mirror of https://github.com/pvnis/srsRAN_4G.git
Patch to install rrc ASN headers
parent
f067d98482
commit
d56fc6d26d
@ -0,0 +1,81 @@
|
||||
/*
|
||||
* Copyright (c) 2012, Ismael Gomez-Miguelez <ismael.gomez@tsc.upc.edu>.
|
||||
* This file is part of ALOE++ (http://flexnets.upc.edu/)
|
||||
*
|
||||
* ALOE++ is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* ALOE++ is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License
|
||||
* along with ALOE++. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "liblte/phy/phy.h"
|
||||
#include "liblte/mex/mexutils.h"
|
||||
|
||||
/** MEX function to be called from MATLAB to test the channel estimator
|
||||
*/
|
||||
|
||||
#define INPUT prhs[0]
|
||||
#define NOF_INPUTS 1
|
||||
|
||||
|
||||
void help()
|
||||
{
|
||||
mexErrMsgTxt
|
||||
("[decoded_bits] = liblte_viterbi(input_llr, type)\n\n");
|
||||
}
|
||||
|
||||
/* the gateway function */
|
||||
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
|
||||
{
|
||||
|
||||
viterbi_t viterbi;
|
||||
float *input_llr;
|
||||
uint8_t *output_data;
|
||||
int nof_bits;
|
||||
|
||||
if (nrhs < NOF_INPUTS) {
|
||||
help();
|
||||
return;
|
||||
}
|
||||
|
||||
// Read input symbols
|
||||
nof_bits = mexutils_read_f(INPUT, &input_llr);
|
||||
|
||||
output_data = vec_malloc(nof_bits * sizeof(uint8_t));
|
||||
|
||||
uint32_t poly[3] = { 0x6D, 0x4F, 0x57 };
|
||||
if (viterbi_init(&viterbi, viterbi_37, poly, nof_bits/3, true)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (nrhs >= 2) {
|
||||
float gain_quant = mxGetScalar(prhs[1]);
|
||||
viterbi_set_gain_quant(&viterbi, gain_quant);
|
||||
}
|
||||
|
||||
viterbi_decode_f(&viterbi, input_llr, output_data, nof_bits/3);
|
||||
|
||||
if (nlhs >= 1) {
|
||||
mexutils_write_uint8(output_data, &plhs[0], nof_bits/3, 1);
|
||||
}
|
||||
if (nlhs >= 2) {
|
||||
mexutils_write_uint8(viterbi.symbols_uc, &plhs[1], nof_bits/3, 1);
|
||||
}
|
||||
|
||||
viterbi_free(&viterbi);
|
||||
|
||||
free(input_llr);
|
||||
free(output_data);
|
||||
|
||||
return;
|
||||
}
|
||||
|
@ -0,0 +1,130 @@
|
||||
/*
|
||||
* Copyright (c) 2012, Ismael Gomez-Miguelez <ismael.gomez@tsc.upc.edu>.
|
||||
* This file is part of ALOE++ (http://flexnets.upc.edu/)
|
||||
*
|
||||
* ALOE++ is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* ALOE++ is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License
|
||||
* along with ALOE++. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "liblte/phy/phy.h"
|
||||
#include "liblte/mex/mexutils.h"
|
||||
|
||||
/** MEX function to be called from MATLAB to test the channel estimator
|
||||
*/
|
||||
|
||||
#define ENBCFG prhs[0]
|
||||
#define INPUT prhs[1]
|
||||
#define NOF_INPUTS 2
|
||||
|
||||
|
||||
void help()
|
||||
{
|
||||
mexErrMsgTxt
|
||||
("[decoded_ok, symbols, bits] = liblte_pbch(enbConfig, inputSignal)\n\n");
|
||||
}
|
||||
|
||||
/* the gateway function */
|
||||
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
|
||||
{
|
||||
|
||||
int i;
|
||||
lte_cell_t cell;
|
||||
pbch_t pbch;
|
||||
chest_dl_t chest;
|
||||
lte_fft_t fft;
|
||||
cf_t *input_symbols, *input_fft;
|
||||
int nof_re;
|
||||
cf_t *ce[MAX_PORTS], *ce_slot[MAX_PORTS];
|
||||
|
||||
if (nrhs != NOF_INPUTS) {
|
||||
help();
|
||||
return;
|
||||
}
|
||||
|
||||
if (mexutils_read_cell(ENBCFG, &cell)) {
|
||||
help();
|
||||
return;
|
||||
}
|
||||
|
||||
// Read input symbols
|
||||
mexutils_read_cf(INPUT, &input_symbols);
|
||||
|
||||
nof_re = SF_LEN_RE(cell.nof_prb, cell.cp);
|
||||
|
||||
// Allocate memory
|
||||
input_fft = vec_malloc(nof_re * sizeof(cf_t));
|
||||
for (i=0;i<MAX_PORTS;i++) {
|
||||
ce[i] = vec_malloc(nof_re * sizeof(cf_t));
|
||||
}
|
||||
|
||||
if (chest_dl_init(&chest, cell)) {
|
||||
fprintf(stderr, "Error initializing equalizer\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if (lte_fft_init(&fft, cell.cp, cell.nof_prb)) {
|
||||
fprintf(stderr, "Error initializing FFT\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if (pbch_init(&pbch, cell)) {
|
||||
fprintf(stderr, "Error initiating PBCH\n");
|
||||
return;
|
||||
}
|
||||
|
||||
lte_fft_run_sf(&fft, input_symbols, input_fft);
|
||||
chest_dl_estimate(&chest, input_fft, ce, 0);
|
||||
|
||||
for (int i=0;i<MAX_PORTS;i++) {
|
||||
ce_slot[i] = &ce[i][SLOT_LEN_RE(cell.nof_prb, cell.cp)];
|
||||
}
|
||||
|
||||
uint32_t nof_ports;
|
||||
int n = pbch_decode(&pbch, &input_fft[SLOT_LEN_RE(cell.nof_prb, cell.cp)],
|
||||
ce_slot, chest_dl_get_noise_estimate(&chest),
|
||||
NULL, &nof_ports, NULL);
|
||||
|
||||
if (nlhs >= 1) {
|
||||
if (n == 1) {
|
||||
plhs[0] = mxCreateDoubleScalar(nof_ports);
|
||||
} else {
|
||||
plhs[0] = mxCreateDoubleScalar(0);
|
||||
}
|
||||
}
|
||||
if (nlhs >= 2) {
|
||||
mexutils_write_cf(pbch.pbch_d, &plhs[1], pbch.nof_symbols, 1);
|
||||
}
|
||||
if (nlhs >= 3) {
|
||||
mexutils_write_f(pbch.pbch_llr, &plhs[2], 2*pbch.nof_symbols, 1);
|
||||
}
|
||||
if (nlhs >= 4) {
|
||||
mexutils_write_cf(ce[0], &plhs[3], SF_LEN_RE(cell.nof_prb,cell.cp)/14, 14);
|
||||
}
|
||||
if (nlhs >= 5) {
|
||||
mexutils_write_cf(ce[1], &plhs[4], SF_LEN_RE(cell.nof_prb,cell.cp)/14, 14);
|
||||
}
|
||||
|
||||
chest_dl_free(&chest);
|
||||
lte_fft_free(&fft);
|
||||
pbch_free(&pbch);
|
||||
|
||||
for (i=0;i<cell.nof_ports;i++) {
|
||||
free(ce[i]);
|
||||
}
|
||||
free(input_symbols);
|
||||
free(input_fft);
|
||||
|
||||
return;
|
||||
}
|
||||
|
@ -0,0 +1,104 @@
|
||||
%clear
|
||||
rmc = lteRMCDL('R.10');
|
||||
|
||||
NofPortsTx=2;
|
||||
|
||||
SNR_values_db=1;%linspace(-6,5,8);
|
||||
Nrealizations=1;
|
||||
|
||||
|
||||
cfg.Seed = 8; % Random channel seed
|
||||
cfg.NRxAnts = 1; % 1 receive antenna
|
||||
cfg.DelayProfile = 'EVA'; % EVA delay spread
|
||||
cfg.DopplerFreq = 120; % 120Hz Doppler frequency
|
||||
cfg.MIMOCorrelation = 'Low'; % Low (no) MIMO correlation
|
||||
cfg.InitTime = 0; % Initialize at time zero
|
||||
cfg.NTerms = 16; % Oscillators used in fading model
|
||||
cfg.ModelType = 'GMEDS'; % Rayleigh fading model type
|
||||
cfg.InitPhase = 'Random'; % Random initial phases
|
||||
cfg.NormalizePathGains = 'On'; % Normalize delay profile power
|
||||
cfg.NormalizeTxAnts = 'On'; % Normalize for transmit antennas
|
||||
|
||||
cec.PilotAverage = 'UserDefined'; % Type of pilot averaging
|
||||
cec.FreqWindow = 9; % Frequency window size
|
||||
cec.TimeWindow = 9; % Time window size
|
||||
cec.InterpType = 'linear'; % 2D interpolation type
|
||||
cec.InterpWindow = 'Centered'; % Interpolation window type
|
||||
cec.InterpWinSize = 1; % Interpolation window size
|
||||
|
||||
rmc.PDSCH.Modulation = '16QAM';
|
||||
[waveform,rgrid,info] = lteRMCDLTool(rmc,[1;0;0;1]);
|
||||
|
||||
cfg.SamplingRate = info.SamplingRate;
|
||||
|
||||
addpath('../../debug/lte/phy/lib/phch/test')
|
||||
|
||||
|
||||
error=zeros(length(SNR_values_db),2);
|
||||
for snr_idx=1:length(SNR_values_db)
|
||||
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
|
||||
SNR = 10^(SNRdB/20); % Linear SNR
|
||||
|
||||
errorReal = zeros(Nrealizations,2);
|
||||
for i=1:Nrealizations
|
||||
|
||||
enb = struct('NCellID',311,'NDLRB',6,'CellRefP',NofPortsTx,'CyclicPrefix','Normal','DuplexMode','FDD','NSubframe',0);
|
||||
griddims = lteResourceGridSize(enb); % Resource grid dimensions
|
||||
L = griddims(2);
|
||||
|
||||
%rxWaveform = lteFadingChannel(cfg,waveform(:,1));
|
||||
%rxWaveform = waveform(:,1);
|
||||
|
||||
%% Additive Noise
|
||||
%N0 = 1/(sqrt(2.0*double(enb.CellRefP)*double(info.Nfft))*SNR);
|
||||
|
||||
% Create additive white Gaussian noise
|
||||
%noise = N0*complex(randn(size(rxWaveform)),randn(size(rxWaveform)));
|
||||
|
||||
%rxWaveform = noise + rxWaveform;
|
||||
|
||||
rxWaveform = downsampled;
|
||||
|
||||
% Number of OFDM symbols in a subframe
|
||||
% OFDM demodulate signal
|
||||
rxgrid = lteOFDMDemodulate(enb, rxWaveform);
|
||||
|
||||
% Perform channel estimation
|
||||
[hest, nest] = lteDLChannelEstimate(enb, cec, rxgrid(:,1:L,:));
|
||||
|
||||
pbchIndices = ltePBCHIndices(enb);
|
||||
[pbchRx, pbchHest] = lteExtractResources( ...
|
||||
pbchIndices, rxgrid(:,1:L,:), hest(:,1:L,:,:));
|
||||
|
||||
% Decode PBCH
|
||||
[bchBits, pbchSymbols, nfmod4, mib, enb.CellRefP] = ltePBCHDecode( ...
|
||||
enb, pbchRx, pbchHest, nest);
|
||||
|
||||
% Parse MIB bits
|
||||
enb = lteMIB(mib, enb);
|
||||
if (enb.CellRefP ~= NofPortsTx)
|
||||
errorReal(i,1)=1;
|
||||
end
|
||||
enb = struct('NCellID',311,'NDLRB',6,'CellRefP',NofPortsTx,'CyclicPrefix','Normal','DuplexMode','FDD','NSubframe',0);
|
||||
[nof_ports, pbchSymbols2, pbchBits, ce, ce2]=liblte_pbch(enb, rxWaveform);
|
||||
if (nof_ports ~= NofPortsTx)
|
||||
errorReal(i,2)=1;
|
||||
end
|
||||
% if (errorReal(i,1) ~= errorReal(i,2))
|
||||
% i=1;
|
||||
% end
|
||||
end
|
||||
error(snr_idx,:) = sum(errorReal);
|
||||
fprintf('SNR: %.2f dB\n', SNR_values_db(snr_idx));
|
||||
end
|
||||
|
||||
if (length(SNR_values_db) > 1)
|
||||
plot(SNR_values_db, 1-error/Nrealizations)
|
||||
grid on
|
||||
xlabel('SNR (dB)');
|
||||
ylabel('Pdet')
|
||||
legend('Matlab','libLTE')
|
||||
else
|
||||
disp(error)
|
||||
end
|
||||
|
@ -0,0 +1,49 @@
|
||||
|
||||
clear
|
||||
blen=40;
|
||||
SNR_values_db=linspace(-6,4,8);
|
||||
Nrealizations=5000;
|
||||
|
||||
addpath('../../debug/lte/phy/lib/fec/test')
|
||||
|
||||
errors1=zeros(1,length(SNR_values_db));
|
||||
errors2=zeros(1,length(SNR_values_db));
|
||||
for snr_idx=1:length(SNR_values_db)
|
||||
SNRdB = SNR_values_db(snr_idx); % Desired SNR in dB
|
||||
SNR = 10^(SNRdB/20); % Linear SNR
|
||||
|
||||
for i=1:Nrealizations
|
||||
Data = randi(2,blen,1)==1;
|
||||
codedData = lteConvolutionalEncode(Data);
|
||||
|
||||
codedsymbols = 2*double(codedData)-1;
|
||||
|
||||
%% Additive Noise
|
||||
N0 = 1/SNR;
|
||||
|
||||
% Create additive white Gaussian noise
|
||||
noise = N0*randn(size(codedsymbols));
|
||||
|
||||
noisysymbols = noise + codedsymbols;
|
||||
|
||||
decodedData = lteConvolutionalDecode(noisysymbols);
|
||||
interleavedSymbols = reshape(reshape(noisysymbols,[],3)',1,[]);
|
||||
[decodedData2, quant] = liblte_viterbi(interleavedSymbols);
|
||||
|
||||
errors1(snr_idx) = errors1(snr_idx) + any(decodedData ~= Data);
|
||||
errors2(snr_idx) = errors2(snr_idx) + any(decodedData2 ~= Data);
|
||||
end
|
||||
end
|
||||
|
||||
if (length(SNR_values_db) > 1)
|
||||
semilogy(SNR_values_db, errors1/Nrealizations, ...
|
||||
SNR_values_db, errors2/Nrealizations)
|
||||
grid on
|
||||
xlabel('SNR (dB)')
|
||||
ylabel('BLER')
|
||||
legend('Matlab','libLTE');
|
||||
else
|
||||
disp(errors1);
|
||||
disp(errors2);
|
||||
disp(errors3);
|
||||
end
|
Loading…
Reference in New Issue