More NR PHY test and GNB PHY development

master
Xavier Arteaga 4 years ago committed by Xavier Arteaga
parent 9126ad3b8b
commit aef3e5a40a

@ -23,6 +23,7 @@ namespace srsran {
typedef struct {
std::string phy_level = "none";
std::string phy_lib_level = "none";
std::string id_preamble = "";
int phy_hex_limit = -1;
} phy_log_args_t;

@ -29,9 +29,9 @@ struct phy_cfg_nr_t {
* SSB configuration
*/
struct ssb_cfg_t {
uint32_t periodicity_ms;
std::array<bool, SRSRAN_SSB_NOF_CANDIDATES> position_in_burst;
srsran_subcarrier_spacing_t scs;
uint32_t periodicity_ms = 0;
std::array<bool, SRSRAN_SSB_NOF_CANDIDATES> position_in_burst = {};
srsran_subcarrier_spacing_t scs = srsran_subcarrier_spacing_30kHz;
};
srsran_tdd_config_nr_t tdd = {};

@ -90,6 +90,8 @@ public:
*/
int rem_rnti(uint16_t rnti);
int get_config(uint16_t rnti, srsran::phy_cfg_nr_t& phy_cfg);
const phy_cell_cfg_list_nr_t& get_carrier_list() const { return cell_cfg_list; }
stack_interface_phy_nr& get_stack() { return stack; }

@ -53,6 +53,7 @@ private:
srsran_slot_cfg_t dl_slot_cfg = {};
srsran_slot_cfg_t ul_slot_cfg = {};
srsran::rf_timestamp_t tx_time = {};
uint32_t sf_len = 0;
// Temporal attributes
srsran_softbuffer_tx_t softbuffer_tx = {};

@ -29,10 +29,11 @@ class worker_pool
public:
struct args_t {
uint32_t nof_workers = 3;
uint32_t prio = 52;
std::string log_level = "info";
uint32_t log_hex_limit = 64;
uint32_t nof_workers = 3;
uint32_t prio = 52;
std::string log_level = "info";
uint32_t log_hex_limit = 64;
std::string log_id_preamble = "";
};
sf_worker* operator[](std::size_t pos) { return workers.at(pos).get(); }
@ -45,6 +46,7 @@ public:
sf_worker* wait_worker_id(uint32_t id);
void start_worker(sf_worker* w);
void stop();
bool addmod_rnti(uint16_t rnti, const srsran::phy_cfg_nr_t& phy_cfg);
};
} // namespace nr

@ -16,7 +16,10 @@
namespace srsenb {
namespace nr {
cc_worker::cc_worker(const args_t& args, srslog::basic_logger& log, phy_nr_state& phy_state_) :
cc_idx(args.cc_idx), phy_state(phy_state_), logger(log), nof_tx_antennas(args.dl.nof_tx_antennas)
cc_idx(args.cc_idx),
phy_state(phy_state_),
logger(log),
nof_tx_antennas(args.dl.nof_tx_antennas)
{
cf_t* buffer_c[SRSRAN_MAX_PORTS] = {};
@ -85,8 +88,20 @@ uint32_t cc_worker::get_buffer_len()
int cc_worker::encode_pdcch_dl(stack_interface_phy_nr::dl_sched_grant_t* grants, uint32_t nof_grants)
{
for (uint32_t i = 0; i < nof_grants; i++) {
uint16_t rnti = grants->dci.ctx.rnti;
// Get PHY config for UE
// ...
srsran::phy_cfg_nr_t cfg = {};
if (phy_state.get_config(rnti, cfg) < SRSRAN_SUCCESS) {
logger.error("Invalid RNTI 0x%x", rnti);
return SRSRAN_ERROR;
}
srsran_dci_cfg_nr_t dci_cfg = cfg.get_dci_cfg();
if (srsran_enb_dl_nr_set_pdcch_config(&gnb_dl, &cfg.pdcch, &dci_cfg) < SRSRAN_SUCCESS) {
logger.error("Invalid CORESET setting");
return SRSRAN_ERROR;
}
// Put actual DCI
if (srsran_enb_dl_nr_pdcch_put(&gnb_dl, &dl_slot_cfg, &grants[i].dci) < SRSRAN_SUCCESS) {
@ -95,7 +110,11 @@ int cc_worker::encode_pdcch_dl(stack_interface_phy_nr::dl_sched_grant_t* grants,
}
if (logger.info.enabled()) {
logger.info("PDCCH: cc=%d, ...", cc_idx);
std::array<char, 512> str = {};
srsran_dci_dl_nr_to_str(&gnb_dl.dci, &grants[i].dci, str.data(), (uint32_t)str.size());
if (logger.info.enabled()) {
logger.info("PDCCH: cc=%d %s tti_tx=%d", cc_idx, str.data(), dl_slot_cfg.idx);
}
}
}
@ -106,14 +125,15 @@ int cc_worker::encode_pdsch(stack_interface_phy_nr::dl_sched_grant_t* grants, ui
{
for (uint32_t i = 0; i < nof_grants; i++) {
// Get PHY config for UE
// ...
srsran_sch_hl_cfg_nr_t pdsch_hl_cfg = {};
srsran_sch_cfg_nr_t pdsch_cfg = {};
srsran::phy_cfg_nr_t cfg = {};
if (phy_state.get_config(grants[i].dci.ctx.rnti, cfg) < SRSRAN_SUCCESS) {
return SRSRAN_ERROR;
}
// Compute DL grant
srsran_sch_cfg_nr_t pdsch_cfg = {};
if (srsran_ra_dl_dci_to_grant_nr(
&gnb_dl.carrier, &dl_slot_cfg, &pdsch_hl_cfg, &grants[i].dci, &pdsch_cfg, &pdsch_cfg.grant) <
SRSRAN_SUCCESS) {
&gnb_dl.carrier, &dl_slot_cfg, &cfg.pdsch, &grants[i].dci, &pdsch_cfg, &pdsch_cfg.grant) < SRSRAN_SUCCESS) {
ERROR("Computing DL grant");
return SRSRAN_ERROR;
}
@ -132,7 +152,7 @@ int cc_worker::encode_pdsch(stack_interface_phy_nr::dl_sched_grant_t* grants, ui
if (logger.info.enabled()) {
char str[512];
srsran_enb_dl_nr_pdsch_info(&gnb_dl, &pdsch_cfg, str, sizeof(str));
logger.info("PDSCH: cc=%d, %s", cc_idx, str);
logger.info("PDSCH: cc=%d, %s tti_tx=%d", cc_idx, str, dl_slot_cfg.idx);
}
}

@ -35,8 +35,6 @@ int phy_nr_state::_assert_rnti(uint16_t rnti) const
int phy_nr_state::_get_rnti_config(uint16_t rnti, srsran::phy_cfg_nr_t& phy_cfg) const
{
std::lock_guard<std::mutex> lock(mutex);
if (_assert_rnti(rnti) < SRSRAN_SUCCESS) {
return SRSRAN_ERROR;
}
@ -47,7 +45,8 @@ int phy_nr_state::_get_rnti_config(uint16_t rnti, srsran::phy_cfg_nr_t& phy_cfg)
}
phy_nr_state::phy_nr_state(const phy_cell_cfg_list_nr_t& cell_cfg_list_, stack_interface_phy_nr& stack_) :
cell_cfg_list(cell_cfg_list_), stack(stack_)
cell_cfg_list(cell_cfg_list_),
stack(stack_)
{}
void phy_nr_state::addmod_rnti(uint16_t rnti, const srsran::phy_cfg_nr_t& phy_cfg)
@ -75,5 +74,12 @@ int phy_nr_state::rem_rnti(uint16_t rnti)
return SRSRAN_SUCCESS;
}
int phy_nr_state::get_config(uint16_t rnti, srsran::phy_cfg_nr_t& phy_cfg)
{
std::lock_guard<std::mutex> lock(mutex);
return _get_rnti_config(rnti, phy_cfg);
}
} // namespace nr
} // namespace srsenb

@ -14,18 +14,25 @@
namespace srsenb {
namespace nr {
sf_worker::sf_worker(srsran::phy_common_interface& common_, phy_nr_state& phy_state_, srslog::basic_logger& logger) :
common(common_), phy_state(phy_state_), logger(logger)
sf_worker::sf_worker(srsran::phy_common_interface& common_, phy_nr_state& phy_state_, srslog::basic_logger& logger_) :
common(common_),
phy_state(phy_state_),
logger(logger_)
{
// Set subframe length
sf_len = SRSRAN_SF_LEN_PRB_NR(phy_state.get_carrier_list()[0].carrier.nof_prb);
const phy_cell_cfg_list_nr_t& carrier_list = phy_state.get_carrier_list();
for (uint32_t i = 0; i < (uint32_t)carrier_list.size(); i++) {
cc_worker::args_t cc_args = {};
cc_args.cc_idx = i;
cc_args.carrier = carrier_list[i].carrier;
cc_args.dl.nof_tx_antennas = 1;
cc_args.dl.nof_max_prb = cc_args.carrier.nof_prb;
cc_worker* w = new cc_worker(cc_args, logger, phy_state);
cc_worker::args_t cc_args = {};
cc_args.cc_idx = i;
cc_args.carrier = carrier_list[i].carrier;
cc_args.dl.nof_tx_antennas = 1;
cc_args.dl.nof_max_prb = cc_args.carrier.nof_prb;
cc_args.dl.pdsch.max_prb = cc_args.carrier.nof_prb;
cc_args.dl.pdsch.max_layers = 1;
cc_worker* w = new cc_worker(cc_args, logger_, phy_state);
cc_workers.push_back(std::unique_ptr<cc_worker>(w));
}
@ -81,18 +88,20 @@ void sf_worker::set_time(const uint32_t& tti, const srsran::rf_timestamp_t& time
void sf_worker::work_imp()
{
// Get Transmission buffers
srsran::rf_buffer_t tx_buffer = {};
srsran::rf_timestamp_t dummy_ts = {};
srsran::rf_buffer_t tx_buffer = {};
for (uint32_t cc = 0; cc < (uint32_t)phy_state.get_carrier_list().size(); cc++) {
tx_buffer.set(cc, 0, 1, cc_workers[cc]->get_tx_buffer(0));
}
// Set number of samples
tx_buffer.set_nof_samples(sf_len);
// Get UL Scheduling
mac_interface_phy_nr::ul_sched_list_t ul_sched_list = {};
ul_sched_list.resize(1);
if (phy_state.get_stack().get_ul_sched(ul_slot_cfg.idx, ul_sched_list) < SRSRAN_SUCCESS) {
logger.error("DL Scheduling error");
common.worker_end(this, true, tx_buffer, dummy_ts, true);
common.worker_end(this, true, tx_buffer, tx_time, true);
return;
}
@ -101,7 +110,7 @@ void sf_worker::work_imp()
dl_sched_list.resize(1);
if (phy_state.get_stack().get_dl_sched(ul_slot_cfg.idx, dl_sched_list) < SRSRAN_SUCCESS) {
logger.error("DL Scheduling error");
common.worker_end(this, true, tx_buffer, dummy_ts, true);
common.worker_end(this, true, tx_buffer, tx_time, true);
return;
}
@ -109,7 +118,7 @@ void sf_worker::work_imp()
w->work_dl(dl_sched_list[0], ul_sched_list[0]);
}
common.worker_end(this, true, tx_buffer, dummy_ts, true);
common.worker_end(this, true, tx_buffer, tx_time, true);
}
} // namespace nr

@ -19,12 +19,13 @@ worker_pool::worker_pool(const phy_cell_cfg_list_nr_t& cell_list,
srsran::phy_common_interface& common,
stack_interface_phy_nr& stack,
srslog::sink& log_sink) :
pool(args.nof_workers), phy_state(cell_list, stack)
pool(args.nof_workers),
phy_state(cell_list, stack)
{
// Add workers to workers pool and start threads
srslog::basic_levels log_level = srslog::str_to_basic_level(args.log_level);
for (uint32_t i = 0; i < args.nof_workers; i++) {
auto& log = srslog::fetch_basic_logger(fmt::format("PHY{}-NR", i), log_sink);
auto& log = srslog::fetch_basic_logger(fmt::format("{}PHY{}-NR", args.log_id_preamble, i), log_sink);
log.set_level(log_level);
log.set_hex_dump_max_size(args.log_hex_limit);
@ -54,5 +55,12 @@ void worker_pool::stop()
pool.stop();
}
bool worker_pool::addmod_rnti(uint16_t rnti, const srsran::phy_cfg_nr_t& phy_cfg)
{
phy_state.addmod_rnti(rnti, phy_cfg);
return true;
}
} // namespace nr
} // namespace srsenb

@ -18,7 +18,9 @@
namespace srsue {
namespace nr {
cc_worker::cc_worker(uint32_t cc_idx_, srslog::basic_logger& log, state& phy_state_) :
cc_idx(cc_idx_), phy(phy_state_), logger(log)
cc_idx(cc_idx_),
phy(phy_state_),
logger(log)
{
cf_t* rx_buffer_c[SRSRAN_MAX_PORTS] = {};

@ -42,7 +42,7 @@ bool worker_pool::init(const phy_args_nr_t& args,
// Add workers to workers pool and start threads
for (uint32_t i = 0; i < args.nof_phy_threads; i++) {
auto& log = srslog::fetch_basic_logger(fmt::format("PHY{}-NR", i));
auto& log = srslog::fetch_basic_logger(fmt::format("{}PHY{}-NR", args.log.id_preamble, i));
log.set_level(srslog::str_to_basic_level(args.log.phy_level));
log.set_hex_dump_max_size(args.log.phy_hex_limit);

@ -145,7 +145,9 @@ public:
uint32_t nof_channels = 1;
args_t(double srate_hz_, uint32_t buffer_sz_ms_, uint32_t nof_channels_) :
srate_hz(srate_hz_), buffer_sz_ms(buffer_sz_ms_), nof_channels(nof_channels_)
srate_hz(srate_hz_),
buffer_sz_ms(buffer_sz_ms_),
nof_channels(nof_channels_)
{}
};
@ -188,7 +190,9 @@ public:
// Check transmit timestamp is not in the past
if (tx_ts < write_ts) {
logger.error("Tx time is %d samples in the past", (uint32_t)(write_ts - tx_ts));
logger.error("Tx time (%f) is %d samples in the past",
srsran_timestamp_real(tx_time.get_ptr(0)),
(uint32_t)(write_ts - tx_ts));
semaphore.release();
return;
}
@ -225,9 +229,7 @@ public:
read_ts += nof_samples;
}
void stop() {
quit = true;
}
void stop() { quit = true; }
};
#endif // SRSRAN_DUMMY_PHY_COMMON_H

@ -19,10 +19,11 @@ test_bench::args_t::args_t(int argc, char** argv)
valid = true;
cell_list.resize(1);
cell_list[0].carrier.nof_prb = 52;
cell_list[0].carrier.nof_prb = 52;
cell_list[0].carrier.max_mimo_layers = 1;
cell_list[0].carrier.pci = 500;
phy_cfg.carrier = cell_list[0].carrier;
phy_cfg.carrier.pci = 500;
phy_cfg.carrier = cell_list[0].carrier;
phy_cfg.carrier.absolute_frequency_point_a = 633928;
phy_cfg.carrier.absolute_frequency_ssb = 634176;
@ -213,340 +214,307 @@ test_bench::args_t::args_t(int argc, char** argv)
phy_cfg.harq_ack.dl_data_to_ul_ack[6] = 11;
phy_cfg.prach.freq_offset = 2;
// pusch-Config: setup (1)
// setup
// dmrs-UplinkForPUSCH-MappingTypeA: setup (1)
// setup
// dmrs-AdditionalPosition: pos1 (1)
// transformPrecodingDisabled
// pusch-PowerControl
// msg3-Alpha: alpha1 (7)
// p0-NominalWithoutGrant: -90dBm
// p0-AlphaSets: 1 item
// Item 0
// P0-PUSCH-AlphaSet
// p0-PUSCH-AlphaSetId: 0
// p0: 0dB
// alpha: alpha1 (7)
// pathlossReferenceRSToAddModList: 1 item
// Item 0
// PUSCH-PathlossReferenceRS
// pusch-PathlossReferenceRS-Id: 0
// referenceSignal: ssb-Index (0)
// ssb-Index: 0
// sri-PUSCH-MappingToAddModList: 1 item
// Item 0
// SRI-PUSCH-PowerControl
// sri-PUSCH-PowerControlId: 0
// sri-PUSCH-PathlossReferenceRS-Id: 0
// sri-P0-PUSCH-AlphaSetId: 0
// sri-PUSCH-ClosedLoopIndex: i0 (0)
// resourceAllocation: resourceAllocationType1 (1)
// uci-OnPUSCH: setup (1)
// setup
// betaOffsets: semiStatic (1)
// semiStatic
// betaOffsetACK-Index1: 9
// betaOffsetACK-Index2: 9
// betaOffsetACK-Index3: 9
// betaOffsetCSI-Part1-Index1: 6
// betaOffsetCSI-Part1-Index2: 6
// betaOffsetCSI-Part2-Index1: 6
// betaOffsetCSI-Part2-Index2: 6
// scaling: f1 (3)
// srs-Config: setup (1)
// setup
// srs-ResourceSetToAddModList: 1 item
// Item 0
// SRS-ResourceSet
// srs-ResourceSetId: 0
// srs-ResourceIdList: 1 item
// Item 0
// SRS-ResourceId: 0
// resourceType: aperiodic (0)
// aperiodic
// aperiodicSRS-ResourceTrigger: 1
// slotOffset: 7
// usage: codebook (1)
// p0: -90dBm
// pathlossReferenceRS: ssb-Index (0)
// ssb-Index: 0
// srs-ResourceToAddModList: 1 item
// Item 0
// SRS-Resource
// srs-ResourceId: 0
// nrofSRS-Ports: port1 (0)
// transmissionComb: n2 (0)
// n2
// combOffset-n2: 0
// cyclicShift-n2: 0
// resourceMapping
// startPosition: 0
// nrofSymbols: n1 (0)
// repetitionFactor: n1 (0)
// freqDomainPosition: 0
// freqDomainShift: 6
// freqHopping
// c-SRS: 11
// b-SRS: 3
// b-hop: 0
// groupOrSequenceHopping: neither (0)
// resourceType: aperiodic (0)
// aperiodic
// sequenceId: 500
// firstActiveUplinkBWP-Id: 0
// pusch-ServingCellConfig: setup (1)
// setup
// pdcch-ServingCellConfig: setup (1)
// setup
// pdsch-ServingCellConfig: setup (1)
// setup
// nrofHARQ-ProcessesForPDSCH: n16 (5)
// csi-MeasConfig: setup (1)
// setup
// nzp-CSI-RS-ResourceToAddModList: 5 items
// Item 0
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 0
// resourceMapping
// frequencyDomainAllocation: row2 (1)
// row2: 8000 [bit length 12, 4 LSB pad bits, 1000 0000 0000
// .... decimal value 2048]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 4
// cdm-Type: noCDM (0)
// density: one (1)
// one: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots80 (9)
// slots80: 1
// qcl-InfoPeriodicCSI-RS: 0
// Item 1
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 1
// resourceMapping
// frequencyDomainAllocation: row1 (0)
// row1: 10 [bit length 4, 4 LSB pad bits, 0001 .... decimal
// value 1]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 4
// cdm-Type: noCDM (0)
// density: three (2)
// three: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots40 (7)
// slots40: 11
// qcl-InfoPeriodicCSI-RS: 0
// Item 2
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 2
// resourceMapping
// frequencyDomainAllocation: row1 (0)
// row1: 10 [bit length 4, 4 LSB pad bits, 0001 .... decimal
// value 1]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 8
// cdm-Type: noCDM (0)
// density: three (2)
// three: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots40 (7)
// slots40: 11
// qcl-InfoPeriodicCSI-RS: 0
// Item 3
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 3
// resourceMapping
// frequencyDomainAllocation: row1 (0)
// row1: 10 [bit length 4, 4 LSB pad bits, 0001 .... decimal
// value 1]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 4
// cdm-Type: noCDM (0)
// density: three (2)
// three: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots40 (7)
// slots40: 12
// qcl-InfoPeriodicCSI-RS: 0
// Item 4
// NZP-CSI-RS-Resource
// nzp-CSI-RS-ResourceId: 4
// resourceMapping
// frequencyDomainAllocation: row1 (0)
// row1: 10 [bit length 4, 4 LSB pad bits, 0001 .... decimal
// value 1]
// nrofPorts: p1 (0)
// firstOFDMSymbolInTimeDomain: 8
// cdm-Type: noCDM (0)
// density: three (2)
// three: NULL
// freqBand
// startingRB: 0
// nrofRBs: 52
// powerControlOffset: 0dB
// powerControlOffsetSS: db0 (1)
// scramblingID: 0
// periodicityAndOffset: slots40 (7)
// slots40: 12
// qcl-InfoPeriodicCSI-RS: 0
// nzp-CSI-RS-ResourceSetToAddModList: 2 items
// Item 0
// NZP-CSI-RS-ResourceSet
// nzp-CSI-ResourceSetId: 0
// nzp-CSI-RS-Resources: 1 item
// Item 0
// NZP-CSI-RS-ResourceId: 0
// Item 1
// NZP-CSI-RS-ResourceSet
// nzp-CSI-ResourceSetId: 1
// nzp-CSI-RS-Resources: 4 items
// Item 0
// NZP-CSI-RS-ResourceId: 1
// Item 1
// NZP-CSI-RS-ResourceId: 2
// Item 2
// NZP-CSI-RS-ResourceId: 3
// Item 3
// NZP-CSI-RS-ResourceId: 4
// trs-Info: true (0)
// csi-IM-ResourceToAddModList: 1 item
// Item 0
// CSI-IM-Resource
// csi-IM-ResourceId: 0
// csi-IM-ResourceElementPattern: pattern1 (1)
// pattern1
// subcarrierLocation-p1: s8 (2)
// symbolLocation-p1: 8
// freqBand
// startingRB: 0
// nrofRBs: 52
// periodicityAndOffset: slots80 (9)
// slots80: 1
// csi-IM-ResourceSetToAddModList: 1 item
// Item 0
// CSI-IM-ResourceSet
// csi-IM-ResourceSetId: 0
// csi-IM-Resources: 1 item
// Item 0
// CSI-IM-ResourceId: 0
// csi-ResourceConfigToAddModList: 3 items
// Item 0
// CSI-ResourceConfig
// csi-ResourceConfigId: 0
// csi-RS-ResourceSetList: nzp-CSI-RS-SSB (0)
// nzp-CSI-RS-SSB
// nzp-CSI-RS-ResourceSetList: 1 item
// Item 0
// NZP-CSI-RS-ResourceSetId: 0
// bwp-Id: 0
// resourceType: periodic (2)
// Item 1
// CSI-ResourceConfig
// csi-ResourceConfigId: 1
// csi-RS-ResourceSetList: csi-IM-ResourceSetList (1)
// csi-IM-ResourceSetList: 1 item
// Item 0
// CSI-IM-ResourceSetId: 0
// bwp-Id: 0
// resourceType: periodic (2)
// Item 2
// CSI-ResourceConfig
// csi-ResourceConfigId: 2
// csi-RS-ResourceSetList: nzp-CSI-RS-SSB (0)
// nzp-CSI-RS-SSB
// nzp-CSI-RS-ResourceSetList: 1 item
// Item 0
// NZP-CSI-RS-ResourceSetId: 1
// bwp-Id: 0
// resourceType: periodic (2)
// csi-ReportConfigToAddModList: 1 item
// Item 0
// CSI-ReportConfig
// reportConfigId: 0
// resourcesForChannelMeasurement: 0
// csi-IM-ResourcesForInterference: 1
// reportConfigType: periodic (0)
// periodic
// reportSlotConfig: slots80 (7)
// slots80: 9
// pucch-CSI-ResourceList: 1 item
// Item 0
// PUCCH-CSI-Resource
// uplinkBandwidthPartId: 0
// pucch-Resource: 17
// reportQuantity: cri-RI-PMI-CQI (1)
// cri-RI-PMI-CQI: NULL
// reportFreqConfiguration
// cqi-FormatIndicator: widebandCQI (0)
// timeRestrictionForChannelMeasurements: notConfigured (1)
// timeRestrictionForInterferenceMeasurements: notConfigured (1)
// groupBasedBeamReporting: disabled (1)
// disabled
// cqi-Table: table2 (1)
// subbandSize: value1 (0)
// tag-Id: 0
}
class ue_dummy_stack : public srsue::stack_interface_phy_nr
{
private:
uint16_t rnti = 0;
bool valid = false;
struct dummy_harq_proc {
static const uint32_t MAX_TB_SZ = SRSRAN_LDPC_MAX_LEN_CB * SRSRAN_SCH_NR_MAX_NOF_CB_LDPC;
srsran_softbuffer_rx_t softbuffer = {};
dummy_harq_proc()
{
// Initialise softbuffer
if (srsran_softbuffer_rx_init_guru(&softbuffer, SRSRAN_SCH_NR_MAX_NOF_CB_LDPC, SRSRAN_LDPC_MAX_LEN_ENCODED_CB) <
SRSRAN_SUCCESS) {
ERROR("Error Tx buffer");
}
}
~dummy_harq_proc() { srsran_softbuffer_rx_free(&softbuffer); }
};
srsran::circular_array<dummy_harq_proc, SRSRAN_MAX_HARQ_PROC_DL_NR> rx_harq_proc;
public:
struct args_t {
uint16_t rnti = 0x1234;
};
ue_dummy_stack(const args_t& args) : rnti(args.rnti) { valid = true; }
void in_sync() override {}
void out_of_sync() override {}
void run_tti(const uint32_t tti) override {}
int sf_indication(const uint32_t tti) override { return 0; }
sched_rnti_t get_dl_sched_rnti_nr(const uint32_t tti) override { return sched_rnti_t(); }
sched_rnti_t get_ul_sched_rnti_nr(const uint32_t tti) override { return sched_rnti_t(); }
void new_grant_dl(const uint32_t cc_idx, const mac_nr_grant_dl_t& grant, tb_action_dl_t* action) override {}
sched_rnti_t get_dl_sched_rnti_nr(const uint32_t tti) override { return {rnti, srsran_rnti_type_c}; }
sched_rnti_t get_ul_sched_rnti_nr(const uint32_t tti) override { return {rnti, srsran_rnti_type_c}; }
void new_grant_dl(const uint32_t cc_idx, const mac_nr_grant_dl_t& grant, tb_action_dl_t* action) override
{
action->tb.enabled = true;
action->tb.softbuffer = &rx_harq_proc[grant.pid].softbuffer;
}
void tb_decoded(const uint32_t cc_idx, const mac_nr_grant_dl_t& grant, tb_action_dl_result_t result) override {}
void new_grant_ul(const uint32_t cc_idx, const mac_nr_grant_ul_t& grant, tb_action_ul_t* action) override {}
void prach_sent(uint32_t tti, uint32_t s_id, uint32_t t_id, uint32_t f_id, uint32_t ul_carrier_id) override {}
bool sr_opportunity(uint32_t tti, uint32_t sr_id, bool meas_gap, bool ul_sch_tx) override { return false; }
bool is_valid() const { return valid; }
};
class gnb_dummy_stack : public srsenb::stack_interface_phy_nr
{
private:
srslog::basic_logger& logger = srslog::fetch_basic_logger("GNB STK");
const uint16_t rnti = 0x1234;
const uint32_t mcs = 1;
const srsran::circular_array<bool, SRSRAN_NOF_SF_X_FRAME> pdsch_mask;
srsran::circular_array<srsran_dci_location_t, SRSRAN_NOF_SF_X_FRAME> dci_dl_location;
srsran::circular_array<srsran_dci_location_t, SRSRAN_NOF_SF_X_FRAME> dci_ul_location;
srsran::circular_array<uint32_t, SRSRAN_NOF_SF_X_FRAME> dl_data_to_ul_ack;
bool valid = false;
srsran_search_space_t ss = {};
srsran_dci_format_nr_t dci_format_ul = SRSRAN_DCI_FORMAT_NR_COUNT;
srsran_dci_format_nr_t dci_format_dl = SRSRAN_DCI_FORMAT_NR_COUNT;
uint32_t dl_freq_res = 0;
uint32_t dl_time_res = 0;
srsran_random_t random_gen = nullptr;
struct dummy_harq_proc {
static const uint32_t MAX_TB_SZ = SRSRAN_LDPC_MAX_LEN_CB * SRSRAN_SCH_NR_MAX_NOF_CB_LDPC;
std::vector<uint8_t> data;
srsran_softbuffer_tx_t softbuffer = {};
dummy_harq_proc()
{
// Allocate data
data.resize(MAX_TB_SZ);
// Initialise softbuffer
if (srsran_softbuffer_tx_init_guru(&softbuffer, SRSRAN_SCH_NR_MAX_NOF_CB_LDPC, SRSRAN_LDPC_MAX_LEN_ENCODED_CB) <
SRSRAN_SUCCESS) {
ERROR("Error Tx buffer");
}
}
~dummy_harq_proc() { srsran_softbuffer_tx_free(&softbuffer); }
};
srsran::circular_array<dummy_harq_proc, SRSRAN_MAX_HARQ_PROC_DL_NR> tx_harq_proc;
public:
struct args_t {
srsran::phy_cfg_nr_t phy_cfg; ///< Physical layer configuration
uint16_t rnti = 0x1234; ///< C-RNTI
uint32_t mcs = 10; ///< Modulation code scheme
srsran::circular_array<bool, SRSRAN_NOF_SF_X_FRAME> pdsch_mask = {}; ///< PDSCH scheduling mask
uint32_t ss_id = 1; ///< Search Space identifier
uint32_t pdcch_aggregation_level = 0; ///< PDCCH aggregation level
uint32_t pdcch_dl_candidate_index = 0; ///< PDCCH DL DCI candidate index
uint32_t pdcch_ul_candidate_index = 0; ///< PDCCH UL DCI candidate index
uint32_t dl_start_rb = 0; ///< Start resource block
uint32_t dl_length_rb = 0l; ///< Number of resource blocks
uint32_t dl_time_res = 0; ///< PDSCH time resource
};
gnb_dummy_stack(args_t args) :
pdsch_mask(args.pdsch_mask),
mcs(args.mcs),
rnti(args.rnti),
dl_time_res(args.dl_time_res)
{
random_gen = srsran_random_init(0x1234);
// Select search space
if (args.ss_id >= SRSRAN_UE_DL_NR_MAX_NOF_SEARCH_SPACE) {
logger.error("Search Space Id (%d) is out-of-range (%d)", args.ss_id, SRSRAN_UE_DL_NR_MAX_NOF_SEARCH_SPACE);
return;
}
if (not args.phy_cfg.pdcch.search_space_present[args.ss_id]) {
logger.error("Search Space Id (%d) is not present", args.ss_id);
return;
}
ss = args.phy_cfg.pdcch.search_space[args.ss_id];
// Select CORESET
if (ss.coreset_id >= SRSRAN_UE_DL_NR_MAX_NOF_CORESET) {
logger.error("CORESET Id (%d) is out-of-range (%d)", ss.coreset_id, SRSRAN_UE_DL_NR_MAX_NOF_CORESET);
return;
}
if (not args.phy_cfg.pdcch.coreset_present[ss.coreset_id]) {
logger.error("CORESET Id (%d) is not present", args.ss_id);
return;
}
const srsran_coreset_t& coreset = args.phy_cfg.pdcch.coreset[ss.coreset_id];
// Select DCI locations
for (uint32_t slot = 0; slot < SRSRAN_NOF_SF_X_FRAME; slot++) {
std::array<uint32_t, SRSRAN_SEARCH_SPACE_MAX_NOF_CANDIDATES_NR> ncce = {};
int n = srsran_pdcch_nr_locations_coreset(&coreset, &ss, rnti, args.pdcch_aggregation_level, slot++, ncce.data());
if (n < SRSRAN_SUCCESS) {
logger.error(
"Error generating locations for slot %d and aggregation level %d", slot, args.pdcch_aggregation_level);
return;
}
uint32_t nof_candidates = (uint32_t)n;
// DCI DL
if (args.pdcch_dl_candidate_index >= nof_candidates or
args.pdcch_dl_candidate_index >= SRSRAN_SEARCH_SPACE_MAX_NOF_CANDIDATES_NR) {
logger.error("Candidate index %d exceeds the number of candidates %d for aggregation level %d",
args.pdcch_dl_candidate_index,
n,
args.pdcch_aggregation_level);
return;
}
dci_dl_location[slot].L = args.pdcch_aggregation_level;
dci_dl_location[slot].ncce = ncce[args.pdcch_dl_candidate_index];
// DCI UL
if (args.pdcch_ul_candidate_index >= nof_candidates or
args.pdcch_ul_candidate_index >= SRSRAN_SEARCH_SPACE_MAX_NOF_CANDIDATES_NR) {
logger.error("Candidate index %d exceeds the number of candidates %d for aggregation level %d",
args.pdcch_ul_candidate_index,
n,
args.pdcch_aggregation_level);
return;
}
dci_ul_location[slot].L = args.pdcch_aggregation_level;
dci_ul_location[slot].ncce = ncce[args.pdcch_ul_candidate_index];
}
// Select DCI formats
for (uint32_t i = 0; i < ss.nof_formats; i++) {
// Select DL format
if (ss.formats[i] == srsran_dci_format_nr_1_0 or ss.formats[i] == srsran_dci_format_nr_1_1) {
dci_format_dl = ss.formats[i];
}
// Select DL format
if (ss.formats[i] == srsran_dci_format_nr_0_0 or ss.formats[i] == srsran_dci_format_nr_0_1) {
dci_format_ul = ss.formats[i];
}
}
// Validate that a DCI format is selected
if (dci_format_dl == SRSRAN_DCI_FORMAT_NR_COUNT or dci_format_ul == SRSRAN_DCI_FORMAT_NR_COUNT) {
logger.error("Missing valid DL or UL DCI format in search space");
return;
}
// Select DL frequency domain resources
dl_freq_res = srsran_ra_nr_type1_riv(args.phy_cfg.carrier.nof_prb, args.dl_start_rb, args.dl_length_rb);
// Setup DL Data to ACK timing
for (uint32_t i = 0; i < SRSRAN_NOF_SF_X_FRAME; i++) {
dl_data_to_ul_ack[i] = args.phy_cfg.harq_ack.dl_data_to_ul_ack[i % SRSRAN_MAX_NOF_DL_DATA_TO_UL];
}
// If reached this point the configuration is valid
valid = true;
}
~gnb_dummy_stack() { srsran_random_free(random_gen); }
bool is_valid() const { return valid; }
int sf_indication(const uint32_t tti) override { return 0; }
int rx_data_indication(rx_data_ind_t& grant) override { return 0; }
int get_dl_sched(uint32_t tti, dl_sched_list_t& dl_sched_res) override
{
dl_sched_res[0].nof_grants = 0;
// Check input
if (dl_sched_res.size() == 0) {
return SRSRAN_ERROR;
}
// Check PDSCH mask, if no PDSCH shall be scheduled, do not set any grant and skip
if (not pdsch_mask[tti]) {
dl_sched_res[0].nof_grants = 0;
return SRSRAN_SUCCESS;
}
// Select grant and set data
dl_sched_grant_t& grant = dl_sched_res[0].pdsch[0];
grant.data[0] = tx_harq_proc[tti].data.data();
grant.softbuffer_tx[0] = &tx_harq_proc[tti].softbuffer;
// Second TB is not used
grant.data[1] = nullptr;
grant.softbuffer_tx[1] = nullptr;
// Reset Tx softbuffer always
srsran_softbuffer_tx_reset(grant.softbuffer_tx[0]);
// Generate random data
srsran_random_byte_vector(random_gen, grant.data[0], SRSRAN_LDPC_MAX_LEN_CB * SRSRAN_SCH_NR_MAX_NOF_CB_LDPC / 8);
// It currently support only one grant
dl_sched_res[0].nof_grants = 1;
// Fill DCI
srsran_dci_dl_nr_t& dci = grant.dci;
dci.ctx.location = dci_dl_location[tti];
dci.ctx.ss_type = ss.type;
dci.ctx.coreset_id = ss.coreset_id;
dci.ctx.rnti_type = srsran_rnti_type_c;
dci.ctx.format = dci_format_dl;
dci.ctx.rnti = rnti;
dci.freq_domain_assigment = dl_freq_res;
dci.time_domain_assigment = dl_time_res;
dci.mcs = mcs;
dci.rv = 0;
dci.ndi = (tti / SRSRAN_NOF_SF_X_FRAME) % 2;
dci.pid = tti % SRSRAN_NOF_SF_X_FRAME;
dci.dai = tti % SRSRAN_NOF_SF_X_FRAME;
dci.tpc = 1;
dci.pucch_resource = 0;
dci.harq_feedback = dl_data_to_ul_ack[tti];
return SRSRAN_SUCCESS;
}
int get_ul_sched(uint32_t tti, ul_sched_list_t& ul_sched_res) override { return 0; }
};
int main(int argc, char** argv)
{
srslog::init();
// Parse test bench arguments
test_bench::args_t args(argc, argv);
args.gnb_args.log_id_preamble = "GNB/";
args.gnb_args.log_level = "warning";
args.gnb_args.nof_workers = 1;
args.ue_args.log.id_preamble = " UE/";
args.ue_args.log.phy_level = "warning";
args.ue_args.log.phy_hex_limit = 0;
args.ue_args.nof_phy_threads = 1;
// Parse arguments
TESTASSERT(args.valid);
ue_dummy_stack ue_stack;
gnb_dummy_stack gnb_stack;
// Create UE stack arguments
ue_dummy_stack::args_t ue_stack_args = {};
ue_stack_args.rnti = 0x1234;
// Create UE stack
ue_dummy_stack ue_stack(ue_stack_args);
TESTASSERT(ue_stack.is_valid());
// Create GNB stack arguments
gnb_dummy_stack::args_t gnb_stack_args = {};
gnb_stack_args.rnti = 0x1234;
gnb_stack_args.mcs = 10;
for (bool& mask : gnb_stack_args.pdsch_mask) {
mask = true;
}
gnb_stack_args.phy_cfg = args.phy_cfg;
gnb_stack_args.dl_start_rb = 0;
gnb_stack_args.dl_length_rb = args.phy_cfg.carrier.nof_prb;
// Create GNB stack
gnb_dummy_stack gnb_stack(gnb_stack_args);
TESTASSERT(gnb_stack.is_valid());
// Create test bench
test_bench tb(args, gnb_stack, ue_stack);
@ -554,7 +522,7 @@ int main(int argc, char** argv)
// Assert bench is initialised correctly
TESTASSERT(tb.is_initialised());
for (uint32_t i = 0; i < 1000; i++) {
for (uint32_t i = 0; i < 20; i++) {
TESTASSERT(tb.run_tti());
}

@ -20,7 +20,9 @@
class test_bench
{
private:
uint32_t tti = 0;
const std::string UE_PHY_COM_LOG_NAME = "UE /PHY/COM";
const std::string GNB_PHY_COM_LOG_NAME = "GNB/PHY/COM";
uint32_t tti = 0;
srsenb::nr::worker_pool gnb_phy;
phy_common gnb_phy_com;
srsue::nr::worker_pool ue_phy;
@ -38,7 +40,9 @@ public:
srsran::phy_cfg_nr_t phy_cfg = {};
srsenb::phy_cell_cfg_list_nr_t cell_list = {};
srsenb::nr::worker_pool::args_t gnb_args;
uint16_t rnti = 0x1234;
srsue::phy_args_nr_t ue_args;
uint16_t rnti = 0x1234;
std::string phy_com_log_level = "info";
args_t(int argc, char** argv);
};
@ -47,18 +51,18 @@ public:
ue_phy(args.nof_threads),
gnb_phy(args.cell_list, args.gnb_args, gnb_phy_com, gnb_stack, srslog::get_default_sink()),
ue_phy_com(phy_common::args_t(args.srate_hz, args.buffer_sz_ms, args.nof_channels),
srslog::fetch_basic_logger("UE /PHY/COM")),
srslog::fetch_basic_logger(UE_PHY_COM_LOG_NAME, srslog::get_default_sink(), false)),
gnb_phy_com(phy_common::args_t(args.srate_hz, args.buffer_sz_ms, args.nof_channels),
srslog::fetch_basic_logger("GNB/PHY/COM"))
srslog::fetch_basic_logger(GNB_PHY_COM_LOG_NAME, srslog::get_default_sink(), false))
{
srslog::fetch_basic_logger(UE_PHY_COM_LOG_NAME).set_level(srslog::str_to_basic_level(args.phy_com_log_level));
srslog::fetch_basic_logger(GNB_PHY_COM_LOG_NAME).set_level(srslog::str_to_basic_level(args.phy_com_log_level));
// Calculate subframe length
sf_sz = (uint32_t)std::round(args.srate_hz * 1e-3);
// Prepare PHY
srsue::phy_args_nr_t ue_phy_args = {};
// Initialise UE PHY
if (not ue_phy.init(ue_phy_args, ue_phy_com, &ue_stack, 31)) {
if (not ue_phy.init(args.ue_args, ue_phy_com, &ue_stack, 31)) {
return;
}
@ -67,6 +71,11 @@ public:
return;
}
// Set UE configuration in gNb
if (not gnb_phy.addmod_rnti(args.rnti, args.phy_cfg)) {
return;
}
initialised = true;
}

Loading…
Cancel
Save