lib,rlc_am_nr: extend unit tests for 18-bit SN

master
Robert Falkenberg 3 years ago
parent 7e13cd0712
commit bd6e306c94

@ -785,15 +785,23 @@ int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
// Push 5 SDUs into RLC1 // Push 5 SDUs into RLC1
std::vector<unique_byte_buffer_t> sdu_bufs(n_sdu_bufs); std::vector<unique_byte_buffer_t> sdu_bufs(n_sdu_bufs);
constexpr uint32_t payload_size = 3; // Give the SDU the size of 3 bytes
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
for (int i = 0; i < n_sdu_bufs; i++) { for (int i = 0; i < n_sdu_bufs; i++) {
sdu_bufs[i] = srsran::make_byte_buffer(); sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 3; // Give each buffer a size of 3 bytes sdu_bufs[i]->N_bytes = payload_size; // Give each buffer a size of 3 bytes
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i])); rlc1.write_sdu(std::move(sdu_bufs[i]));
} }
TESTASSERT(25 == rlc1.get_buffer_state()); // 2 Bytes * NBUFFS (header size) + NBUFFS * 3 (data) = 25 uint32_t expected_buffer_state = (header_size + payload_size) * n_sdu_bufs;
TESTASSERT(expected_buffer_state == rlc1.get_buffer_state());
constexpr uint32_t so_size = 2;
constexpr uint32_t segment_size = 1;
uint32_t pdu_size_first = header_size + segment_size;
uint32_t pdu_size_continued = header_size + so_size + segment_size;
// Read 15 PDUs from RLC1 // Read 15 PDUs from RLC1
std::vector<unique_byte_buffer_t> pdu_bufs(n_pdu_bufs); std::vector<unique_byte_buffer_t> pdu_bufs(n_pdu_bufs);
@ -801,14 +809,14 @@ int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
pdu_bufs[i] = srsran::make_byte_buffer(); pdu_bufs[i] = srsran::make_byte_buffer();
if (i == 0 || i == 3 || i == 6 || i == 9 || i == 12) { if (i == 0 || i == 3 || i == 6 || i == 9 || i == 12) {
// First segment, no SO // First segment, no SO
uint32_t len = rlc1.read_pdu(pdu_bufs[i]->msg, 3); // 2 bytes for header + 1 byte payload uint32_t len = rlc1.read_pdu(pdu_bufs[i]->msg, pdu_size_first); // 2 bytes for header + 1 byte payload
pdu_bufs[i]->N_bytes = len; pdu_bufs[i]->N_bytes = len;
TESTASSERT_EQ(3, len); TESTASSERT_EQ(pdu_size_first, len);
} else { } else {
// Middle or last segment, SO present // Middle or last segment, SO present
uint32_t len = rlc1.read_pdu(pdu_bufs[i]->msg, 5); // 4 bytes for header + 1 byte payload uint32_t len = rlc1.read_pdu(pdu_bufs[i]->msg, pdu_size_continued); // 4 bytes for header + 1 byte payload
pdu_bufs[i]->N_bytes = len; pdu_bufs[i]->N_bytes = len;
TESTASSERT_EQ(5, len); TESTASSERT_EQ(pdu_size_continued, len);
} }
} }
@ -847,11 +855,14 @@ int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
// t-reassembly has expired. There should be a NACK in the status report. // t-reassembly has expired. There should be a NACK in the status report.
// There should be 3 NACKs with SO_start and SO_end // There should be 3 NACKs with SO_start and SO_end
TESTASSERT_EQ(21, rlc2.get_buffer_state()); // 3 bytes for fixed header (ACK+E1) + 3 * 6 for NACK with SO = 21. constexpr uint32_t status_pdu_ack_size = 3;
uint32_t status_pdu_nack_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
constexpr uint32_t status_pdu_so_size = 4;
TESTASSERT_EQ(status_pdu_ack_size + 3 * (status_pdu_nack_size + status_pdu_so_size), rlc2.get_buffer_state());
{ {
// Read status PDU from RLC2 // Read status PDU from RLC2
byte_buffer_t status_buf; byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 21); int len = rlc2.read_pdu(status_buf.msg, status_pdu_ack_size + 3 * (status_pdu_nack_size + status_pdu_so_size));
status_buf.N_bytes = len; status_buf.N_bytes = len;
TESTASSERT_EQ(0, rlc2.get_buffer_state()); TESTASSERT_EQ(0, rlc2.get_buffer_state());
@ -878,7 +889,7 @@ int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes); rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check there is an Retx of SN=3 // Check there is an Retx of SN=3
TESTASSERT_EQ(5, rlc1.get_buffer_state()); TESTASSERT_EQ(header_size + payload_size, rlc1.get_buffer_state());
} }
{ {
@ -887,11 +898,11 @@ int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
byte_buffer_t retx_buf; byte_buffer_t retx_buf;
uint32_t len = 0; uint32_t len = 0;
if (i == 0) { if (i == 0) {
len = rlc1.read_pdu(retx_buf.msg, 3); len = rlc1.read_pdu(retx_buf.msg, pdu_size_first);
TESTASSERT_EQ(3, len); TESTASSERT_EQ(pdu_size_first, len);
} else { } else {
len = rlc1.read_pdu(retx_buf.msg, 5); len = rlc1.read_pdu(retx_buf.msg, pdu_size_continued);
TESTASSERT_EQ(5, len); TESTASSERT_EQ(pdu_size_continued, len);
} }
retx_buf.N_bytes = len; retx_buf.N_bytes = len;
@ -918,6 +929,12 @@ int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
rlc_bearer_metrics_t metrics1 = rlc1.get_metrics(); rlc_bearer_metrics_t metrics1 = rlc1.get_metrics();
rlc_bearer_metrics_t metrics2 = rlc2.get_metrics(); rlc_bearer_metrics_t metrics2 = rlc2.get_metrics();
uint32_t data_pdu_size = header_size + payload_size;
uint32_t total_tx_pdu_bytes1 = 5 * pdu_size_first + 10 * pdu_size_continued + pdu_size_first + 2 * pdu_size_continued;
uint32_t total_rx_pdu_bytes1 = 2 * status_pdu_ack_size + 3 * (status_pdu_nack_size + status_pdu_so_size);
uint32_t total_tx_pdu_bytes2 = total_rx_pdu_bytes1;
uint32_t total_rx_pdu_bytes2 = 4 * pdu_size_first + 8 * pdu_size_continued + pdu_size_first + 2 * pdu_size_continued;
// SDU metrics // SDU metrics
TESTASSERT_EQ(5, metrics1.num_tx_sdus); TESTASSERT_EQ(5, metrics1.num_tx_sdus);
TESTASSERT_EQ(0, metrics1.num_rx_sdus); TESTASSERT_EQ(0, metrics1.num_rx_sdus);
@ -928,10 +945,12 @@ int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
// PDU metrics // PDU metrics
TESTASSERT_EQ(15 + 3, metrics1.num_tx_pdus); // 15 PDUs + 3 re-transmissions TESTASSERT_EQ(15 + 3, metrics1.num_tx_pdus); // 15 PDUs + 3 re-transmissions
TESTASSERT_EQ(2, metrics1.num_rx_pdus); // Two status PDU TESTASSERT_EQ(2, metrics1.num_rx_pdus); // Two status PDU
TESTASSERT_EQ(78, metrics1.num_tx_pdu_bytes); // 3 Bytes * 5 (5 PDUs without SO) + 10 * 5 (10 PDUs with SO) TESTASSERT_EQ(total_tx_pdu_bytes1,
// 3 (1 retx no SO) + 2 * 5 (2 retx with SO) = 78 metrics1.num_tx_pdu_bytes); // 3 Bytes * 5 (5 PDUs without SO) + 10 * 5 (10 PDUs with SO)
TESTASSERT_EQ(24, metrics1.num_rx_pdu_bytes); // Two status PDU. One with just an ack (3 bytes) // 3 (1 retx no SO) + 2 * 5 (2 retx with SO) = 78
// Another with 3 NACKs all with SO. (3 + 3*6 bytes) TESTASSERT_EQ(total_rx_pdu_bytes1,
metrics1.num_rx_pdu_bytes); // Two status PDU. One with just an ack (3 bytes)
// Another with 3 NACKs all with SO. (3 + 3*6 bytes) = 24
TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs TESTASSERT_EQ(0, metrics1.num_lost_sdus); // No lost SDUs
// PDU metrics // PDU metrics
@ -943,11 +962,12 @@ int retx_segment_test(rlc_am_nr_sn_size_t sn_size)
// SDU metrics // SDU metrics
TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs TESTASSERT_EQ(2, metrics2.num_tx_pdus); // Two status PDUs
TESTASSERT_EQ(15, metrics2.num_rx_pdus); // 15 PDUs (18 tx'ed, but three were lost) TESTASSERT_EQ(15, metrics2.num_rx_pdus); // 15 PDUs (18 tx'ed, but three were lost)
TESTASSERT_EQ(24, metrics2.num_tx_pdu_bytes); // Two status PDU. One with just an ack (3 bytes) TESTASSERT_EQ(total_tx_pdu_bytes2,
// Another with 3 NACKs all with SO. (3 + 3*6 bytes) metrics2.num_tx_pdu_bytes); // Two status PDU. One with just an ack (3 bytes)
TESTASSERT_EQ(65, metrics2.num_rx_pdu_bytes); // 3 Bytes (header + data size, without SO) * 5 (N PDUs without SO) // Another with 3 NACKs all with SO. (3 + 3*6 bytes) = 24
// 5 bytes (header + data size, with SO) * 10 (N PDUs with SO) TESTASSERT_EQ(total_rx_pdu_bytes2,
// = 81 bytes metrics2.num_rx_pdu_bytes); // 3 Bytes * 4 (5-1 PDUs without SO) + 8 * 5 (10-2 PDUs with SO)
// 3 (1 retx no SO) + 2 * 5 (2 retx with SO) = 65 bytes
TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs TESTASSERT_EQ(0, metrics2.num_lost_sdus); // No lost SDUs
// Check state // Check state
@ -979,19 +999,23 @@ int max_retx_lost_sdu_test(rlc_am_nr_sn_size_t sn_size)
// Push 2 SDUs into RLC1 // Push 2 SDUs into RLC1
const uint32_t n_sdus = 2; const uint32_t n_sdus = 2;
unique_byte_buffer_t sdu_bufs[n_sdus]; unique_byte_buffer_t sdu_bufs[n_sdus];
constexpr uint32_t payload_size = 1; // Give each buffer a size of 1 byte
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
for (uint32_t i = 0; i < n_sdus; i++) { for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer(); sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte sdu_bufs[i]->N_bytes = payload_size; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i])); rlc1.write_sdu(std::move(sdu_bufs[i]));
} }
uint32_t pdu_size = header_size + payload_size;
// Read 2 PDUs from RLC1 (1 byte each) // Read 2 PDUs from RLC1 (1 byte each)
const uint32_t n_pdus = 2; const uint32_t n_pdus = 2;
byte_buffer_t pdu_bufs[n_pdus]; byte_buffer_t pdu_bufs[n_pdus];
for (uint32_t i = 0; i < n_pdus; i++) { for (uint32_t i = 0; i < n_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 byte header + 1 byte payload len = rlc1.read_pdu(pdu_bufs[i].msg, pdu_size); // 2 byte header + 1 byte payload
pdu_bufs[i].N_bytes = len; pdu_bufs[i].N_bytes = len;
} }
@ -1018,7 +1042,7 @@ int max_retx_lost_sdu_test(rlc_am_nr_sn_size_t sn_size)
rlc1.write_pdu(status_pdu.msg, status_pdu.N_bytes); rlc1.write_pdu(status_pdu.msg, status_pdu.N_bytes);
byte_buffer_t pdu_buf; byte_buffer_t pdu_buf;
len = rlc1.read_pdu(pdu_buf.msg, 3); // 2 byte header + 1 byte payload len = rlc1.read_pdu(pdu_buf.msg, pdu_size); // 2 byte header + 1 byte payload
} }
// Now maxRetx should have been triggered // Now maxRetx should have been triggered
@ -1049,21 +1073,29 @@ int max_retx_lost_segments_test(rlc_am_nr_sn_size_t sn_size)
// Push 2 SDUs into RLC1 // Push 2 SDUs into RLC1
const uint32_t n_sdus = 2; const uint32_t n_sdus = 2;
unique_byte_buffer_t sdu_bufs[n_sdus]; unique_byte_buffer_t sdu_bufs[n_sdus];
constexpr uint32_t payload_size = 20; // Give each buffer a size of 20 bytes
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
for (uint32_t i = 0; i < n_sdus; i++) { for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer(); sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 20; // Give each buffer a size of 20 bytes sdu_bufs[i]->N_bytes = payload_size; // Give each buffer a size of 20 bytes
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i])); rlc1.write_sdu(std::move(sdu_bufs[i]));
} }
constexpr uint32_t so_size = 2;
constexpr uint32_t segment_size_first = 13;
constexpr uint32_t segment_size_continued = 7;
uint32_t pdu_size_first = header_size + segment_size_first;
uint32_t pdu_size_continued = header_size + so_size + segment_size_continued;
// Read 2*2=4 PDUs from RLC1 and limit to 15 byte to force segmentation in two parts: // Read 2*2=4 PDUs from RLC1 and limit to 15 byte to force segmentation in two parts:
// Segment 1: 2 byte header + 13 byte payload; space fully used // Segment 1: 2 byte header + 13 byte payload; space fully used
// Segment 2: 4 byte header + 7 byte payload; space not fully used, 4 bytes left over // Segment 2: 4 byte header + 7 byte payload; space not fully used, 4 bytes left over
const uint32_t n_pdus = 4; const uint32_t n_pdus = 4;
byte_buffer_t pdu_bufs[n_pdus]; byte_buffer_t pdu_bufs[n_pdus];
for (uint32_t i = 0; i < n_pdus; i++) { for (uint32_t i = 0; i < n_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 15); len = rlc1.read_pdu(pdu_bufs[i].msg, pdu_size_first);
pdu_bufs[i].N_bytes = len; pdu_bufs[i].N_bytes = len;
} }
@ -1087,7 +1119,7 @@ int max_retx_lost_segments_test(rlc_am_nr_sn_size_t sn_size)
rlc_am_nr_write_status_pdu( rlc_am_nr_write_status_pdu(
status_lost_both_segments, rlc_cfg.am_nr.tx_sn_field_length, &status_pdu_lost_both_segments); status_lost_both_segments, rlc_cfg.am_nr.tx_sn_field_length, &status_pdu_lost_both_segments);
// Fake status PDU that ack SN=1 and nack {SN=0 segment 2} // Fake status PDU that ack SN=1 and nack {SN=0 segment 1}
rlc_am_nr_status_pdu_t status_lost_second_segment = {}; rlc_am_nr_status_pdu_t status_lost_second_segment = {};
status_lost_second_segment.ack_sn = 2; // delivered up to SN=1 status_lost_second_segment.ack_sn = 2; // delivered up to SN=1
status_lost_second_segment.N_nack = 1; // one SN was lost status_lost_second_segment.N_nack = 1; // one SN was lost
@ -1117,14 +1149,14 @@ int max_retx_lost_segments_test(rlc_am_nr_sn_size_t sn_size)
rlc1.write_pdu(status_pdu_lost_both_segments.msg, status_pdu_lost_both_segments.N_bytes); rlc1.write_pdu(status_pdu_lost_both_segments.msg, status_pdu_lost_both_segments.N_bytes);
// read the retransmitted PDUs // read the retransmitted PDUs
len = rlc1.read_pdu(pdu_buf.msg, 15); // 2 byte header + 13 byte payload len = rlc1.read_pdu(pdu_buf.msg, pdu_size_first); // 2 byte header + 13 byte payload
len = rlc1.read_pdu(pdu_buf.msg, 15); // 4 byte header + 7 byte payload len = rlc1.read_pdu(pdu_buf.msg, pdu_size_first); // 4 byte header + 7 byte payload
} else { } else {
// Send NACK for segment 2 (assume at least segment 1 was finally received) // Send NACK for segment 2 (assume at least segment 1 was finally received)
rlc1.write_pdu(status_pdu_lost_second_segment.msg, status_pdu_lost_second_segment.N_bytes); rlc1.write_pdu(status_pdu_lost_second_segment.msg, status_pdu_lost_second_segment.N_bytes);
// read the retransmitted PDUs // read the retransmitted PDUs
len = rlc1.read_pdu(pdu_buf.msg, 15); // 4 byte header + 7 byte payload len = rlc1.read_pdu(pdu_buf.msg, pdu_size_first); // 4 byte header + 7 byte payload
} }
} }
@ -1157,14 +1189,16 @@ int discard_test(rlc_am_nr_sn_size_t sn_size)
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
uint32_t num_tx_sdus = 1;
uint32_t header_size = sn_size == rlc_am_nr_sn_size_t::size12bits ? 2 : 3;
uint32_t payload_size = 5; // Give each buffer a size of 5 bytes
// Test discarding the single SDU from the queue // Test discarding the single SDU from the queue
{ {
uint32_t num_tx_sdus = 1;
for (uint32_t i = 0; i < num_tx_sdus; ++i) { for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU // Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer(); unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr); TESTASSERT(sdu != nullptr);
sdu->N_bytes = 5; sdu->N_bytes = payload_size;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) { for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer sdu->msg[k] = i; // Write the index into the buffer
} }
@ -1175,14 +1209,15 @@ int discard_test(rlc_am_nr_sn_size_t sn_size)
rlc1.discard_sdu(0); // Try to discard PDCP_SN=0 rlc1.discard_sdu(0); // Try to discard PDCP_SN=0
TESTASSERT(rlc1.has_data() == false); TESTASSERT(rlc1.has_data() == false);
num_tx_sdus = 10;
payload_size = 7; // Give each buffer a size of 7 bytes
// Test discarding two SDUs in the middle (SN=3) and end (SN=9) of the queue and read PDUs after // Test discarding two SDUs in the middle (SN=3) and end (SN=9) of the queue and read PDUs after
{ {
uint32_t num_tx_sdus = 10;
for (uint32_t i = 0; i < num_tx_sdus; ++i) { for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU // Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer(); unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr); TESTASSERT(sdu != nullptr);
sdu->N_bytes = 7; sdu->N_bytes = payload_size;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) { for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer sdu->msg[k] = i; // Write the index into the buffer
} }
@ -1190,21 +1225,21 @@ int discard_test(rlc_am_nr_sn_size_t sn_size)
rlc1.write_sdu(std::move(sdu)); rlc1.write_sdu(std::move(sdu));
} }
} }
TESTASSERT(rlc1.get_buffer_state() == 90); // 10 * (2B Header + 7B Payload) TESTASSERT(rlc1.get_buffer_state() == num_tx_sdus * (header_size + payload_size)); // 10 * (2B Header + 7B Payload)
rlc1.discard_sdu(3); // Try to discard PDCP_SN=3 rlc1.discard_sdu(3); // Try to discard PDCP_SN=3
TESTASSERT(rlc1.has_data() == true); TESTASSERT(rlc1.has_data() == true);
TESTASSERT(rlc1.get_buffer_state() == 81); TESTASSERT(rlc1.get_buffer_state() == (num_tx_sdus - 1) * (header_size + payload_size));
rlc1.discard_sdu(9); // Try to discard PDCP_SN=9 rlc1.discard_sdu(9); // Try to discard PDCP_SN=9
TESTASSERT(rlc1.has_data() == true); TESTASSERT(rlc1.has_data() == true);
TESTASSERT(rlc1.get_buffer_state() == 72); TESTASSERT(rlc1.get_buffer_state() == (num_tx_sdus - 2) * (header_size + payload_size));
num_tx_sdus = 8;
{ {
uint32_t num_tx_sdus = 8;
for (uint32_t i = 0; i < num_tx_sdus; ++i) { for (uint32_t i = 0; i < num_tx_sdus; ++i) {
unique_byte_buffer_t pdu = srsran::make_byte_buffer(); unique_byte_buffer_t pdu = srsran::make_byte_buffer();
uint32_t len = rlc1.read_pdu(pdu->msg, 50); // sufficient space to read without segmentation uint32_t len = rlc1.read_pdu(pdu->msg, 50); // sufficient space to read without segmentation
pdu->N_bytes = len; pdu->N_bytes = len;
TESTASSERT((2 + 7) == len); TESTASSERT((header_size + payload_size) == len);
// Check that we don't have any SN gaps // Check that we don't have any SN gaps
rlc_am_nr_pdu_header_t header = {}; rlc_am_nr_pdu_header_t header = {};
rlc_am_nr_read_data_pdu_header(pdu.get(), sn_size, &header); rlc_am_nr_read_data_pdu_header(pdu.get(), sn_size, &header);
@ -1212,17 +1247,17 @@ int discard_test(rlc_am_nr_sn_size_t sn_size)
} }
} }
TESTASSERT(rlc1.has_data() == false); TESTASSERT(rlc1.has_data() == false);
srslog::fetch_basic_logger("TEST").info("Received %zd SDUs", tester.sdus.size()); srslog::fetch_basic_logger("TEST").info("Received %zd SDUs", tester.sdus.size());
num_tx_sdus = 3;
payload_size = 7; // Give each buffer a size of 7 bytes
// Test discarding non-existing SDU from the queue // Test discarding non-existing SDU from the queue
{ {
uint32_t num_tx_sdus = 3;
for (uint32_t i = 0; i < num_tx_sdus; ++i) { for (uint32_t i = 0; i < num_tx_sdus; ++i) {
// Write SDU // Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer(); unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr); TESTASSERT(sdu != nullptr);
sdu->N_bytes = 7; sdu->N_bytes = payload_size;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) { for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer sdu->msg[k] = i; // Write the index into the buffer
} }
@ -1230,9 +1265,9 @@ int discard_test(rlc_am_nr_sn_size_t sn_size)
rlc1.write_sdu(std::move(sdu)); rlc1.write_sdu(std::move(sdu));
} }
} }
TESTASSERT(rlc1.get_buffer_state() == 27); // 3 * (2B Header + 7B Payload) TESTASSERT(rlc1.get_buffer_state() == num_tx_sdus * (header_size + payload_size)); // 3 * (2B Header + 7B Payload)
rlc1.discard_sdu(8); // Try to discard PDCP_SN=8, which doesn't exist rlc1.discard_sdu(8); // Try to discard PDCP_SN=8, which doesn't exist
TESTASSERT(rlc1.get_buffer_state() == 27); // 3 * (2B Header + 7B Payload) TESTASSERT(rlc1.get_buffer_state() == num_tx_sdus * (header_size + payload_size)); // 3 * (2B Header + 7B Payload)
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
@ -1481,12 +1516,11 @@ int main()
TESTASSERT(lost_pdu_test(sn_size) == SRSRAN_SUCCESS); TESTASSERT(lost_pdu_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(basic_segmentation_test(sn_size) == SRSRAN_SUCCESS); TESTASSERT(basic_segmentation_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(segment_retx_test(sn_size) == SRSRAN_SUCCESS); TESTASSERT(segment_retx_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(retx_segment_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(max_retx_lost_sdu_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(max_retx_lost_segments_test(sn_size) == SRSRAN_SUCCESS);
TESTASSERT(discard_test(sn_size) == SRSRAN_SUCCESS);
} }
rlc_am_nr_sn_size_t sns = rlc_am_nr_sn_size_t::size12bits;
TESTASSERT(retx_segment_test(sns) == SRSRAN_SUCCESS); // Fixme
TESTASSERT(max_retx_lost_sdu_test(sns) == SRSRAN_SUCCESS); // Fixme
TESTASSERT(max_retx_lost_segments_test(sns) == SRSRAN_SUCCESS); // Fixme
TESTASSERT(discard_test(sns) == SRSRAN_SUCCESS); // Fixme
TESTASSERT(poll_pdu() == SRSRAN_SUCCESS); TESTASSERT(poll_pdu() == SRSRAN_SUCCESS);
TESTASSERT(poll_byte() == SRSRAN_SUCCESS); TESTASSERT(poll_byte() == SRSRAN_SUCCESS);
TESTASSERT(poll_retx() == SRSRAN_SUCCESS); TESTASSERT(poll_retx() == SRSRAN_SUCCESS);

Loading…
Cancel
Save