Added NR PDCCH unit test plus fixes

master
Xavier Arteaga 4 years ago committed by Andre Puschmann
parent 53f6ac118e
commit cd1aef7d76

@ -28,7 +28,7 @@ typedef enum SRSLTE_API {
typedef struct SRSLTE_API { typedef struct SRSLTE_API {
srslte_dci_location_t location; srslte_dci_location_t location;
srslte_search_space_type_t search_space; srslte_search_space_type_t search_space;
uint8_t payload[32]; uint8_t payload[50];
srslte_rnti_type_t rnti_type; srslte_rnti_type_t rnti_type;
uint32_t nof_bits; uint32_t nof_bits;
srslte_dci_format_nr_t format; srslte_dci_format_nr_t format;

@ -37,6 +37,7 @@
typedef struct { typedef struct {
bool disable_simd; bool disable_simd;
bool measure_evm; bool measure_evm;
bool measure_time;
} srslte_pdcch_nr_args_t; } srslte_pdcch_nr_args_t;
/** /**
@ -54,9 +55,15 @@ typedef struct SRSLTE_API {
uint8_t* c; // Message bits with attached CRC uint8_t* c; // Message bits with attached CRC
uint8_t* d; // encoded bits uint8_t* d; // encoded bits
uint8_t* f; // bits at the Rate matching output uint8_t* f; // bits at the Rate matching output
uint8_t* allocated; // Allocated polar bit buffer, encoder input, decoder output
cf_t* symbols; cf_t* symbols;
srslte_modem_table_t modem_table; srslte_modem_table_t modem_table;
srslte_evm_buffer_t* evm_buffer; srslte_evm_buffer_t* evm_buffer;
bool meas_time_en;
uint32_t meas_time_us;
uint32_t K;
uint32_t M;
uint32_t E;
} srslte_pdcch_nr_t; } srslte_pdcch_nr_t;
/** /**
@ -92,7 +99,7 @@ SRSLTE_API int srslte_pdcch_nr_init_tx(srslte_pdcch_nr_t* q, const srslte_pdcch_
SRSLTE_API int srslte_pdcch_nr_init_rx(srslte_pdcch_nr_t* q, const srslte_pdcch_nr_args_t* args); SRSLTE_API int srslte_pdcch_nr_init_rx(srslte_pdcch_nr_t* q, const srslte_pdcch_nr_args_t* args);
SRSLTE_API void srslte_pdcch_nr_init_free(srslte_pdcch_nr_t* q); SRSLTE_API void srslte_pdcch_nr_free(srslte_pdcch_nr_t* q);
SRSLTE_API int SRSLTE_API int
srslte_pdcch_nr_set_carrier(srslte_pdcch_nr_t* q, const srslte_carrier_nr_t* carrier, const srslte_coreset_t* coreset); srslte_pdcch_nr_set_carrier(srslte_pdcch_nr_t* q, const srslte_carrier_nr_t* carrier, const srslte_coreset_t* coreset);
@ -116,4 +123,18 @@ SRSLTE_API int srslte_pdcch_nr_decode(srslte_pdcch_nr_t* q,
srslte_dci_msg_nr_t* dci_msg, srslte_dci_msg_nr_t* dci_msg,
srslte_pdcch_nr_res_t* res); srslte_pdcch_nr_res_t* res);
/**
* @brief Stringifies NR PDCCH decoding information from the latest encoded/decoded transmission
*
* @param[in] q provides PDCCH encoder/decoder object
* @param[in] res Optional PDCCH decode result
* @param[out] str Destination string
* @param[out] str_len Maximum destination string length
* @return The number of characters written in the string
*/
SRSLTE_API uint32_t srslte_pdcch_nr_info(const srslte_pdcch_nr_t* q,
const srslte_pdcch_nr_res_t* res,
char* str,
uint32_t str_len);
#endif // SRSLTE_PDCCH_NR_H #endif // SRSLTE_PDCCH_NR_H

@ -11,9 +11,12 @@
*/ */
#include "srslte/phy/phch/pdcch_nr.h" #include "srslte/phy/phch/pdcch_nr.h"
#include "srslte/phy/fec/polar/polar_chanalloc.h"
#include "srslte/phy/utils/debug.h" #include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h" #include "srslte/phy/utils/vector.h"
#define PDCCH_NR_POLAR_RM_IBIL 0
/** /**
* @brief Recursive Y_p_n function * @brief Recursive Y_p_n function
*/ */
@ -107,6 +110,8 @@ static int pdcch_nr_init_common(srslte_pdcch_nr_t* q, const srslte_pdcch_nr_args
return SRSLTE_ERROR_INVALID_INPUTS; return SRSLTE_ERROR_INVALID_INPUTS;
} }
q->meas_time_en = args->measure_time;
q->c = srslte_vec_u8_malloc(SRSLTE_PDCCH_MAX_RE * 2); q->c = srslte_vec_u8_malloc(SRSLTE_PDCCH_MAX_RE * 2);
if (q->c == NULL) { if (q->c == NULL) {
return SRSLTE_ERROR; return SRSLTE_ERROR;
@ -127,6 +132,11 @@ static int pdcch_nr_init_common(srslte_pdcch_nr_t* q, const srslte_pdcch_nr_args
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
q->allocated = srslte_vec_u8_malloc(NMAX);
if (q->allocated == NULL) {
return SRSLTE_ERROR;
}
if (srslte_crc_init(&q->crc24c, SRSLTE_LTE_CRC24C, 24) < SRSLTE_SUCCESS) { if (srslte_crc_init(&q->crc24c, SRSLTE_LTE_CRC24C, 24) < SRSLTE_SUCCESS) {
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
@ -136,6 +146,9 @@ static int pdcch_nr_init_common(srslte_pdcch_nr_t* q, const srslte_pdcch_nr_args
} }
srslte_modem_table_lte(&q->modem_table, SRSLTE_MOD_QPSK); srslte_modem_table_lte(&q->modem_table, SRSLTE_MOD_QPSK);
if (args->measure_evm) {
srslte_modem_table_bytes(&q->modem_table);
}
return SRSLTE_SUCCESS; return SRSLTE_SUCCESS;
} }
@ -185,7 +198,7 @@ int srslte_pdcch_nr_init_rx(srslte_pdcch_nr_t* q, const srslte_pdcch_nr_args_t*
return SRSLTE_SUCCESS; return SRSLTE_SUCCESS;
} }
void srslte_pdcch_nr_init_free(srslte_pdcch_nr_t* q) void srslte_pdcch_nr_free(srslte_pdcch_nr_t* q)
{ {
if (q == NULL) { if (q == NULL) {
return; return;
@ -213,8 +226,20 @@ void srslte_pdcch_nr_init_free(srslte_pdcch_nr_t* q)
free(q->f); free(q->f);
} }
if (q->allocated) {
free(q->allocated);
}
if (q->symbols) {
free(q->symbols);
}
srslte_modem_table_free(&q->modem_table); srslte_modem_table_free(&q->modem_table);
if (q->evm_buffer) {
srslte_evm_free(q->evm_buffer);
}
SRSLTE_MEM_ZERO(q, srslte_pdcch_nr_t, 1); SRSLTE_MEM_ZERO(q, srslte_pdcch_nr_t, 1);
} }
@ -291,15 +316,21 @@ int srslte_pdcch_nr_encode(srslte_pdcch_nr_t* q, const srslte_dci_msg_nr_t* dci_
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
struct timeval t[3];
if (q->meas_time_en) {
gettimeofday(&t[1], NULL);
}
// Calculate... // Calculate...
uint32_t K = dci_msg->nof_bits + 24U; // Payload size including CRC q->K = dci_msg->nof_bits + 24U; // Payload size including CRC
uint32_t M = (1U << dci_msg->location.L) * (SRSLTE_NRE - 3U) * 6U; // Number of RE q->M = (1U << dci_msg->location.L) * (SRSLTE_NRE - 3U) * 6U; // Number of RE
uint32_t E = M * 2; // Number of Rate-Matched bits q->E = q->M * 2; // Number of Rate-Matched bits
// Get polar code // Get polar code
if (srslte_polar_code_get(&q->code, K, E, 9U) < SRSLTE_SUCCESS) { if (srslte_polar_code_get(&q->code, q->K, q->E, 9U) < SRSLTE_SUCCESS) {
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
INFO("PDCCH NR TX: K=%d; E=%d; M=%d; n=%d;\n", q->K, q->E, q->M, q->code.n);
// Copy DCI message // Copy DCI message
srslte_vec_u8_copy(q->c, dci_msg->payload, dci_msg->nof_bits); srslte_vec_u8_copy(q->c, dci_msg->payload, dci_msg->nof_bits);
@ -307,35 +338,64 @@ int srslte_pdcch_nr_encode(srslte_pdcch_nr_t* q, const srslte_dci_msg_nr_t* dci_
// Append CRC // Append CRC
srslte_crc_attach(&q->crc24c, q->c, dci_msg->nof_bits); srslte_crc_attach(&q->crc24c, q->c, dci_msg->nof_bits);
INFO("PDCCH NR TX: Append CRC %06x\n", (uint32_t)srslte_crc_checksum_get(&q->crc24c));
// Unpack RNTI // Unpack RNTI
uint8_t unpacked_rnti[16] = {}; uint8_t unpacked_rnti[16] = {};
uint8_t* ptr = unpacked_rnti; uint8_t* ptr = unpacked_rnti;
srslte_bit_unpack(dci_msg->rnti, &ptr, 16); srslte_bit_unpack(dci_msg->rnti, &ptr, 16);
// Scramble CRC with RNTI // Scramble CRC with RNTI
srslte_vec_xor_bbb(unpacked_rnti, &q->c[K - 16], &q->c[K - 16], 16); srslte_vec_xor_bbb(unpacked_rnti, &q->c[q->K - 16], &q->c[q->K - 16], 16);
// Print c
if (SRSLTE_DEBUG_ENABLED && srslte_verbose >= SRSLTE_VERBOSE_INFO && !handler_registered) {
INFO("PDCCH NR TX: c=");
srslte_vec_fprint_hex(stdout, q->c, q->K);
}
// Allocate channel
srslte_polar_chanalloc_tx(q->c, q->allocated, q->code.N, q->code.K, q->code.nPC, q->code.K_set, q->code.PC_set);
// Encode bits // Encode bits
if (srslte_polar_encoder_encode(&q->encoder, q->c, q->d, q->code.n) < SRSLTE_SUCCESS) { if (srslte_polar_encoder_encode(&q->encoder, q->allocated, q->d, q->code.n) < SRSLTE_SUCCESS) {
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
// Print d
if (SRSLTE_DEBUG_ENABLED && srslte_verbose >= SRSLTE_VERBOSE_INFO && !handler_registered) {
INFO("PDCCH NR TX: d=");
srslte_vec_fprint_byte(stdout, q->d, q->K);
}
// Rate matching // Rate matching
srslte_polar_rm_tx(&q->rm, q->d, q->f, q->code.n, E, K, 0); srslte_polar_rm_tx(&q->rm, q->d, q->f, q->code.n, q->E, q->K, PDCCH_NR_POLAR_RM_IBIL);
// Scrambling // Scrambling
srslte_sequence_apply_bit(q->f, q->f, E, pdcch_nr_c_init(q, dci_msg)); srslte_sequence_apply_bit(q->f, q->f, q->E, pdcch_nr_c_init(q, dci_msg));
// Modulation // Modulation
srslte_mod_modulate(&q->modem_table, q->f, q->symbols, E); srslte_mod_modulate(&q->modem_table, q->f, q->symbols, q->E);
// Put symbols in grid // Put symbols in grid
uint32_t m = pdcch_nr_cp(q, &dci_msg->location, slot_symbols, q->symbols, true); uint32_t m = pdcch_nr_cp(q, &dci_msg->location, slot_symbols, q->symbols, true);
if (M != m) { if (q->M != m) {
ERROR("Unmatch number of RE (%d != %d)\n", m, M); ERROR("Unmatch number of RE (%d != %d)\n", m, q->M);
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
if (q->meas_time_en) {
gettimeofday(&t[2], NULL);
get_time_interval(t);
q->meas_time_us = (uint32_t)t[0].tv_usec;
}
if (SRSLTE_DEBUG_ENABLED && srslte_verbose >= SRSLTE_VERBOSE_INFO && !handler_registered) {
char str[128] = {};
srslte_pdcch_nr_info(q, NULL, str, sizeof(str));
INFO("PDCCH NR TX: %s\n", str);
}
return SRSLTE_SUCCESS; return SRSLTE_SUCCESS;
} }
@ -349,73 +409,139 @@ int srslte_pdcch_nr_decode(srslte_pdcch_nr_t* q,
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
struct timeval t[3];
if (q->meas_time_en) {
gettimeofday(&t[1], NULL);
}
// Calculate... // Calculate...
uint32_t K = dci_msg->nof_bits + 24U; // Payload size including CRC q->K = dci_msg->nof_bits + 24U; // Payload size including CRC
uint32_t M = (1U << dci_msg->location.L) * (SRSLTE_NRE - 3U) * 6U; // Number of RE q->M = (1U << dci_msg->location.L) * (SRSLTE_NRE - 3U) * 6U; // Number of RE
uint32_t E = M * 2; // Number of Rate-Matched bits q->E = q->M * 2; // Number of Rate-Matched bits
// Check number of estimates is correct // Check number of estimates is correct
if (ce->nof_re != M) { if (ce->nof_re != q->M) {
ERROR("Invalid number of channel estimates (%d != %d)\n", M, ce->nof_re); ERROR("Invalid number of channel estimates (%d != %d)\n", q->M, ce->nof_re);
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
// Get polar code // Get polar code
if (srslte_polar_code_get(&q->code, K, E, 9U) < SRSLTE_SUCCESS) { if (srslte_polar_code_get(&q->code, q->K, q->E, 9U) < SRSLTE_SUCCESS) {
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
INFO("PDCCH NR RX: K=%d; E=%d; M=%d; n=%d;\n", q->K, q->E, q->M, q->code.n);
// Get symbols from grid // Get symbols from grid
uint32_t m = pdcch_nr_cp(q, &dci_msg->location, slot_symbols, q->symbols, false); uint32_t m = pdcch_nr_cp(q, &dci_msg->location, slot_symbols, q->symbols, false);
if (M != m) { if (q->M != m) {
ERROR("Unmatch number of RE (%d != %d)\n", m, M); ERROR("Unmatch number of RE (%d != %d)\n", m, q->M);
return SRSLTE_ERROR;
} }
// Equalise // Equalise
srslte_predecoding_single(q->symbols, ce->ce, q->symbols, NULL, M, 1.0f, ce->noise_var); srslte_predecoding_single(q->symbols, ce->ce, q->symbols, NULL, q->M, 1.0f, ce->noise_var);
// Demodulation // Demodulation
int8_t* llr = (int8_t*)q->f; int8_t* llr = (int8_t*)q->f;
srslte_demod_soft_demodulate_b(SRSLTE_MOD_QPSK, q->symbols, llr, M); srslte_demod_soft_demodulate_b(SRSLTE_MOD_QPSK, q->symbols, llr, q->M);
// Measure EVM if configured // Measure EVM if configured
if (q->evm_buffer != NULL) { if (q->evm_buffer != NULL) {
res->evm = srslte_evm_run_b(q->evm_buffer, &q->modem_table, q->symbols, llr, E); res->evm = srslte_evm_run_b(q->evm_buffer, &q->modem_table, q->symbols, llr, q->E);
} else { } else {
res->evm = NAN; res->evm = NAN;
} }
// Negate all LLR
for (uint32_t i = 0; i < q->E; i++) {
llr[i] *= -1;
}
// Descrambling // Descrambling
srslte_sequence_apply_c(llr, llr, E, pdcch_nr_c_init(q, dci_msg)); srslte_sequence_apply_c(llr, llr, q->E, pdcch_nr_c_init(q, dci_msg));
// Un-rate matching // Un-rate matching
int8_t* d = (int8_t*)q->d; int8_t* d = (int8_t*)q->d;
if (srslte_polar_rm_rx_c(&q->rm, llr, d, E, q->code.n, K, 0) < SRSLTE_SUCCESS) { if (srslte_polar_rm_rx_c(&q->rm, llr, d, q->E, q->code.n, q->K, PDCCH_NR_POLAR_RM_IBIL) < SRSLTE_SUCCESS) {
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
// Print d
if (SRSLTE_DEBUG_ENABLED && srslte_verbose >= SRSLTE_VERBOSE_INFO && !handler_registered) {
INFO("PDCCH NR RX: d=");
srslte_vec_fprint_bs(stdout, d, q->K);
}
// Decode // Decode
if (srslte_polar_decoder_decode_c(&q->decoder, d, q->c, q->code.n, q->code.F_set, q->code.F_set_size) < if (srslte_polar_decoder_decode_c(&q->decoder, d, q->allocated, q->code.n, q->code.F_set, q->code.F_set_size) <
SRSLTE_SUCCESS) { SRSLTE_SUCCESS) {
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
// De-allocate channel
srslte_polar_chanalloc_rx(q->allocated, q->c, q->code.K, q->code.nPC, q->code.K_set, q->code.PC_set);
// Print c
if (SRSLTE_DEBUG_ENABLED && srslte_verbose >= SRSLTE_VERBOSE_INFO && !handler_registered) {
INFO("PDCCH NR RX: c=");
srslte_vec_fprint_hex(stdout, q->c, q->K);
}
// Unpack RNTI // Unpack RNTI
uint8_t unpacked_rnti[16] = {}; uint8_t unpacked_rnti[16] = {};
uint8_t* ptr = unpacked_rnti; uint8_t* ptr = unpacked_rnti;
srslte_bit_unpack(dci_msg->rnti, &ptr, 16); srslte_bit_unpack(dci_msg->rnti, &ptr, 16);
// De-Scramble CRC with RNTI // De-Scramble CRC with RNTI
ptr = &q->c[K - 24]; ptr = &q->c[q->K - 24];
srslte_vec_xor_bbb(unpacked_rnti, &q->c[K - 16], &q->c[K - 16], 16); srslte_vec_xor_bbb(unpacked_rnti, &q->c[q->K - 16], &q->c[q->K - 16], 16);
// Check CRC // Check CRC
uint32_t checksum1 = srslte_crc_checksum(&q->crc24c, q->c, dci_msg->nof_bits); uint32_t checksum1 = srslte_crc_checksum(&q->crc24c, q->c, dci_msg->nof_bits);
uint32_t checksum2 = srslte_bit_pack(&ptr, 24); uint32_t checksum2 = srslte_bit_pack(&ptr, 24);
res->crc = checksum1 == checksum2; res->crc = checksum1 == checksum2;
INFO("PDCCH NR RX: CRC={%06x, %06x}\n", checksum1, checksum2);
// Copy DCI message // Copy DCI message
srslte_vec_u8_copy(dci_msg->payload, q->c, dci_msg->nof_bits); srslte_vec_u8_copy(dci_msg->payload, q->c, dci_msg->nof_bits);
if (q->meas_time_en) {
gettimeofday(&t[2], NULL);
get_time_interval(t);
q->meas_time_us = (uint32_t)t[0].tv_usec;
}
if (SRSLTE_DEBUG_ENABLED && srslte_verbose >= SRSLTE_VERBOSE_INFO && !handler_registered) {
char str[128] = {};
srslte_pdcch_nr_info(q, res, str, sizeof(str));
INFO("PDCCH NR RX: %s\n", str);
}
return SRSLTE_SUCCESS; return SRSLTE_SUCCESS;
} }
uint32_t srslte_pdcch_nr_info(const srslte_pdcch_nr_t* q, const srslte_pdcch_nr_res_t* res, char* str, uint32_t str_len)
{
int len = 0;
if (q == NULL) {
return len;
}
len = srslte_print_check(str, str_len, len, "K=%d,E=%d", q->K, q->E);
if (res != NULL) {
len = srslte_print_check(str, str_len, len, ",crc=%s", res->crc ? "OK" : "KO");
if (q->evm_buffer && res) {
len = srslte_print_check(str, str_len, len, ",evm=%.2f", res->evm);
}
}
if (q->meas_time_en) {
len = srslte_print_check(str, str_len, len, ",t=%d us", q->meas_time_us);
}
return len;
}

@ -621,3 +621,8 @@ add_test(dlsch_nr_test dlsch_nr_test -m 0 -p 1)
add_executable(pdsch_nr_test pdsch_nr_test.c) add_executable(pdsch_nr_test pdsch_nr_test.c)
target_link_libraries(pdsch_nr_test srslte_phy) target_link_libraries(pdsch_nr_test srslte_phy)
add_test(pdsch_nr_test pdsch_nr_test -p 6 -m 20) add_test(pdsch_nr_test pdsch_nr_test -p 6 -m 20)
add_executable(pdcch_nr_test pdcch_nr_test.c)
target_link_libraries(pdcch_nr_test srslte_phy)
add_test(pdcch_nr_test pdcch_nr_test)

@ -0,0 +1,265 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/common/test_common.h"
#include "srslte/phy/phch/pdcch_nr.h"
#include <getopt.h>
static srslte_carrier_nr_t carrier = {
0, // cell_id
0, // numerology
SRSLTE_MAX_PRB_NR, // nof_prb
0 // start
};
static uint16_t rnti = 0x1234;
typedef struct {
uint64_t time_us;
uint64_t count;
} proc_time_t;
static proc_time_t enc_time[SRSLTE_SEARCH_SPACE_NOF_AGGREGATION_LEVELS_NR] = {};
static proc_time_t dec_time[SRSLTE_SEARCH_SPACE_NOF_AGGREGATION_LEVELS_NR] = {};
static int test(srslte_pdcch_nr_t* tx,
srslte_pdcch_nr_t* rx,
cf_t* grid,
srslte_dmrs_pdcch_ce_t* ce,
srslte_dci_msg_nr_t* dci_msg_tx)
{
// Encode PDCCH
TESTASSERT(srslte_pdcch_nr_encode(tx, dci_msg_tx, grid) == SRSLTE_SUCCESS);
enc_time[dci_msg_tx->location.L].time_us += tx->meas_time_us;
enc_time[dci_msg_tx->location.L].count++;
// Init Rx MSG
srslte_pdcch_nr_res_t res = {};
srslte_dci_msg_nr_t dci_msg_rx = *dci_msg_tx;
srslte_vec_u8_zero(dci_msg_rx.payload, dci_msg_rx.nof_bits);
// Decode PDCCH
TESTASSERT(srslte_pdcch_nr_decode(rx, grid, ce, &dci_msg_rx, &res) == SRSLTE_SUCCESS);
dec_time[dci_msg_tx->location.L].time_us += rx->meas_time_us;
dec_time[dci_msg_tx->location.L].count++;
// Assert
TESTASSERT(res.evm < 0.01f);
TESTASSERT(res.crc);
return SRSLTE_SUCCESS;
}
static void usage(char* prog)
{
printf("Usage: %s [v] \n", prog);
printf("\t-p Number of carrier PRB [Default %d]\n", carrier.nof_prb);
// printf("\t-m MCS PRB, set to >28 for steering [Default %d]\n", mcs);
// printf("\t-T Provide MCS table (64qam, 256qam, 64qamLowSE) [Default %s]\n",
// srslte_mcs_table_to_str(pdsch_cfg.sch_cfg.mcs_table));
// printf("\t-L Provide number of layers [Default %d]\n", pdsch_cfg.sch_cfg.max_mimo_layers);
printf("\t-v [set srslte_verbose to debug, default none]\n");
}
static int parse_args(int argc, char** argv)
{
int opt;
while ((opt = getopt(argc, argv, "vp")) != -1) {
switch (opt) {
case 'p':
carrier.nof_prb = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'v':
srslte_verbose++;
break;
default:
usage(argv[0]);
return SRSLTE_ERROR;
}
}
return SRSLTE_SUCCESS;
}
int main(int argc, char** argv)
{
int ret = SRSLTE_ERROR;
srslte_pdcch_nr_args_t args = {};
args.disable_simd = false;
args.measure_evm = true;
args.measure_time = true;
srslte_pdcch_nr_t pdcch_tx = {};
srslte_pdcch_nr_t pdcch_rx = {};
if (parse_args(argc, argv) < SRSLTE_SUCCESS) {
return SRSLTE_ERROR;
}
uint32_t grid_sz = carrier.nof_prb * SRSLTE_NRE * SRSLTE_NSYMB_PER_SLOT_NR;
srslte_random_t rand_gen = srslte_random_init(1234);
srslte_dmrs_pdcch_ce_t* ce = SRSLTE_MEM_ALLOC(srslte_dmrs_pdcch_ce_t, 1);
cf_t* buffer = srslte_vec_cf_malloc(grid_sz);
if (rand_gen == NULL || ce == NULL || buffer == NULL) {
ERROR("Error malloc\n");
goto clean_exit;
}
SRSLTE_MEM_ZERO(ce, srslte_dmrs_pdcch_ce_t, 1);
if (srslte_pdcch_nr_init_tx(&pdcch_tx, &args) < SRSLTE_SUCCESS) {
ERROR("Error init\n");
goto clean_exit;
}
if (srslte_pdcch_nr_init_rx(&pdcch_rx, &args) < SRSLTE_SUCCESS) {
ERROR("Error init\n");
goto clean_exit;
}
srslte_coreset_t coreset = {};
uint32_t nof_frequency_resource = SRSLTE_MIN(SRSLTE_CORESET_FREQ_DOMAIN_RES_SIZE, carrier.nof_prb / 6);
for (uint32_t frequency_resources = 1; frequency_resources < (1U << nof_frequency_resource); frequency_resources++) {
for (uint32_t i = 0; i < nof_frequency_resource; i++) {
uint32_t mask = ((frequency_resources >> i) & 1U);
coreset.freq_resources[i] = (mask == 1);
}
for (coreset.duration = SRSLTE_CORESET_DURATION_MIN; coreset.duration <= SRSLTE_CORESET_DURATION_MAX;
coreset.duration++) {
srslte_search_space_t search_space = {};
search_space.type = srslte_search_space_type_ue;
if (srslte_pdcch_nr_set_carrier(&pdcch_tx, &carrier, &coreset) < SRSLTE_SUCCESS) {
ERROR("Error setting carrier\n");
goto clean_exit;
}
if (srslte_pdcch_nr_set_carrier(&pdcch_rx, &carrier, &coreset) < SRSLTE_SUCCESS) {
ERROR("Error setting carrier\n");
goto clean_exit;
}
uint32_t coreset_bw = srslte_coreset_get_bw(&coreset);
uint32_t nof_cce = (coreset_bw * coreset.duration) / 6;
uint32_t max_aggregation_level = (uint32_t)floor(log2(nof_cce));
max_aggregation_level = SRSLTE_MIN(max_aggregation_level + 1, SRSLTE_SEARCH_SPACE_NOF_AGGREGATION_LEVELS_NR);
// Fill search space maximum number of candidates
for (uint32_t aggregation_level = 0; aggregation_level < max_aggregation_level; aggregation_level++) {
uint32_t L = 1U << aggregation_level;
uint32_t nof_candidates = nof_cce / L;
nof_candidates = SRSLTE_MIN(nof_candidates, SRSLTE_SEARCH_SPACE_MAX_NOF_CANDIDATES_NR);
search_space.nof_candidates[aggregation_level] = nof_candidates;
}
for (uint32_t aggregation_level = max_aggregation_level;
aggregation_level < SRSLTE_SEARCH_SPACE_NOF_AGGREGATION_LEVELS_NR;
aggregation_level++) {
search_space.nof_candidates[aggregation_level] = 0;
}
for (uint32_t aggregation_level = 0; aggregation_level < max_aggregation_level; aggregation_level++) {
uint32_t L = 1U << aggregation_level;
for (uint32_t slot_idx = 0; slot_idx < SRSLTE_NSLOTS_PER_FRAME_NR(carrier.numerology); slot_idx++) {
uint32_t dci_locations[SRSLTE_SEARCH_SPACE_MAX_NOF_CANDIDATES_NR] = {};
// Calculate candidate locations
int n = srslte_pdcch_nr_locations_coreset(
&coreset, &search_space, rnti, aggregation_level, slot_idx, dci_locations);
if (n < SRSLTE_SUCCESS) {
ERROR("Error calculating locations in CORESET\n");
goto clean_exit;
}
if (n == 0) {
ERROR("Invalid number of locations (%d)\n", n);
goto clean_exit;
}
for (uint32_t ncce_idx = 0; ncce_idx < n; ncce_idx++) {
// Init MSG
srslte_dci_msg_nr_t dci_msg = {};
dci_msg.rnti_type = srslte_rnti_type_c;
dci_msg.location.L = aggregation_level;
dci_msg.location.ncce = dci_locations[n];
dci_msg.nof_bits = srslte_dci_nr_format_1_0_sizeof(&carrier, &coreset, dci_msg.rnti_type);
// Generate random payload
for (uint32_t i = 0; i < dci_msg.nof_bits; i++) {
dci_msg.payload[i] = srslte_random_uniform_int_dist(rand_gen, 0, 1);
}
// Set channel estimate number of elements and set out-of-range values to zero
ce->nof_re = (SRSLTE_NRE - 3) * 6 * L;
for (uint32_t i = 0; i < SRSLTE_PDCCH_MAX_RE; i++) {
ce->ce[i] = (i < ce->nof_re) ? 1.0f : 0.0f;
}
ce->noise_var = 0.0f;
if (test(&pdcch_tx, &pdcch_rx, buffer, ce, &dci_msg) < SRSLTE_SUCCESS) {
ERROR("test failed\n");
goto clean_exit;
}
}
}
}
}
}
printf("%6s %6s %6s\n", " ", " Time ", " Time ");
printf("%6s %6s %6s\n", "L", "Encode", "Decode");
printf("%6s %6s %6s\n", " ", " (us) ", " (us) ");
for (uint32_t i = 0; i < SRSLTE_SEARCH_SPACE_NOF_AGGREGATION_LEVELS_NR; i++) {
if (enc_time[i].count > 0 && dec_time[i].count) {
printf("%6d %6.1f %6.1f\n",
i,
(double)enc_time[i].time_us / (double)enc_time[i].count,
(double)dec_time[i].time_us / (double)dec_time[i].count);
}
}
ret = SRSLTE_SUCCESS;
clean_exit:
srslte_random_free(rand_gen);
if (ce) {
free(ce);
}
if (buffer) {
free(buffer);
}
srslte_pdcch_nr_free(&pdcch_tx);
srslte_pdcch_nr_free(&pdcch_rx);
if (ret == SRSLTE_SUCCESS) {
printf("Passed!\n");
} else {
printf("Failed!\n");
}
return ret;
}
Loading…
Cancel
Save