t enb_cc_idx, uint32_t preamble_idx
// Add temporal rnti to the PHY // Add temporal rnti to the PHY
if (phy_h->add_rnti(rnti, enb_cc_idx, true) != SRSLTE_SUCCESS) { if (phy_h->add_rnti(rnti, enb_cc_idx, true) != SRSLTE_SUCCESS) {
Error("Registering temporal-rnti=0x%x to PHY\n", rnti); Error("Registering temporal-rnti=0x%x to PHY\n", rnti);
tprof_meas.stop();
return; return;
} }
// Trigger scheduler RACH // Trigger scheduler RACH
scheduler.dl_rach_info(enb_cc_idx, rar_info); scheduler.dl_rach_info(enb_cc_idx, rar_info);
tprof_meas.stop();
log_h->info("RACH: tti=%d, preamble=%d, offset=%d, temp_crnti=0x%x\n", tti, preamble_idx, time_adv, rnti); log_h->info("RACH: tti=%d, preamble=%d, offset=%d, temp_crnti=0x%x\n", tti, preamble_idx, time_adv, rnti);
log_h->console("RACH: tti=%d, preamble=%d, offset=%d, temp_crnti=0x%x\n", tti, preamble_idx, time_adv, rnti); log_h->console("RACH: tti=%d, preamble=%d, offset=%d, temp_crnti=0x%x\n", tti, preamble_idx, time_adv, rnti);
}); });

Loading…
Cancel
Save