Added radio interface. Fixed bug in dl_buffer not resetting

master
ismagom 10 years ago
parent 736517babb
commit c9b3ce0d06

@ -0,0 +1,67 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The srsLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/srslte.h"
#include "srslte/common/radio.h"
#include "srslte/cuhd/cuhd.h"
#ifndef RADIO_UHD_H
#define RADIO_UHD_H
namespace srslte {
/* Interface to the RF frontend.
*/
class SRSLTE_API radio_uhd : public radio
{
public:
bool init();
bool init(char *args);
bool tx(void *buffer, uint32_t nof_samples, srslte_timestamp_t tx_time);
bool rx_now(void *buffer, uint32_t nof_samples, srslte_timestamp_t *rxd_time);
bool rx_at(void *buffer, uint32_t nof_samples, srslte_timestamp_t rx_time);
void set_tx_gain(float gain);
void set_rx_gain(float gain);
void set_tx_freq(float freq);
void set_rx_freq(float freq);
void set_tx_srate(float srate);
void set_rx_srate(float srate);
void start_rx();
void stop_rx();
private:
void *uhd;
};
}
#endif

@ -23,7 +23,7 @@ FIND_PACKAGE(UHD)
IF(UHD_FOUND) IF(UHD_FOUND)
ADD_LIBRARY(cuhd SHARED cuhd_imp.cpp cuhd_utils.c) ADD_LIBRARY(cuhd SHARED cuhd_imp.cpp cuhd_utils.c radio_uhd.cc)
INCLUDE_DIRECTORIES(${UHD_INCLUDE_DIRS}) INCLUDE_DIRECTORIES(${UHD_INCLUDE_DIRS})
LINK_DIRECTORIES(${UHD_LIBRARY_DIRS}) LINK_DIRECTORIES(${UHD_LIBRARY_DIRS})
TARGET_LINK_LIBRARIES(cuhd ${UHD_LIBRARIES}) TARGET_LINK_LIBRARIES(cuhd ${UHD_LIBRARIES})

@ -0,0 +1,116 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The srsLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/srslte.h"
#include "srslte/common/radio.h"
#include "srslte/cuhd/radio_uhd.h"
namespace srslte {
bool radio_uhd::init()
{
return init((char*) "");
}
bool radio_uhd::init(char *args)
{
printf("Opening UHD device...\n");
if (cuhd_open(args, &uhd)) {
fprintf(stderr, "Error opening uhd\n");
return false;
}
return true;
}
bool radio_uhd::rx_at(void* buffer, uint32_t nof_samples, srslte_timestamp_t rx_time)
{
fprintf(stderr, "Not implemented\n");
return false;
}
bool radio_uhd::rx_now(void* buffer, uint32_t nof_samples, srslte_timestamp_t* rxd_time)
{
if (cuhd_recv_with_time(uhd, buffer, nof_samples, true, &rxd_time->full_secs, &rxd_time->frac_secs) > 0) {
return true;
} else {
return false;
}
}
bool radio_uhd::tx(void* buffer, uint32_t nof_samples, srslte_timestamp_t tx_time)
{
if (cuhd_send_timed(uhd, buffer, nof_samples, tx_time.full_secs, tx_time.frac_secs) > 0) {
return true;
} else {
return false;
}
}
void radio_uhd::set_rx_freq(float freq)
{
cur_rx_freq = cuhd_set_rx_freq(uhd, freq);
}
void radio_uhd::set_rx_gain(float gain)
{
cur_rx_gain = cuhd_set_rx_gain(uhd, gain);
}
void radio_uhd::set_rx_srate(float srate)
{
cur_rx_srate = cuhd_set_rx_srate(uhd, srate);
}
void radio_uhd::set_tx_freq(float freq)
{
cur_tx_freq = cuhd_set_tx_freq(uhd, freq);
}
void radio_uhd::set_tx_gain(float gain)
{
cur_tx_gain = cuhd_set_tx_gain(uhd, gain);
}
void radio_uhd::set_tx_srate(float srate)
{
cur_tx_srate = cuhd_set_tx_srate(uhd, srate);
}
void radio_uhd::start_rx()
{
cuhd_start_rx_stream(uhd);
}
void radio_uhd::stop_rx()
{
cuhd_stop_rx_stream(uhd);
}
}

@ -543,7 +543,7 @@ int main(int argc, char **argv) {
srslte_bit_pack_vector((uint8_t*) conn_request_msg, data, ra_pusch.mcs.tbs); srslte_bit_pack_vector((uint8_t*) conn_request_msg, data, ra_pusch.mcs.tbs);
uint32_t n_ta = srssrslte_N_ta_new_rar(rar_msg.timing_adv_cmd); uint32_t n_ta = srslte_N_ta_new_rar(rar_msg.timing_adv_cmd);
printf("ta: %d, n_ta: %d\n", rar_msg.timing_adv_cmd, n_ta); printf("ta: %d, n_ta: %d\n", rar_msg.timing_adv_cmd, n_ta);
float time_adv_sec = SRSLTE_TA_OFFSET+((float) n_ta)*SRSLTE_LTE_TS; float time_adv_sec = SRSLTE_TA_OFFSET+((float) n_ta)*SRSLTE_LTE_TS;
if (prog_args.ta_usec >= 0) { if (prog_args.ta_usec >= 0) {

@ -197,7 +197,7 @@ SRSLTE_API bool srslte_N_id_2_isvalid(uint32_t N_id_2);
SRSLTE_API bool srslte_N_id_1_isvalid(uint32_t N_id_1); SRSLTE_API bool srslte_N_id_1_isvalid(uint32_t N_id_1);
SRSLTE_API bool srssrslte_symbol_sz_isvalid(uint32_t symbol_sz); SRSLTE_API bool srslte_symbol_sz_isvalid(uint32_t symbol_sz);
SRSLTE_API int srslte_symbol_sz(uint32_t nof_prb); SRSLTE_API int srslte_symbol_sz(uint32_t nof_prb);
@ -213,7 +213,7 @@ SRSLTE_API uint32_t srslte_voffset(uint32_t symbol_id,
uint32_t cell_id, uint32_t cell_id,
uint32_t nof_ports); uint32_t nof_ports);
SRSLTE_API uint32_t srssrslte_N_ta_new_rar(uint32_t ta); SRSLTE_API uint32_t srslte_N_ta_new_rar(uint32_t ta);
SRSLTE_API uint32_t srslte_N_ta_new(uint32_t N_ta_old, SRSLTE_API uint32_t srslte_N_ta_new(uint32_t N_ta_old,
uint32_t ta); uint32_t ta);

@ -0,0 +1,78 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The srsLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdint.h>
#include "srslte/srslte.h"
#include "srslte/common/timestamp.h"
#ifndef RADIO_H
#define RADIO_H
namespace srslte {
/* Interface to the RF frontend.
*/
class SRSLTE_API radio
{
public:
virtual bool tx(void *buffer, uint32_t nof_samples, srslte_timestamp_t tx_time) = 0;
virtual bool rx_now(void *buffer, uint32_t nof_samples, srslte_timestamp_t *rxd_time) = 0;
virtual bool rx_at(void *buffer, uint32_t nof_samples, srslte_timestamp_t rx_time) = 0;
virtual void set_tx_gain(float gain) = 0;
virtual void set_rx_gain(float gain) = 0;
virtual void set_tx_freq(float freq) = 0;
virtual void set_rx_freq(float freq) = 0;
virtual void set_tx_srate(float srate) = 0;
virtual void set_rx_srate(float srate) = 0;
virtual void start_rx() = 0;
virtual void stop_rx() = 0;
float get_tx_gain() { return cur_tx_gain; }
float get_rx_gain() { return cur_rx_gain; }
float get_tx_freq() { return cur_tx_freq; }
float get_rx_freq() { return cur_rx_freq; }
float get_tx_srate() { return cur_tx_srate; }
float get_rx_srate() { return cur_rx_srate; }
protected:
float cur_tx_gain;
float cur_rx_gain;
float cur_tx_freq;
float cur_rx_freq;
float cur_tx_srate;
float cur_rx_srate;
};
}
#endif

@ -64,8 +64,8 @@ namespace ue {
bool init_cell(srslte_cell_t cell, params *params_db); bool init_cell(srslte_cell_t cell, params *params_db);
void free_cell(); void free_cell();
bool recv_ue_sync(srslte_ue_sync_t *ue_sync, srslte_timestamp_t *rx_time); bool recv_ue_sync(srslte_ue_sync_t *ue_sync, srslte_timestamp_t *rx_time);
bool get_ul_grant(pdcch_ul_search_t mode, uint32_t rnti, sched_grant *grant); bool get_ul_grant(pdcch_ul_search_t mode, sched_grant *grant);
bool get_dl_grant(pdcch_dl_search_t mode, uint32_t rnti, sched_grant *grant); bool get_dl_grant(pdcch_dl_search_t mode, sched_grant *grant);
bool decode_phich(srslte_phich_alloc_t assignment); bool decode_phich(srslte_phich_alloc_t assignment);
bool decode_pdsch(sched_grant pdsch_grant, uint8_t *payload); // returns true or false for CRC OK/KO bool decode_pdsch(sched_grant pdsch_grant, uint8_t *payload); // returns true or false for CRC OK/KO
private: private:

@ -33,6 +33,7 @@
#include "srslte/ue_itf/params.h" #include "srslte/ue_itf/params.h"
#include "srslte/ue_itf/sched_grant.h" #include "srslte/ue_itf/sched_grant.h"
#include "srslte/ue_itf/queue.h" #include "srslte/ue_itf/queue.h"
#include "srslte/common/radio.h"
#ifndef UEPHY_H #ifndef UEPHY_H
#define UEPHY_H #define UEPHY_H
@ -59,7 +60,7 @@ class SRSLTE_API phy
{ {
public: public:
bool init(tti_sync *ttisync); bool init(radio *radio_handler, tti_sync *ttisync);
void stop(); void stop();
// These functions can be called only if PHY is in IDLE (ie, not RX/TX) // These functions can be called only if PHY is in IDLE (ie, not RX/TX)
@ -75,11 +76,15 @@ public:
// Indicate the PHY to send PRACH as soon as possible // Indicate the PHY to send PRACH as soon as possible
bool send_prach(uint32_t preamble_idx); bool send_prach(uint32_t preamble_idx);
// Control USRP freq/gain // Get handler to the radio
void set_tx_gain(float gain); radio* get_radio();
void set_rx_gain(float gain);
void set_tx_freq(float freq); // Time advance commands
void set_rx_freq(float freq); void set_timeadv_rar(uint32_t ta_cmd);
void set_timeadv(uint32_t ta_cmd);
// Generate Msg3 UL grant from RAR
void rar_ul_grant(uint32_t rba, uint32_t trunc_mcs, bool hopping_flag, sched_grant *grant);
// Get status // Get status
bool status_is_idle(); bool status_is_idle();
@ -102,6 +107,7 @@ private:
} phy_state; } phy_state;
tti_sync *ttisync; tti_sync *ttisync;
radio *radio_handler;
srslte_cell_t cell; srslte_cell_t cell;
bool cell_is_set; bool cell_is_set;
@ -116,9 +122,10 @@ private:
prach prach_buffer; prach prach_buffer;
params params_db; params params_db;
pthread_t radio_thread; pthread_t phy_thread;
void *radio_handler; float time_adv_sec;
static void *radio_thread_fnc(void *arg); uint32_t n_ta;
static void *phy_thread_fnc(void *arg);
bool decode_mib_N_id_2(int force_N_id_2, srslte_cell_t *cell, uint8_t payload[SRSLTE_BCH_PAYLOAD_LEN]); bool decode_mib_N_id_2(int force_N_id_2, srslte_cell_t *cell, uint8_t payload[SRSLTE_BCH_PAYLOAD_LEN]);
int sync_sfn(); int sync_sfn();
void run_rx_tx_state(); void run_rx_tx_state();

@ -39,10 +39,11 @@ namespace ue {
public: public:
bool init_cell(srslte_cell_t cell, params *params_db); bool init_cell(srslte_cell_t cell, params *params_db);
void free_cell(); void free_cell();
bool ready_to_send(uint32_t preamble_idx); bool prepare_to_send(uint32_t preamble_idx);
bool is_ready_to_send(uint32_t current_tti); bool is_ready_to_send(uint32_t current_tti);
bool send(void *radio_handler, srslte_timestamp_t rx_time); bool send(void *radio_handler, srslte_timestamp_t rx_time);
private: private:
static const uint32_t tx_advance_sf = 1; // Number of subframes to advance transmission
params *params_db = NULL; params *params_db = NULL;
int preamble_idx; int preamble_idx;
bool initiated = false; bool initiated = false;

@ -47,29 +47,23 @@ public:
class element class element
{ {
public: public:
element() {
state = READY;
tti = 0;
}
~element(); ~element();
bool release() void release()
{ {
if (state == READY) {
state = RELEASED; state = RELEASED;
return true;
} else {
return false;
}
} }
bool is_released() bool is_released()
{ {
return state == RELEASED; return state == RELEASED;
} }
bool ready_to_send() { void ready() {
if (state == RELEASED) {
state = READY; state = READY;
return true;
} else {
return false;
}
} }
bool is_ready_to_send() { bool is_ready() {
return state == READY; return state == READY;
} }
uint32_t tti; uint32_t tti;

@ -39,7 +39,7 @@ namespace ue {
public: public:
typedef enum {DOWNLINK=0, UPLINK=1} direction_t; typedef enum {DOWNLINK=0, UPLINK=1} direction_t;
sched_grant(uint16_t rnti); sched_grant(direction_t direction, uint16_t rnti);
uint16_t get_rnti(); uint16_t get_rnti();
uint32_t get_rv(); uint32_t get_rv();
void set_rv(uint32_t rv); void set_rv(uint32_t rv);

@ -26,6 +26,7 @@
*/ */
#include "srslte/srslte.h" #include "srslte/srslte.h"
#include "srslte/common/radio.h"
#include "srslte/ue_itf/queue.h" #include "srslte/ue_itf/queue.h"
#include "srslte/ue_itf/sched_grant.h" #include "srslte/ue_itf/sched_grant.h"
#include "srslte/ue_itf/params.h" #include "srslte/ue_itf/params.h"
@ -47,18 +48,18 @@ namespace ue {
void free_cell(); void free_cell();
void set_tti(uint32_t tti); void set_tti(uint32_t tti);
void set_current_tx_nb(uint32_t current_tx_nb); void set_current_tx_nb(uint32_t current_tx_nb);
bool generate_pusch(sched_grant pusch_grant, uint8_t *payload);
bool generate_pusch(sched_grant pusch_grant, uint8_t *payload, srslte_uci_data_t uci_data); bool generate_pusch(sched_grant pusch_grant, uint8_t *payload, srslte_uci_data_t uci_data);
bool generate_pucch(srslte_uci_data_t uci_data); bool generate_pucch(srslte_uci_data_t uci_data);
bool send_packet(void *radio_handler, srslte_timestamp_t rx_time); bool send_packet(radio* radio_handler, float time_adv_sec, srslte_timestamp_t rx_time);
static const uint32_t tx_advance_sf = 1; // Number of subframes to advance transmission
private: private:
params *params_db; params *params_db;
srslte_cell_t cell; srslte_cell_t cell;
srslte_ue_ul_t ue_ul; srslte_ue_ul_t ue_ul;
bool signal_generated;
bool cell_initiated; bool cell_initiated;
cf_t* signal_buffer; cf_t* signal_buffer;
uint32_t tti;
uint32_t current_tx_nb; uint32_t current_tx_nb;
}; };

@ -78,11 +78,8 @@ FOREACH (_file ${cmakefiles})
ENDFOREACH() ENDFOREACH()
######################################################################## ########################################################################
# Create C++ library only if UHD is found # Create C++ library
######################################################################## ########################################################################
LIST(FIND OPTIONAL_LIBS cuhd CUHD_FIND)
IF(${CUHD_FIND} GREATER -1)
FILE(GLOB modules *) FILE(GLOB modules *)
SET(SOURCES_CPP_ALL "") SET(SOURCES_CPP_ALL "")
FOREACH (_module ${modules}) FOREACH (_module ${modules})
@ -97,4 +94,3 @@ IF(${CUHD_FIND} GREATER -1)
INSTALL(TARGETS srslte++ DESTINATION ${LIBRARY_DIR}) INSTALL(TARGETS srslte++ DESTINATION ${LIBRARY_DIR})
LIBLTE_SET_PIC(srslte++) LIBLTE_SET_PIC(srslte++)
ENDIF(${CUHD_FIND} GREATER -1)

@ -211,7 +211,7 @@ uint32_t srslte_N_ta_new(uint32_t N_ta_old, uint32_t ta) {
/* Returns the new time advance as indicated by the random access response /* Returns the new time advance as indicated by the random access response
* as specified in Section 4.2.3 of 36.213 */ * as specified in Section 4.2.3 of 36.213 */
uint32_t srssrslte_N_ta_new_rar(uint32_t ta) { uint32_t srslte_N_ta_new_rar(uint32_t ta) {
if (ta > 1282) { if (ta > 1282) {
ta = 1282; ta = 1282;
} }
@ -263,7 +263,7 @@ int srslte_symbol_sz(uint32_t nof_prb) {
return SRSLTE_ERROR; return SRSLTE_ERROR;
} }
bool srssrslte_symbol_sz_isvalid(uint32_t symbol_sz) { bool srslte_symbol_sz_isvalid(uint32_t symbol_sz) {
if (symbol_sz == 128 || if (symbol_sz == 128 ||
symbol_sz == 256 || symbol_sz == 256 ||
symbol_sz == 512 || symbol_sz == 512 ||

@ -71,13 +71,17 @@ bool dl_buffer::recv_ue_sync(srslte_ue_sync_t *ue_sync, srslte_timestamp_t *rx_t
if (srslte_ue_sync_get_buffer(ue_sync, &sf_buffer) == 1) { if (srslte_ue_sync_get_buffer(ue_sync, &sf_buffer) == 1) {
memcpy(signal_buffer, sf_buffer, sizeof(cf_t) * SRSLTE_SF_LEN_PRB(cell.nof_prb)); memcpy(signal_buffer, sf_buffer, sizeof(cf_t) * SRSLTE_SF_LEN_PRB(cell.nof_prb));
srslte_ue_sync_get_last_timestamp(ue_sync, rx_time); srslte_ue_sync_get_last_timestamp(ue_sync, rx_time);
sf_symbols_and_ce_done = false;
pdcch_llr_extracted = false;
ready();
return true;
} else { } else {
return false; return false;
} }
} }
} }
bool dl_buffer::get_ul_grant(pdcch_ul_search_t mode, uint32_t rnti, sched_grant *grant) bool dl_buffer::get_ul_grant(pdcch_ul_search_t mode, sched_grant *grant)
{ {
if (signal_buffer) { if (signal_buffer) {
if (!sf_symbols_and_ce_done) { if (!sf_symbols_and_ce_done) {
@ -94,7 +98,7 @@ bool dl_buffer::get_ul_grant(pdcch_ul_search_t mode, uint32_t rnti, sched_grant
} }
srslte_dci_msg_t dci_msg; srslte_dci_msg_t dci_msg;
if (srslte_ue_dl_find_ul_dci(&ue_dl, &dci_msg, cfi, tti%10, rnti)) { if (srslte_ue_dl_find_ul_dci(&ue_dl, &dci_msg, cfi, tti%10, grant->get_rnti())) {
return false; return false;
} }
@ -110,9 +114,9 @@ bool dl_buffer::get_ul_grant(pdcch_ul_search_t mode, uint32_t rnti, sched_grant
} }
bool dl_buffer::get_dl_grant(pdcch_dl_search_t mode, uint32_t rnti, sched_grant *grant) bool dl_buffer::get_dl_grant(pdcch_dl_search_t mode, sched_grant *grant)
{ {
if (signal_buffer) { if (signal_buffer && is_ready()) {
INFO("DL Buffer TTI %d: Getting DL grant\n", tti); INFO("DL Buffer TTI %d: Getting DL grant\n", tti);
if (!sf_symbols_and_ce_done) { if (!sf_symbols_and_ce_done) {
INFO("DL Buffer TTI %d: Getting DL grant. Calling fft estimate\n", tti); INFO("DL Buffer TTI %d: Getting DL grant. Calling fft estimate\n", tti);
@ -137,11 +141,11 @@ bool dl_buffer::get_dl_grant(pdcch_dl_search_t mode, uint32_t rnti, sched_grant
} }
srslte_dci_msg_t dci_msg; srslte_dci_msg_t dci_msg;
if (srslte_ue_dl_find_dl_dci(&ue_dl, &dci_msg, cfi, tti%10, rnti) != 1) { if (srslte_ue_dl_find_dl_dci(&ue_dl, &dci_msg, cfi, tti%10, grant->get_rnti()) != 1) {
return false; return false;
} }
if (srslte_dci_msg_to_ra_dl(&dci_msg, rnti, cell, cfi, if (srslte_dci_msg_to_ra_dl(&dci_msg, grant->get_rnti(), cell, cfi,
(srslte_ra_pdsch_t*) grant->get_grant_ptr())) { (srslte_ra_pdsch_t*) grant->get_grant_ptr())) {
return false; return false;
} }
@ -152,7 +156,7 @@ bool dl_buffer::get_dl_grant(pdcch_dl_search_t mode, uint32_t rnti, sched_grant
bool dl_buffer::decode_phich(srslte_phich_alloc_t assignment) bool dl_buffer::decode_phich(srslte_phich_alloc_t assignment)
{ {
if (signal_buffer) { if (signal_buffer && is_ready()) {
if (!sf_symbols_and_ce_done) { if (!sf_symbols_and_ce_done) {
if (srslte_ue_dl_decode_fft_estimate(&ue_dl, signal_buffer, tti%10, &cfi) < 0) { if (srslte_ue_dl_decode_fft_estimate(&ue_dl, signal_buffer, tti%10, &cfi) < 0) {
return false; return false;
@ -165,7 +169,7 @@ bool dl_buffer::decode_phich(srslte_phich_alloc_t assignment)
bool dl_buffer::decode_pdsch(sched_grant pdsch_grant, uint8_t *payload) bool dl_buffer::decode_pdsch(sched_grant pdsch_grant, uint8_t *payload)
{ {
if (signal_buffer) { if (signal_buffer && is_ready()) {
INFO("DL Buffer TTI %d: Decoding PDSCH\n", tti); INFO("DL Buffer TTI %d: Decoding PDSCH\n", tti);
if (!sf_symbols_and_ce_done) { if (!sf_symbols_and_ce_done) {
INFO("DL Buffer TTI %d: Decoding PDSCH. Calling fft estimate\n", tti); INFO("DL Buffer TTI %d: Decoding PDSCH. Calling fft estimate\n", tti);

@ -31,7 +31,6 @@
#include <unistd.h> #include <unistd.h>
#include "srslte/srslte.h" #include "srslte/srslte.h"
#include "srslte/cuhd/cuhd.h"
#include "srslte/ue_itf/phy.h" #include "srslte/ue_itf/phy.h"
#include "srslte/ue_itf/prach.h" #include "srslte/ue_itf/prach.h"
@ -41,20 +40,11 @@
namespace srslte { namespace srslte {
namespace ue { namespace ue {
bool phy::init(srslte::radio* radio_handler_, srslte::ue::tti_sync* ttisync_)
bool phy::init_radio_handler(char *args) {
printf("Opening UHD device...\n");
if (cuhd_open(args, &radio_handler)) {
fprintf(stderr, "Error opening uhd\n");
return false;
}
return true;
}
bool phy::init(tti_sync *ttisync_)
{ {
started = false; started = false;
ttisync = ttisync_; ttisync = ttisync_;
radio_handler = radio_handler_;
ul_buffer_queue = new queue(6, sizeof(ul_buffer)); ul_buffer_queue = new queue(6, sizeof(ul_buffer));
dl_buffer_queue = new queue(6, sizeof(dl_buffer)); dl_buffer_queue = new queue(6, sizeof(dl_buffer));
@ -63,11 +53,12 @@ bool phy::init(tti_sync *ttisync_)
params_db.set_param(params::CELLSEARCH_TIMEOUT_PSS_CORRELATION_THRESHOLD, 160); params_db.set_param(params::CELLSEARCH_TIMEOUT_PSS_CORRELATION_THRESHOLD, 160);
params_db.set_param(params::CELLSEARCH_TIMEOUT_MIB_NFRAMES, 100); params_db.set_param(params::CELLSEARCH_TIMEOUT_MIB_NFRAMES, 100);
if (!pthread_create(&phy_thread, NULL, phy_thread_fnc, this)) {
if (init_radio_handler((char*) "")) {
pthread_create(&radio_thread, NULL, radio_thread_fnc, this);
started = true; started = true;
} else {
perror("pthread_create");
} }
return started; return started;
} }
@ -75,7 +66,7 @@ void phy::stop()
{ {
started = false; started = false;
pthread_join(radio_thread, NULL); pthread_join(phy_thread, NULL);
for (int i=0;i<6;i++) { for (int i=0;i<6;i++) {
((ul_buffer*) ul_buffer_queue->get(i))->free_cell(); ((ul_buffer*) ul_buffer_queue->get(i))->free_cell();
@ -88,24 +79,31 @@ void phy::stop()
prach_buffer.free_cell(); prach_buffer.free_cell();
} }
void phy::set_tx_gain(float gain) { radio* phy::get_radio() {
float x = cuhd_set_tx_gain(radio_handler, gain); return radio_handler;
printf("Set TX gain to %.1f dB\n", x);
} }
void phy::set_rx_gain(float gain) { void phy::set_timeadv_rar(uint32_t ta_cmd) {
float x = cuhd_set_rx_gain(radio_handler, gain); n_ta = srslte_N_ta_new_rar(ta_cmd);
printf("Set RX gain to %.1f dB\n", x); time_adv_sec = SRSLTE_TA_OFFSET+((float) n_ta)*SRSLTE_LTE_TS;
INFO("Set TA RAR: ta_cmd: %d, n_ta: %d, ta_usec: %.1f\n", ta_cmd, n_ta, time_adv_sec*1e6);
} }
void phy::set_tx_freq(float freq) { void phy::set_timeadv(uint32_t ta_cmd) {
float x = cuhd_set_tx_freq(radio_handler, freq); n_ta = srslte_N_ta_new(n_ta, ta_cmd);
printf("Set TX freq to %.1f MHz\n", x/1000000); time_adv_sec = SRSLTE_TA_OFFSET+((float) n_ta)*SRSLTE_LTE_TS;
INFO("Set TA: ta_cmd: %d, n_ta: %d, ta_usec: %.1f\n", ta_cmd, n_ta, time_adv_sec*1e6);
} }
void phy::set_rx_freq(float freq) { void phy::rar_ul_grant(uint32_t rba, uint32_t trunc_mcs, bool hopping_flag, sched_grant *grant)
float x = cuhd_set_rx_freq(radio_handler, freq); {
printf("Set RX freq to %.1f MHz\n", x/1000000); uint32_t n_ho = params_db.get_param(params::PUSCH_HOPPING_OFFSET);
srslte_ra_pusch_t *ra_pusch = (srslte_ra_pusch_t*) grant->get_grant_ptr();
srslte_dci_rar_to_ra_ul(rba, trunc_mcs, hopping_flag, cell.nof_prb, ra_pusch);
srslte_ra_ul_alloc(&ra_pusch->prb_alloc, ra_pusch, n_ho, cell.nof_prb);
if (SRSLTE_VERBOSE_ISINFO()) {
srslte_ra_pusch_fprint(stdout, ra_pusch, cell.nof_prb);
}
} }
void phy::set_param(params::param_t param, int64_t value) { void phy::set_param(params::param_t param, int64_t value) {
@ -117,8 +115,9 @@ void phy::set_param(params::param_t param, int64_t value) {
bool phy::send_prach(uint32_t preamble_idx) bool phy::send_prach(uint32_t preamble_idx)
{ {
if (phy_state == RXTX) { if (phy_state == RXTX) {
prach_buffer.ready_to_send(preamble_idx); return prach_buffer.prepare_to_send(preamble_idx);
} }
return false;
} }
// Do fast measurement on RSSI and/or PSS autocorrelation energy or PSR // Do fast measurement on RSSI and/or PSS autocorrelation energy or PSR
@ -135,11 +134,11 @@ bool phy::start_rxtx()
if (phy_state == IDLE) { if (phy_state == IDLE) {
if (cell_is_set) { if (cell_is_set) {
// Set RX/TX sampling rate // Set RX/TX sampling rate
cuhd_set_rx_srate(radio_handler, srslte_sampling_freq_hz(cell.nof_prb)); radio_handler->set_rx_srate(srslte_sampling_freq_hz(cell.nof_prb));
cuhd_set_tx_srate(radio_handler, srslte_sampling_freq_hz(cell.nof_prb)); radio_handler->set_tx_srate(srslte_sampling_freq_hz(cell.nof_prb));
// Start streaming // Start streaming
cuhd_start_rx_stream(radio_handler); radio_handler->start_rx();
phy_state = RXTX; phy_state = RXTX;
return true; return true;
} else { } else {
@ -155,7 +154,7 @@ bool phy::stop_rxtx()
{ {
if (phy_state == RXTX) { if (phy_state == RXTX) {
// Stop streaming // Stop streaming
cuhd_stop_rx_stream(radio_handler); radio_handler->stop_rx();
phy_state = IDLE; phy_state = IDLE;
return true; return true;
} else { } else {
@ -183,15 +182,16 @@ uint32_t phy::tti_to_subf(uint32_t tti) {
return tti%10; return tti%10;
} }
void* phy::radio_thread_fnc(void *arg) { void* phy::phy_thread_fnc(void *arg) {
phy* phy = static_cast<srslte::ue::phy*>(arg); phy* phy = static_cast<srslte::ue::phy*>(arg);
phy->main_radio_loop(); phy->main_radio_loop();
return NULL; return NULL;
} }
int radio_recv_wrapper_cs(void *h,void *data, uint32_t nsamples, srslte_timestamp_t*) int radio_recv_wrapper_cs(void *h,void *data, uint32_t nsamples, srslte_timestamp_t *rx_time)
{ {
return cuhd_recv(h, data, nsamples, 1); radio *radio_handler = (radio*) h;
return radio_handler->rx_now(data, nsamples, rx_time);
} }
bool phy::set_cell(srslte_cell_t cell_) { bool phy::set_cell(srslte_cell_t cell_) {
@ -204,9 +204,11 @@ bool phy::set_cell(srslte_cell_t cell_) {
{ {
if (prach_buffer.init_cell(cell, &params_db)) { if (prach_buffer.init_cell(cell, &params_db)) {
for(uint32_t i=0;i<6;i++) { for(uint32_t i=0;i<6;i++) {
get_ul_buffer(i)->init_cell(cell, &params_db); ((ul_buffer*) ul_buffer_queue->get(i))->init_cell(cell, &params_db);
get_dl_buffer(i)->init_cell(cell, &params_db); ((dl_buffer*) dl_buffer_queue->get(i))->init_cell(cell, &params_db);
get_dl_buffer(i)->buffer_id = i; ((dl_buffer*) dl_buffer_queue->get(i))->buffer_id = i;
((ul_buffer*) ul_buffer_queue->get(i))->ready();
((dl_buffer*) dl_buffer_queue->get(i))->release();
} }
cell_is_set = true; cell_is_set = true;
} }
@ -224,7 +226,7 @@ bool phy::set_cell(srslte_cell_t cell_) {
ul_buffer* phy::get_ul_buffer(uint32_t tti) ul_buffer* phy::get_ul_buffer(uint32_t tti)
{ {
return (ul_buffer*) ul_buffer_queue->get(tti); return (ul_buffer*) ul_buffer_queue->get(tti - ul_buffer::tx_advance_sf);
} }
dl_buffer* phy::get_dl_buffer(uint32_t tti) dl_buffer* phy::get_dl_buffer(uint32_t tti)
@ -232,7 +234,6 @@ dl_buffer* phy::get_dl_buffer(uint32_t tti)
return (dl_buffer*) dl_buffer_queue->get(tti); return (dl_buffer*) dl_buffer_queue->get(tti);
} }
bool phy::decode_mib(uint32_t N_id_2, srslte_cell_t *cell, uint8_t payload[SRSLTE_BCH_PAYLOAD_LEN]) { bool phy::decode_mib(uint32_t N_id_2, srslte_cell_t *cell, uint8_t payload[SRSLTE_BCH_PAYLOAD_LEN]) {
return decode_mib_N_id_2((int) N_id_2, cell, payload); return decode_mib_N_id_2((int) N_id_2, cell, payload);
} }
@ -253,10 +254,11 @@ bool phy::decode_mib_N_id_2(int force_N_id_2, srslte_cell_t *cell_ptr, uint8_t b
} }
srslte_ue_cellsearch_set_nof_frames_to_scan(&cs, params_db.get_param(params::CELLSEARCH_TIMEOUT_PSS_NFRAMES)); srslte_ue_cellsearch_set_nof_frames_to_scan(&cs, params_db.get_param(params::CELLSEARCH_TIMEOUT_PSS_NFRAMES));
srslte_ue_cellsearch_set_threshold(&cs, (float) params_db.get_param(params::CELLSEARCH_TIMEOUT_PSS_CORRELATION_THRESHOLD)/10); srslte_ue_cellsearch_set_threshold(&cs, (float)
params_db.get_param(params::CELLSEARCH_TIMEOUT_PSS_CORRELATION_THRESHOLD)/10);
cuhd_set_rx_srate(radio_handler, 1920000.0); radio_handler->set_rx_srate(1920000.0);
cuhd_start_rx_stream(radio_handler); radio_handler->start_rx();
/* Find a cell in the given N_id_2 or go through the 3 of them to find the strongest */ /* Find a cell in the given N_id_2 or go through the 3 of them to find the strongest */
uint32_t max_peak_cell = 0; uint32_t max_peak_cell = 0;
@ -268,7 +270,7 @@ bool phy::decode_mib_N_id_2(int force_N_id_2, srslte_cell_t *cell_ptr, uint8_t b
ret = srslte_ue_cellsearch_scan(&cs, found_cells, &max_peak_cell); ret = srslte_ue_cellsearch_scan(&cs, found_cells, &max_peak_cell);
} }
cuhd_stop_rx_stream(radio_handler); radio_handler->stop_rx();
srslte_ue_cellsearch_free(&cs); srslte_ue_cellsearch_free(&cs);
if (ret < 0) { if (ret < 0) {
@ -294,10 +296,10 @@ bool phy::decode_mib_N_id_2(int force_N_id_2, srslte_cell_t *cell_ptr, uint8_t b
/* Find and decode MIB */ /* Find and decode MIB */
uint32_t sfn, sfn_offset; uint32_t sfn, sfn_offset;
cuhd_start_rx_stream(radio_handler); radio_handler->start_rx();
ret = srslte_ue_mib_sync_decode(&ue_mib_sync, params_db.get_param(params::CELLSEARCH_TIMEOUT_MIB_NFRAMES), ret = srslte_ue_mib_sync_decode(&ue_mib_sync, params_db.get_param(params::CELLSEARCH_TIMEOUT_MIB_NFRAMES),
bch_payload, &cell_ptr->nof_ports, &sfn_offset); bch_payload, &cell_ptr->nof_ports, &sfn_offset);
cuhd_stop_rx_stream(radio_handler); radio_handler->stop_rx();
srslte_ue_mib_sync_free(&ue_mib_sync); srslte_ue_mib_sync_free(&ue_mib_sync);
if (ret == 1) { if (ret == 1) {
@ -372,8 +374,8 @@ void phy::run_rx_tx_state()
prach_buffer.send(radio_handler, rx_time); prach_buffer.send(radio_handler, rx_time);
} }
// send ul buffer if we have to // send ul buffer if we have to
if (get_ul_buffer(current_tti)->is_ready_to_send()) { if (get_ul_buffer(current_tti)->is_released()) {
get_ul_buffer(current_tti)->send_packet(radio_handler, rx_time); get_ul_buffer(current_tti)->send_packet(radio_handler, time_adv_sec, rx_time);
} }
ttisync->increase(); ttisync->increase();
} }

@ -28,8 +28,9 @@
#include <string.h> #include <string.h>
#include <strings.h> #include <strings.h>
#include <pthread.h> #include <pthread.h>
#include "srslte/srslte.h"
#include "srslte/srslte.h"
#include "srslte/cuhd/cuhd.h"
#include "srslte/ue_itf/prach.h" #include "srslte/ue_itf/prach.h"
#include "srslte/ue_itf/phy.h" #include "srslte/ue_itf/phy.h"
#include "srslte/ue_itf/params.h" #include "srslte/ue_itf/params.h"
@ -76,20 +77,26 @@ bool prach::init_cell(srslte_cell_t cell, params *params_db_)
return true; return true;
} }
bool prach::ready_to_send(uint32_t preamble_idx_) bool prach::prepare_to_send(uint32_t preamble_idx_)
{ {
if (initiated && preamble_idx_ < 64) { if (initiated && preamble_idx_ < 64) {
preamble_idx = preamble_idx_; preamble_idx = preamble_idx_;
INFO("PRACH Buffer: Prepare to send preamble %d\n", preamble_idx);
return true; return true;
} else { } else {
return false; return false;
} }
} }
bool prach::is_ready_to_send(uint32_t current_tti) { bool prach::is_ready_to_send(uint32_t current_tti_) {
if (preamble_idx >= 0 && preamble_idx < 64 && params_db != NULL) { if (initiated && preamble_idx >= 0 && preamble_idx < 64 && params_db != NULL) {
// consider the number of subframes the transmission must be anticipated
uint32_t current_tti = current_tti_ + tx_advance_sf;
// Get SFN and sf_idx from the PRACH configuration index
uint32_t config_idx = (uint32_t) params_db->get_param(params::PRACH_CONFIG_INDEX); uint32_t config_idx = (uint32_t) params_db->get_param(params::PRACH_CONFIG_INDEX);
srslte_prach_sfn_t prach_sfn = srslte_prach_get_sfn(config_idx); srslte_prach_sfn_t prach_sfn = srslte_prach_get_sfn(config_idx);
if (prach_sfn == SRSLTE_PRACH_SFN_EVEN && ((current_tti/10)%2)==0 || if (prach_sfn == SRSLTE_PRACH_SFN_EVEN && ((current_tti/10)%2)==0 ||
prach_sfn == SRSLTE_PRACH_SFN_ANY) prach_sfn == SRSLTE_PRACH_SFN_ANY)
{ {
@ -97,17 +104,25 @@ bool prach::is_ready_to_send(uint32_t current_tti) {
srslte_prach_sf_config(config_idx, &sf_config); srslte_prach_sf_config(config_idx, &sf_config);
for (int i=0;i<sf_config.nof_sf;i++) { for (int i=0;i<sf_config.nof_sf;i++) {
if ((current_tti%10) == sf_config.sf[i]) { if ((current_tti%10) == sf_config.sf[i]) {
INFO("PRACH Buffer: Ready to send at tti: %d\n", current_tti);
return true; return true;
} }
} }
} }
return false;
} }
INFO("PRACH Buffer: Not ready to send at tti: %d\n", current_tti_);
return false;
} }
bool prach::send(void *radio_handler, srslte_timestamp_t rx_time) bool prach::send(void *radio_handler, srslte_timestamp_t rx_time)
{ {
// advance transmission time
srslte_timestamp_t tx_time;
srslte_timestamp_copy(&tx_time, &rx_time);
srslte_timestamp_add(&tx_time, 0, 1e-3*tx_advance_sf);
// transmit // transmit
cuhd_send_timed(radio_handler, buffer[preamble_idx], len, tx_time.full_secs, tx_time.frac_secs);
} }
} // namespace ue } // namespace ue

@ -35,9 +35,10 @@
namespace srslte { namespace srslte {
namespace ue { namespace ue {
sched_grant::sched_grant(uint16_t rnti_) sched_grant::sched_grant(direction_t direction, uint16_t rnti_)
{ {
rnti = rnti_; rnti = rnti_;
dir = direction;
} }
/* Returns the RNTI associated with the UL/DL scheduling grant */ /* Returns the RNTI associated with the UL/DL scheduling grant */

@ -41,7 +41,6 @@ namespace ue {
bool ul_buffer::init_cell(srslte_cell_t cell_, params *params_db) { bool ul_buffer::init_cell(srslte_cell_t cell_, params *params_db) {
cell = cell_; cell = cell_;
params_db = params_db; params_db = params_db;
signal_generated = false;
current_tx_nb = 0; current_tx_nb = 0;
if (!srslte_ue_ul_init(&ue_ul, cell)) { if (!srslte_ue_ul_init(&ue_ul, cell)) {
signal_buffer = (cf_t*) srslte_vec_malloc(sizeof(cf_t) * SRSLTE_SF_LEN_PRB(cell.nof_prb)); signal_buffer = (cf_t*) srslte_vec_malloc(sizeof(cf_t) * SRSLTE_SF_LEN_PRB(cell.nof_prb));
@ -61,19 +60,28 @@ void ul_buffer::free_cell() {
} }
} }
bool ul_buffer::generate_pusch(sched_grant pusch_grant,
uint8_t *payload)
{
srslte_uci_data_t uci_data;
bzero(&uci_data, sizeof(srslte_uci_data_t));
return generate_pusch(pusch_grant, payload, uci_data);
}
bool ul_buffer::generate_pusch(sched_grant pusch_grant, bool ul_buffer::generate_pusch(sched_grant pusch_grant,
uint8_t *payload, uint8_t *payload,
srslte_uci_data_t uci_data) srslte_uci_data_t uci_data)
{ {
if (pusch_grant.is_uplink()) { if (is_ready()) {
fprintf(stderr, "Invalid scheduling grant. Grant is for Downlink\n"); if (!pusch_grant.is_uplink()) {
fprintf(stderr, "Error in UL buffer: Invalid scheduling grant. Grant is for Downlink\n");
return false; return false;
} }
srslte_refsignal_drms_pusch_cfg_t drms_cfg; srslte_refsignal_drms_pusch_cfg_t drms_cfg;
bzero(&drms_cfg, sizeof(srslte_refsignal_drms_pusch_cfg_t)); bzero(&drms_cfg, sizeof(srslte_refsignal_drms_pusch_cfg_t));
drms_cfg.beta_pusch = params_db->get_param(params::PUSCH_BETA); drms_cfg.beta_pusch = (float) params_db->get_param(params::PUSCH_BETA)/10;
drms_cfg.group_hopping_en = params_db->get_param(params::PUSCH_RS_GROUP_HOPPING_EN); drms_cfg.group_hopping_en = params_db->get_param(params::PUSCH_RS_GROUP_HOPPING_EN);
drms_cfg.sequence_hopping_en = params_db->get_param(params::PUSCH_RS_SEQUENCE_HOPPING_EN); drms_cfg.sequence_hopping_en = params_db->get_param(params::PUSCH_RS_SEQUENCE_HOPPING_EN);
drms_cfg.cyclic_shift = params_db->get_param(params::PUSCH_RS_CYCLIC_SHIFT); drms_cfg.cyclic_shift = params_db->get_param(params::PUSCH_RS_CYCLIC_SHIFT);
@ -91,25 +99,18 @@ bool ul_buffer::generate_pusch(sched_grant pusch_grant,
int n = srslte_ue_ul_pusch_uci_encode_rnti(&ue_ul, (srslte_ra_pusch_t*) pusch_grant.get_grant_ptr(), int n = srslte_ue_ul_pusch_uci_encode_rnti(&ue_ul, (srslte_ra_pusch_t*) pusch_grant.get_grant_ptr(),
payload, uci_data, payload, uci_data,
tti%10, pusch_grant.get_rnti(), (tti+tx_advance_sf)%10, pusch_grant.get_rnti(),
signal_buffer); signal_buffer);
if (n < 0) { if (n < 0) {
fprintf(stderr, "Error encoding PUSCH\n"); fprintf(stderr, "Error in UL buffer: Error encoding PUSCH\n");
return false; return false;
} }
release();
signal_generated = true;
/* This is done by the transmission thread
srslte_vec_sc_prod_cfc(signal_buffer, beta_pusch, signal_buffer, SRSLTE_SF_LEN_PRB(cell.nof_prb));
float time_adv_sec = TA_OFFSET + ((float) n_ta)*LTE_TS;
srslte_timestamp_t next_tx_time;
srslte_timestamp_copy(&next_tx_time, &last_rx_time);
srslte_timestamp_add(&next_tx_time, 0, 0.003 - time_adv_sec);
*/
// Send through radio
return true; return true;
} else {
fprintf(stderr, "Error in UL buffer: buffer not released\n");
return false;
}
} }
bool ul_buffer::generate_pucch(srslte_uci_data_t uci_data) bool ul_buffer::generate_pucch(srslte_uci_data_t uci_data)
@ -118,9 +119,19 @@ bool ul_buffer::generate_pucch(srslte_uci_data_t uci_data)
return false; return false;
} }
bool ul_buffer::send_packet(void *radio_handler, srslte_timestamp_t rx_time) bool ul_buffer::send_packet(radio *radio_handler, float time_adv_sec, srslte_timestamp_t rx_time)
{ {
// send packet through usrp // send packet through usrp
srslte_timestamp_t tx_time;
srslte_timestamp_copy(&tx_time, &rx_time);
srslte_timestamp_add(&tx_time, 0, tx_advance_sf*1e-3 - time_adv_sec);
INFO("Send PUSCH rx_time= %.6f tx_time = %.6f TA: %.1f us\n",
srslte_timestamp_real(&rx_time),
srslte_timestamp_real(&tx_time), time_adv_sec*1000000);
radio_handler->tx(signal_buffer, SRSLTE_SF_LEN_PRB(cell.nof_prb), tx_time);
ready();
} }
} // namespace ue } // namespace ue

@ -24,4 +24,7 @@ LIST(FIND OPTIONAL_LIBS cuhd CUHD_FIND)
IF(${CUHD_FIND} GREATER -1) IF(${CUHD_FIND} GREATER -1)
ADD_EXECUTABLE(ue_itf_test_sib1 ue_itf_test_sib1.cc) ADD_EXECUTABLE(ue_itf_test_sib1 ue_itf_test_sib1.cc)
TARGET_LINK_LIBRARIES(ue_itf_test_sib1 srslte++ cuhd) TARGET_LINK_LIBRARIES(ue_itf_test_sib1 srslte++ cuhd)
ADD_EXECUTABLE(ue_itf_test_prach ue_itf_test_prach.cc)
TARGET_LINK_LIBRARIES(ue_itf_test_prach srslte++ cuhd)
ENDIF(${CUHD_FIND} GREATER -1) ENDIF(${CUHD_FIND} GREATER -1)

@ -0,0 +1,361 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The srsLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <unistd.h>
#include "srslte/utils/debug.h"
#include "srslte/ue_itf/phy.h"
#include "srslte/ue_itf/tti_sync_cv.h"
#include "srslte/cuhd/radio_uhd.h"
/**********************************************************************
* Program arguments processing
***********************************************************************/
typedef struct {
float uhd_rx_freq;
float uhd_tx_freq;
float uhd_rx_gain;
float uhd_tx_gain;
}prog_args_t;
void args_default(prog_args_t *args) {
args->uhd_rx_freq = -1.0;
args->uhd_tx_freq = -1.0;
args->uhd_rx_gain = 60.0;
args->uhd_tx_gain = 40.0;
}
void usage(prog_args_t *args, char *prog) {
printf("Usage: %s [gGv] -f rx_frequency -F tx_frequency (in Hz)\n", prog);
printf("\t-g UHD RX gain [Default %.2f dB]\n", args->uhd_rx_gain);
printf("\t-G UHD TX gain [Default %.2f dB]\n", args->uhd_tx_gain);
printf("\t-v [increase verbosity, default none]\n");
}
void parse_args(prog_args_t *args, int argc, char **argv) {
int opt;
args_default(args);
while ((opt = getopt(argc, argv, "gGfFv")) != -1) {
switch (opt) {
case 'g':
args->uhd_rx_gain = atof(argv[optind]);
break;
case 'G':
args->uhd_tx_gain = atof(argv[optind]);
break;
case 'f':
args->uhd_rx_freq = atof(argv[optind]);
break;
case 'F':
args->uhd_tx_freq = atof(argv[optind]);
break;
case 'v':
srslte_verbose++;
break;
default:
usage(args, argv[0]);
exit(-1);
}
}
if (args->uhd_rx_freq < 0 || args->uhd_tx_freq < 0) {
usage(args, argv[0]);
exit(-1);
}
}
typedef enum{
rar_tpc_n6dB = 0,
rar_tpc_n4dB,
rar_tpc_n2dB,
rar_tpc_0dB,
rar_tpc_2dB,
rar_tpc_4dB,
rar_tpc_6dB,
rar_tpc_8dB,
rar_tpc_n_items,
}rar_tpc_command_t;
static const char tpc_command_text[rar_tpc_n_items][8] = {"-6dB", "-4dB", "-2dB", "0dB", "2dB", "4dB", "6dB", "8dB"};
typedef enum{
rar_header_type_bi = 0,
rar_header_type_rapid,
rar_header_type_n_items,
}rar_header_t;
static const char rar_header_text[rar_header_type_n_items][8] = {"BI", "RAPID"};
typedef struct {
rar_header_t hdr_type;
bool hopping_flag;
rar_tpc_command_t tpc_command;
bool ul_delay;
bool csi_req;
uint16_t rba;
uint16_t timing_adv_cmd;
uint16_t temp_c_rnti;
uint8_t mcs;
uint8_t RAPID;
uint8_t BI;
}rar_msg_t;
char *bool_to_string(bool x) {
if (x) {
return (char*) "Enabled";
} else {
return (char*) "Disabled";
}
}
void rar_msg_fprint(FILE *stream, rar_msg_t *msg)
{
fprintf(stream, "Header type: %s\n", rar_header_text[msg->hdr_type]);
fprintf(stream, "Hopping flag: %s\n", bool_to_string(msg->hopping_flag));
fprintf(stream, "TPC command: %s\n", tpc_command_text[msg->tpc_command]);
fprintf(stream, "UL delay: %s\n", bool_to_string(msg->ul_delay));
fprintf(stream, "CSI required: %s\n", bool_to_string(msg->csi_req));
fprintf(stream, "RBA: %d\n", msg->rba);
fprintf(stream, "TA: %d\n", msg->timing_adv_cmd);
fprintf(stream, "T-CRNTI: %d\n", msg->temp_c_rnti);
fprintf(stream, "MCS: %d\n", msg->mcs);
fprintf(stream, "RAPID: %d\n", msg->RAPID);
fprintf(stream, "BI: %d\n", msg->BI);
}
int rar_unpack(uint8_t *buffer, rar_msg_t *msg)
{
int ret = SRSLTE_ERROR;
uint8_t *ptr = buffer;
if(buffer != NULL &&
msg != NULL)
{
ptr++;
msg->hdr_type = (rar_header_t) *ptr++;
if(msg->hdr_type == rar_header_type_bi) {
ptr += 2;
msg->BI = srslte_bit_unpack(&ptr, 4);
ret = SRSLTE_SUCCESS;
} else if (msg->hdr_type == rar_header_type_rapid) {
msg->RAPID = srslte_bit_unpack(&ptr, 6);
ptr++;
msg->timing_adv_cmd = srslte_bit_unpack(&ptr, 11);
msg->hopping_flag = *ptr++;
msg->rba = srslte_bit_unpack(&ptr, 10);
msg->mcs = srslte_bit_unpack(&ptr, 4);
msg->tpc_command = (rar_tpc_command_t) srslte_bit_unpack(&ptr, 3);
msg->ul_delay = *ptr++;
msg->csi_req = *ptr++;
msg->temp_c_rnti = srslte_bit_unpack(&ptr, 16);
ret = SRSLTE_SUCCESS;
}
}
return(ret);
}
srslte::ue::phy phy;
uint8_t payload[1024];
const uint8_t conn_request_msg[] = {0x20, 0x06, 0x1F, 0x5C, 0x2C, 0x04, 0xB2, 0xAC, 0xF6, 0x00, 0x00, 0x00};
enum mac_state {RA, RAR, CONNSETUP} state = RA;
uint32_t ra_tti = 0, conreq_tti = 0;
uint32_t preamble_idx = 0;
rar_msg_t rar_msg;
uint32_t nof_rx_connsetup = 0, nof_rx_rar = 0, nof_tx_ra = 0;
void config_phy() {
phy.set_param(srslte::ue::params::PRACH_CONFIG_INDEX, 0);
phy.set_param(srslte::ue::params::PRACH_FREQ_OFFSET, 0);
phy.set_param(srslte::ue::params::PRACH_HIGH_SPEED_FLAG, 0);
phy.set_param(srslte::ue::params::PRACH_ROOT_SEQ_IDX, 0);
phy.set_param(srslte::ue::params::PRACH_ZC_CONFIG, 1);
phy.set_param(srslte::ue::params::PUSCH_BETA, 10);
phy.set_param(srslte::ue::params::PUSCH_RS_GROUP_HOPPING_EN, 0);
phy.set_param(srslte::ue::params::PUSCH_RS_SEQUENCE_HOPPING_EN, 0);
phy.set_param(srslte::ue::params::PUSCH_RS_CYCLIC_SHIFT, 0);
phy.set_param(srslte::ue::params::PUSCH_HOPPING_OFFSET, 0);
}
// This is the MAC implementation
void run_tti(uint32_t tti) {
INFO("MAC running tti: %d\n", tti);
// Get buffer
srslte::ue::dl_buffer *dl_buffer = phy.get_dl_buffer(tti);
if (dl_buffer) {
fprintf(stderr, "Error getting DL buffer for tti %d\n", tti);
return;
}
if (state == RA) {
// Indicate PHY to transmit the PRACH when possible
if (phy.send_prach(preamble_idx)) {
ra_tti = tti;
nof_tx_ra++;
state = RAR;
} else {
fprintf(stderr, "Error sending PRACH\n");
exit(-1);
}
} else if (state == RAR) {
srslte::ue::sched_grant rar_grant(srslte::ue::sched_grant::DOWNLINK, 2);
// Assume the maximum RA-window
uint32_t interval = (tti-ra_tti)%10240;
if (interval >= 3 && interval <= 13) {
// Get DL grant for RA-RNTI=2
if (dl_buffer->get_dl_grant(srslte::ue::dl_buffer::PDCCH_DL_SEARCH_RARNTI, &rar_grant))
{
// Decode packet
if (dl_buffer->decode_pdsch(rar_grant, payload)) {
INFO("RAR received tti: %d\n", tti);
rar_unpack(payload, &rar_msg);
INFO("Received RAR for preamble %d\n", rar_msg.RAPID);
if (rar_msg.RAPID == preamble_idx) {
nof_rx_rar++;
if (SRSLTE_VERBOSE_ISINFO()) {
rar_msg_fprint(stdout, &rar_msg);
}
// Set time advance
phy.set_timeadv_rar(rar_msg.timing_adv_cmd);
// Generate Msg3 grant
srslte::ue::sched_grant connreq_grant(srslte::ue::sched_grant::UPLINK, rar_msg.temp_c_rnti);
phy.rar_ul_grant(rar_msg.rba, rar_msg.mcs, rar_msg.hopping_flag, &connreq_grant);
// Pack Msg3 bits
srslte_bit_pack_vector((uint8_t*) conn_request_msg, payload, connreq_grant.get_tbs());
// Get UL buffer
srslte::ue::ul_buffer *ul_buffer = phy.get_ul_buffer(tti+6);
// Generate PUSCH
if (ul_buffer) {
ul_buffer->generate_pusch(connreq_grant, payload);
// Save transmission time
conreq_tti = tti;
state = CONNSETUP;
} else {
fprintf(stderr, "Error getting UL buffer for TTI %d\n", tti);
state = RA;
}
}
}
}
}
} else {
srslte::ue::sched_grant conn_setup_grant(srslte::ue::sched_grant::DOWNLINK, rar_msg.temp_c_rnti);
if ((tti - conreq_tti)%10240 == 4) {
// Get DL grant for RA-RNTI=2
if (dl_buffer->get_dl_grant(srslte::ue::dl_buffer::PDCCH_DL_SEARCH_TEMPORAL, &conn_setup_grant))
{
// Decode packet
if (dl_buffer->decode_pdsch(conn_setup_grant, payload)) {
INFO("ConnSetup received tti=%d\n", tti);
nof_rx_connsetup++;
state = RA;
}
}
}
}
if (srslte_verbose == SRSLTE_VERBOSE_NONE) {
printf("RECV RAR %.1f \%% RECV ConnSetup %.1f \%% (total RA: %5u) \r",
(float) 100*nof_rx_rar/nof_tx_ra,
(float) 100*nof_rx_connsetup/nof_tx_ra,
nof_tx_ra);
}
dl_buffer->ready();
}
int main(int argc, char *argv[])
{
srslte_cell_t cell;
uint8_t bch_payload[SRSLTE_BCH_PAYLOAD_LEN];
prog_args_t prog_args;
srslte::ue::tti_sync_cv ttisync(10240);
srslte::radio_uhd radio_uhd;
parse_args(&prog_args, argc, argv);
// Init Radio
radio_uhd.init();
// Init PHY
phy.init(&radio_uhd, &ttisync);
// Give it time to create thread
sleep(1);
// Setup PHY parameters
config_phy();
// Set RX freq and gain
phy.get_radio()->set_rx_freq(prog_args.uhd_rx_freq);
phy.get_radio()->set_tx_freq(prog_args.uhd_tx_freq);
phy.get_radio()->set_rx_gain(prog_args.uhd_rx_gain);
phy.get_radio()->set_tx_gain(prog_args.uhd_tx_gain);
/* Instruct the PHY to decode BCH */
if (!phy.decode_mib_best(&cell, bch_payload)) {
exit(-1);
}
// Print MIB
srslte_cell_fprint(stdout, &cell, phy.get_current_tti()/10);
// Set the current PHY cell to the detected cell
if (!phy.set_cell(cell)) {
printf("Error setting cell\n");
exit(-1);
}
/* Instruct the PHY to start RX streaming and synchronize */
if (!phy.start_rxtx()) {
printf("Could not start RX\n");
exit(-1);
}
/* go to idle and process each tti */
while(1) {
uint32_t tti = ttisync.wait();
run_tti(tti);
}
}

@ -30,7 +30,7 @@
#include "srslte/utils/debug.h" #include "srslte/utils/debug.h"
#include "srslte/ue_itf/phy.h" #include "srslte/ue_itf/phy.h"
#include "srslte/ue_itf/tti_sync_cv.h" #include "srslte/ue_itf/tti_sync_cv.h"
#include "srslte/cuhd/radio_uhd.h"
/********************************************************************** /**********************************************************************
@ -92,21 +92,19 @@ uint8_t payload[1024];
// This is the MAC implementation // This is the MAC implementation
void run_tti(uint32_t tti) { void run_tti(uint32_t tti) {
srslte::ue::sched_grant grant = srslte::ue::sched_grant(SRSLTE_SIRNTI); srslte::ue::sched_grant grant = srslte::ue::sched_grant(srslte::ue::sched_grant::DOWNLINK, SRSLTE_SIRNTI);
INFO("MAC running tti: %d\n", tti); INFO("MAC running tti: %d\n", tti);
// SIB1 is scheduled in subframe #5 of even frames // SIB1 is scheduled in subframe #5 of even frames
if ((phy.tti_to_SFN(tti)%2) == 0 && phy.tti_to_subf(tti) == 5) { if ((phy.tti_to_SFN(tti)%2) == 0 && phy.tti_to_subf(tti) == 5) {
// Get buffer // Get buffer
srslte::ue::dl_buffer *buffer = phy.get_dl_buffer(tti); srslte::ue::dl_buffer *buffer = phy.get_dl_buffer(tti);
// Get DL grant // Get DL grant
if (buffer->get_dl_grant(srslte::ue::dl_buffer::PDCCH_DL_SEARCH_SIRNTI, SRSLTE_SIRNTI, &grant)) if (buffer->get_dl_grant(srslte::ue::dl_buffer::PDCCH_DL_SEARCH_SIRNTI, &grant))
{ {
total_dci++; total_dci++;
// MAC sets RV
// MAC sets RV and RNTI
grant.set_rv(((uint32_t) ceilf((float)3*((phy.tti_to_SFN(tti)/2)%4)/2))%4); grant.set_rv(((uint32_t) ceilf((float)3*((phy.tti_to_SFN(tti)/2)%4)/2))%4);
// Decode packet // Decode packet
@ -130,18 +128,22 @@ int main(int argc, char *argv[])
uint8_t bch_payload[SRSLTE_BCH_PAYLOAD_LEN]; uint8_t bch_payload[SRSLTE_BCH_PAYLOAD_LEN];
prog_args_t prog_args; prog_args_t prog_args;
srslte::ue::tti_sync_cv ttisync(10240); srslte::ue::tti_sync_cv ttisync(10240);
srslte::radio_uhd radio_uhd;
parse_args(&prog_args, argc, argv); parse_args(&prog_args, argc, argv);
// Init Radio
radio_uhd.init();
// Init PHY // Init PHY
phy.init(&ttisync); phy.init(&radio_uhd, &ttisync);
// Give it time to create thread // Give it time to create thread
sleep(1); sleep(1);
// Set RX freq and gain // Set RX freq and gain
phy.set_rx_freq(prog_args.uhd_freq); phy.get_radio()->set_rx_freq(prog_args.uhd_freq);
phy.set_rx_gain(prog_args.uhd_gain); phy.get_radio()->set_rx_gain(prog_args.uhd_gain);
/* Instruct the PHY to decode BCH */ /* Instruct the PHY to decode BCH */
if (!phy.decode_mib_best(&cell, bch_payload)) { if (!phy.decode_mib_best(&cell, bch_payload)) {

Loading…
Cancel
Save