SRSUE: refactored sync.cc and clean up

master
Xavier Arteaga 5 years ago committed by Xavier Arteaga
parent 2d8bd0692a
commit ac0e347d94

@ -0,0 +1,64 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_SEARCH_H
#define SRSUE_SEARCH_H
#include "srslte/interfaces/ue_interfaces.h"
#include "srslte/radio/radio.h"
#include "srslte/srslte.h"
namespace srsue {
class search_callback
{
public:
virtual int radio_recv_fnc(srslte::rf_buffer_t&, uint32_t nsamples, srslte_timestamp_t* rx_time) = 0;
virtual void set_ue_sync_opts(srslte_ue_sync_t* q, float cfo) = 0;
virtual srslte::radio_interface_phy* get_radio() = 0;
virtual void set_rx_gain(float gain) = 0;
};
// Class to run cell search
class search
{
public:
typedef enum { CELL_NOT_FOUND, CELL_FOUND, ERROR, TIMEOUT } ret_code;
~search();
void init(srslte::rf_buffer_t& buffer_, srslte::log* log_h, uint32_t nof_rx_channels, search_callback* parent);
void reset();
float get_last_cfo();
void set_agc_enable(bool enable);
ret_code run(srslte_cell_t* cell, std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload);
private:
search_callback* p = nullptr;
srslte::log* log_h = nullptr;
srslte::rf_buffer_t buffer = {};
srslte_ue_cellsearch_t cs = {};
srslte_ue_mib_sync_t ue_mib_sync = {};
int force_N_id_2 = 0;
};
}; // namespace srsue
#endif // SRSUE_SEARCH_H

@ -0,0 +1,71 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_SFN_SYNC_H
#define SRSUE_SFN_SYNC_H
#include "srslte/interfaces/ue_interfaces.h"
#include "srslte/radio/radio.h"
#include "srslte/srslte.h"
namespace srsue {
// Class to synchronize system frame number
class sfn_sync
{
public:
typedef enum { IDLE, SFN_FOUND, SFX0_FOUND, SFN_NOFOUND, ERROR } ret_code;
sfn_sync() = default;
~sfn_sync();
void init(srslte_ue_sync_t* ue_sync,
const phy_args_t* phy_args_,
srslte::rf_buffer_t& buffer,
uint32_t buffer_max_samples_,
srslte::log* log_h,
uint32_t nof_subframes = SFN_SYNC_NOF_SUBFRAMES);
void reset();
bool set_cell(srslte_cell_t cell);
ret_code run_subframe(srslte_cell_t* cell,
uint32_t* tti_cnt,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only = false);
ret_code decode_mib(srslte_cell_t* cell,
uint32_t* tti_cnt,
srslte::rf_buffer_t* ext_buffer,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only = false);
private:
const static int SFN_SYNC_NOF_SUBFRAMES = 100;
const phy_args_t* phy_args = nullptr;
uint32_t cnt = 0;
uint32_t timeout = 0;
srslte::log* log_h = nullptr;
srslte_ue_sync_t* ue_sync = nullptr;
srslte::rf_buffer_t mib_buffer = {};
uint32_t buffer_max_samples = 0;
srslte_ue_mib_t ue_mib = {};
};
}; // namespace srsue
#endif // SRSUE_SFN_SYNC_H

@ -26,29 +26,31 @@
#include <map> #include <map>
#include <mutex> #include <mutex>
#include <pthread.h> #include <pthread.h>
#include <srslte/phy/channel/channel.h>
#include "phy_common.h" #include "phy_common.h"
#include "prach.h" #include "prach.h"
#include "scell/intra_measure.h"
#include "search.h"
#include "sf_worker.h" #include "sf_worker.h"
#include "sfn_sync.h"
#include "srslte/common/log.h" #include "srslte/common/log.h"
#include "srslte/common/thread_pool.h" #include "srslte/common/thread_pool.h"
#include "srslte/common/threads.h" #include "srslte/common/threads.h"
#include "srslte/common/tti_sync_cv.h" #include "srslte/common/tti_sync_cv.h"
#include "srslte/interfaces/radio_interfaces.h" #include "srslte/interfaces/radio_interfaces.h"
#include "srslte/interfaces/ue_interfaces.h" #include "srslte/interfaces/ue_interfaces.h"
#include "srslte/phy/channel/channel.h"
#include "srslte/srslte.h" #include "srslte/srslte.h"
#include "sync_state.h"
#include <srsue/hdr/phy/scell/intra_measure.h>
namespace srsue { namespace srsue {
typedef _Complex float cf_t; typedef _Complex float cf_t;
class sync : public srslte::thread, public chest_feedback_itf class sync : public srslte::thread, public chest_feedback_itf, public search_callback
{ {
public: public:
sync() : thread("SYNC"), sf_buffer(sync_nof_rx_subframes){}; sync() : thread("SYNC"), sf_buffer(sync_nof_rx_subframes), dummy_buffer(sync_nof_rx_subframes){};
~sync(); ~sync();
void init(srslte::radio_interface_phy* radio_, void init(srslte::radio_interface_phy* radio_,
@ -86,86 +88,70 @@ public:
void force_freq(float dl_freq, float ul_freq); void force_freq(float dl_freq, float ul_freq);
// Other functions // Other functions
void set_rx_gain(float gain); void set_rx_gain(float gain) override;
int radio_recv_fnc(srslte::rf_buffer_t&, uint32_t nsamples, srslte_timestamp_t* rx_time); int radio_recv_fnc(srslte::rf_buffer_t&, uint32_t nsamples, srslte_timestamp_t* rx_time) override;
srslte::radio_interface_phy* get_radio() override { return radio_h; }
private: private:
// Class to run cell search void reset();
class search void radio_error();
{ void set_ue_sync_opts(srslte_ue_sync_t* q, float cfo) override;
public:
typedef enum { CELL_NOT_FOUND, CELL_FOUND, ERROR, TIMEOUT } ret_code; /**
* Search for a cell in the current frequency and go to IDLE.
~search(); * The function search_p.run() will not return until the search finishes
void init(srslte::rf_buffer_t& buffer_, srslte::log* log_h, uint32_t nof_rx_channels, sync* parent); */
void reset(); void run_cell_search_state();
float get_last_cfo();
void set_agc_enable(bool enable); /**
ret_code run(srslte_cell_t* cell, std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload); * SFN synchronization using MIB. run_subframe() receives and processes 1 subframe
* and returns
private: */
sync* p = nullptr; void run_sfn_sync_state();
srslte::log* log_h = nullptr;
srslte::rf_buffer_t buffer = {}; /**
srslte_ue_cellsearch_t cs = {}; * Cell camping state. Calls the PHCH workers to process subframes and maintains cell synchronization
srslte_ue_mib_sync_t ue_mib_sync = {};
int force_N_id_2 = 0;
};
// Class to synchronize system frame number
class sfn_sync
{
public:
typedef enum { IDLE, SFN_FOUND, SFX0_FOUND, SFN_NOFOUND, ERROR } ret_code;
sfn_sync() = default;
~sfn_sync();
void init(srslte_ue_sync_t* ue_sync,
const phy_args_t* phy_args_,
srslte::rf_buffer_t& buffer,
uint32_t buffer_max_samples_,
srslte::log* log_h,
uint32_t nof_subframes = SFN_SYNC_NOF_SUBFRAMES);
void reset();
bool set_cell(srslte_cell_t cell);
ret_code run_subframe(srslte_cell_t* cell,
uint32_t* tti_cnt,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only = false);
ret_code decode_mib(srslte_cell_t* cell,
uint32_t* tti_cnt,
srslte::rf_buffer_t* ext_buffer,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only = false);
private:
const static int SFN_SYNC_NOF_SUBFRAMES = 100;
const phy_args_t* phy_args = nullptr;
uint32_t cnt = 0;
uint32_t timeout = 0;
srslte::log* log_h = nullptr;
srslte_ue_sync_t* ue_sync = nullptr;
srslte::rf_buffer_t mib_buffer = {};
uint32_t buffer_max_samples = 0;
srslte_ue_mib_t ue_mib = {};
};
/* TODO: Intra-freq measurements can be improved by capturing 200 ms length signal and run cell search +
* measurements offline using sync object and finding multiple cells for each N_id_2
*/ */
void run_camping_state();
void reset(); /**
void radio_error(); * Receives and discards received samples. Does not maintain synchronization
void set_ue_sync_opts(srslte_ue_sync_t* q, float cfo); */
void run_idle_state();
/**
* MAIN THREAD
*
* The main thread process the SYNC state machine. Every state except IDLE must have exclusive access to
* all variables. If any change of cell configuration must be done, the thread must be in IDLE.
*
* On each state except campling, 1 function is called and the thread jumps to the next state based on the output.
*
* It has 3 states: Cell search, SFN synchronization, initial measurement and camping.
* - CELL_SEARCH: Initial Cell id and MIB acquisition. Uses 1.92 MHz sampling rate
* - CELL_SYNC: Full sampling rate, uses MIB to obtain SFN. When SFN is obtained, moves to CELL_CAMP
* - CELL_CAMP: Cell camping state. Calls the PHCH workers to process subframes and maintains cell
* synchronization.
* - IDLE: Receives and discards received samples. Does not maintain synchronization.
*
*/
void run_thread() final; void run_thread() final;
/**
* Helper method, executed when the UE is camping and in-sync
* @param worker Selected worker for the current TTI
* @param sync_buffer Sub-frame buffer for the current TTI
*/
void run_camping_in_sync_state(sf_worker* worker, srslte::rf_buffer_t& sync_buffer);
float get_tx_cfo(); float get_tx_cfo();
void set_sampling_rate(); void set_sampling_rate();
bool set_frequency(); bool set_frequency();
bool set_cell(float cfo); bool set_cell(float cfo);
bool running = false; bool running = false;
bool is_overflow = false; bool is_overflow = false;
bool forced_rx_time_init = true; // Rx time sync after first receive from radio bool forced_rx_time_init = true; // Rx time sync after first receive from radio
@ -174,8 +160,6 @@ private:
sfn_sync sfn_p; sfn_sync sfn_p;
std::vector<std::unique_ptr<scell::intra_measure> > intra_freq_meas; std::vector<std::unique_ptr<scell::intra_measure> > intra_freq_meas;
uint32_t current_sflen = 0;
// Pointers to other classes // Pointers to other classes
stack_interface_phy_lte* stack = nullptr; stack_interface_phy_lte* stack = nullptr;
srslte::log* log_h = nullptr; srslte::log* log_h = nullptr;
@ -186,12 +170,19 @@ private:
prach* prach_buffer = nullptr; prach* prach_buffer = nullptr;
srslte::channel_ptr channel_emulator = nullptr; srslte::channel_ptr channel_emulator = nullptr;
// PRACH state
uint32_t prach_nof_sf = 0;
uint32_t prach_sf_cnt = 0;
cf_t* prach_ptr = nullptr;
float prach_power = 0;
// Object for synchronization of the primary cell // Object for synchronization of the primary cell
srslte_ue_sync_t ue_sync = {}; srslte_ue_sync_t ue_sync = {};
// Buffer for primary and secondary cell samples // Buffer for primary and secondary cell samples
const static uint32_t sync_nof_rx_subframes = 5; const static uint32_t sync_nof_rx_subframes = 5;
srslte::rf_buffer_t sf_buffer = {}; srslte::rf_buffer_t sf_buffer = {};
srslte::rf_buffer_t dummy_buffer;
// Sync metrics // Sync metrics
sync_metrics_t metrics = {}; sync_metrics_t metrics = {};
@ -200,133 +191,6 @@ private:
uint32_t out_of_sync_cnt = 0; uint32_t out_of_sync_cnt = 0;
uint32_t in_sync_cnt = 0; uint32_t in_sync_cnt = 0;
// State machine for SYNC thread
class sync_state
{
public:
typedef enum {
IDLE = 0,
CELL_SEARCH,
SFN_SYNC,
CAMPING,
} state_t;
/* Run_state is called by the main thread at the start of each loop. It updates the state
* and returns the current state
*/
state_t run_state()
{
std::lock_guard<std::mutex> lock(inside);
cur_state = next_state;
if (state_setting) {
state_setting = false;
state_running = true;
}
cvar.notify_all();
return cur_state;
}
// Called by the main thread at the end of each state to indicate it has finished.
void state_exit(bool exit_ok = true)
{
std::lock_guard<std::mutex> lock(inside);
if (cur_state == SFN_SYNC && exit_ok == true) {
next_state = CAMPING;
} else {
next_state = IDLE;
}
state_running = false;
cvar.notify_all();
}
void force_sfn_sync()
{
std::lock_guard<std::mutex> lock(inside);
next_state = SFN_SYNC;
}
/* Functions to be called from outside the STM thread to instruct the STM to switch state.
* The functions change the state and wait until it has changed it.
*
* These functions are mutexed and only 1 can be called at a time
*/
void go_idle()
{
std::lock_guard<std::mutex> lock(outside);
go_state(IDLE);
}
void run_cell_search()
{
std::lock_guard<std::mutex> lock(outside);
go_state(CELL_SEARCH);
wait_state_run();
wait_state_next();
}
void run_sfn_sync()
{
std::lock_guard<std::mutex> lock(outside);
go_state(SFN_SYNC);
wait_state_run();
wait_state_next();
}
/* Helpers below this */
bool is_idle() { return cur_state == IDLE; }
bool is_camping() { return cur_state == CAMPING; }
const char* to_string()
{
switch (cur_state) {
case IDLE:
return "IDLE";
case CELL_SEARCH:
return "SEARCH";
case SFN_SYNC:
return "SYNC";
case CAMPING:
return "CAMPING";
default:
return "UNKNOWN";
}
}
sync_state() = default;
private:
void go_state(state_t s)
{
std::unique_lock<std::mutex> ul(inside);
next_state = s;
state_setting = true;
while (state_setting) {
cvar.wait(ul);
}
}
/* Waits until there is a call to set_state() and then run_state(). Returns when run_state() returns */
void wait_state_run()
{
std::unique_lock<std::mutex> ul(inside);
while (state_running) {
cvar.wait(ul);
}
}
void wait_state_next()
{
std::unique_lock<std::mutex> ul(inside);
while (cur_state != next_state) {
cvar.wait(ul);
}
}
bool state_running = false;
bool state_setting = false;
state_t cur_state = IDLE;
state_t next_state = IDLE;
std::mutex inside;
std::mutex outside;
std::condition_variable cvar;
};
std::mutex rrc_mutex; std::mutex rrc_mutex;
sync_state phy_state; sync_state phy_state;
@ -338,10 +202,11 @@ private:
float current_srate = 0; float current_srate = 0;
// This is the primary cell // This is the primary cell
srslte_cell_t cell = {}; srslte_cell_t cell = {};
uint32_t tti = 0; bool force_camping_sfn_sync = false;
srslte_timestamp_t tti_ts = {}; uint32_t tti = 0;
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN> mib = {}; srslte_timestamp_t tti_ts = {};
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN> mib = {};
uint32_t nof_workers = 0; uint32_t nof_workers = 0;
uint32_t nof_rf_channels = 0; uint32_t nof_rf_channels = 0;

@ -0,0 +1,155 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_SYNC_STATE_H
#define SRSUE_SYNC_STATE_H
namespace srsue {
class sync_state
{
public:
typedef enum {
IDLE = 0,
CELL_SEARCH,
SFN_SYNC,
CAMPING,
} state_t;
/* Run_state is called by the main thread at the start of each loop. It updates the state
* and returns the current state
*/
state_t run_state()
{
std::lock_guard<std::mutex> lock(inside);
cur_state = next_state;
if (state_setting) {
state_setting = false;
state_running = true;
}
cvar.notify_all();
return cur_state;
}
// Called by the main thread at the end of each state to indicate it has finished.
void state_exit(bool exit_ok = true)
{
std::lock_guard<std::mutex> lock(inside);
if (cur_state == SFN_SYNC && exit_ok == true) {
next_state = CAMPING;
} else {
next_state = IDLE;
}
state_running = false;
cvar.notify_all();
}
void force_sfn_sync()
{
std::lock_guard<std::mutex> lock(inside);
next_state = SFN_SYNC;
}
/* Functions to be called from outside the STM thread to instruct the STM to switch state.
* The functions change the state and wait until it has changed it.
*
* These functions are mutexed and only 1 can be called at a time
*/
void go_idle()
{
std::lock_guard<std::mutex> lock(outside);
go_state(IDLE);
}
void run_cell_search()
{
std::lock_guard<std::mutex> lock(outside);
go_state(CELL_SEARCH);
wait_state_run();
wait_state_next();
}
void run_sfn_sync()
{
std::lock_guard<std::mutex> lock(outside);
go_state(SFN_SYNC);
wait_state_run();
wait_state_next();
}
/* Helpers below this */
bool is_idle() { return cur_state == IDLE; }
bool is_camping() { return cur_state == CAMPING; }
const char* to_string()
{
switch (cur_state) {
case IDLE:
return "IDLE";
case CELL_SEARCH:
return "SEARCH";
case SFN_SYNC:
return "SYNC";
case CAMPING:
return "CAMPING";
default:
return "UNKNOWN";
}
}
sync_state() = default;
private:
void go_state(state_t s)
{
std::unique_lock<std::mutex> ul(inside);
next_state = s;
state_setting = true;
while (state_setting) {
cvar.wait(ul);
}
}
/* Waits until there is a call to set_state() and then run_state(). Returns when run_state() returns */
void wait_state_run()
{
std::unique_lock<std::mutex> ul(inside);
while (state_running) {
cvar.wait(ul);
}
}
void wait_state_next()
{
std::unique_lock<std::mutex> ul(inside);
while (cur_state != next_state) {
cvar.wait(ul);
}
}
bool state_running = false;
bool state_setting = false;
state_t cur_state = IDLE;
state_t next_state = IDLE;
std::mutex inside;
std::mutex outside;
std::condition_variable cvar;
};
}; // namespace srsue
#endif // SRSUE_SYNC_STATE_H

@ -0,0 +1,200 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsue/hdr/phy/search.h"
#define Error(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->error(fmt, ##__VA_ARGS__)
#define Warning(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->warning(fmt, ##__VA_ARGS__)
#define Info(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->info(fmt, ##__VA_ARGS__)
#define Debug(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->debug(fmt, ##__VA_ARGS__)
namespace srsue {
static int
radio_recv_callback(void* obj, cf_t* data[SRSLTE_MAX_CHANNELS], uint32_t nsamples, srslte_timestamp_t* rx_time)
{
srslte::rf_buffer_t x(data);
return ((search_callback*)obj)->radio_recv_fnc(x, nsamples, rx_time);
}
static SRSLTE_AGC_CALLBACK(callback_set_rx_gain)
{
((search_callback*)h)->set_rx_gain(gain_db);
}
search::~search()
{
srslte_ue_mib_sync_free(&ue_mib_sync);
srslte_ue_cellsearch_free(&cs);
}
void search::init(srslte::rf_buffer_t& buffer_, srslte::log* log_h_, uint32_t nof_rx_channels, search_callback* parent)
{
log_h = log_h_;
p = parent;
buffer = buffer_;
if (srslte_ue_cellsearch_init_multi(&cs, 8, radio_recv_callback, nof_rx_channels, parent)) {
Error("SYNC: Initiating UE cell search\n");
}
srslte_ue_cellsearch_set_nof_valid_frames(&cs, 4);
if (srslte_ue_mib_sync_init_multi(&ue_mib_sync, radio_recv_callback, nof_rx_channels, parent)) {
Error("SYNC: Initiating UE MIB synchronization\n");
}
// Set options defined in expert section
p->set_ue_sync_opts(&cs.ue_sync, 0);
force_N_id_2 = -1;
}
void search::reset()
{
srslte_ue_sync_reset(&ue_mib_sync.ue_sync);
}
float search::get_last_cfo()
{
return srslte_ue_sync_get_cfo(&ue_mib_sync.ue_sync);
}
void search::set_agc_enable(bool enable)
{
if (enable) {
srslte_rf_info_t* rf_info = p->get_radio()->get_info();
srslte_ue_sync_start_agc(&ue_mib_sync.ue_sync,
callback_set_rx_gain,
rf_info->min_rx_gain,
rf_info->max_rx_gain,
p->get_radio()->get_rx_gain());
} else {
ERROR("Error stop AGC not implemented\n");
}
}
search::ret_code search::run(srslte_cell_t* cell_, std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload)
{
srslte_cell_t new_cell = {};
srslte_ue_cellsearch_result_t found_cells[3];
bzero(found_cells, 3 * sizeof(srslte_ue_cellsearch_result_t));
/* Find a cell in the given N_id_2 or go through the 3 of them to find the strongest */
uint32_t max_peak_cell = 0;
int ret = SRSLTE_ERROR;
Info("SYNC: Searching for cell...\n");
log_h->console(".");
if (force_N_id_2 >= 0 && force_N_id_2 < 3) {
ret = srslte_ue_cellsearch_scan_N_id_2(&cs, force_N_id_2, &found_cells[force_N_id_2]);
max_peak_cell = force_N_id_2;
} else {
ret = srslte_ue_cellsearch_scan(&cs, found_cells, &max_peak_cell);
}
if (ret < 0) {
Error("SYNC: Error decoding MIB: Error searching PSS\n");
return ERROR;
} else if (ret == 0) {
Info("SYNC: Could not find any cell in this frequency\n");
return CELL_NOT_FOUND;
}
// Save result
new_cell.id = found_cells[max_peak_cell].cell_id;
new_cell.cp = found_cells[max_peak_cell].cp;
new_cell.frame_type = found_cells[max_peak_cell].frame_type;
float cfo = found_cells[max_peak_cell].cfo;
log_h->console("\n");
Info("SYNC: PSS/SSS detected: Mode=%s, PCI=%d, CFO=%.1f KHz, CP=%s\n",
new_cell.frame_type ? "TDD" : "FDD",
new_cell.id,
cfo / 1000,
srslte_cp_string(new_cell.cp));
if (srslte_ue_mib_sync_set_cell(&ue_mib_sync, new_cell)) {
Error("SYNC: Setting UE MIB cell\n");
return ERROR;
}
// Set options defined in expert section
p->set_ue_sync_opts(&ue_mib_sync.ue_sync, cfo);
srslte_ue_sync_reset(&ue_mib_sync.ue_sync);
/* Find and decode MIB */
int sfn_offset;
ret = srslte_ue_mib_sync_decode(&ue_mib_sync, 40, bch_payload.data(), &new_cell.nof_ports, &sfn_offset);
if (ret == 1) {
srslte_pbch_mib_unpack(bch_payload.data(), &new_cell, NULL);
// pack MIB and store inplace for PCAP dump
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN / 8> mib_packed;
srslte_bit_pack_vector(bch_payload.data(), mib_packed.data(), SRSLTE_BCH_PAYLOAD_LEN);
std::copy(std::begin(mib_packed), std::end(mib_packed), std::begin(bch_payload));
fprintf(stdout,
"Found Cell: Mode=%s, PCI=%d, PRB=%d, Ports=%d, CFO=%.1f KHz\n",
new_cell.frame_type ? "TDD" : "FDD",
new_cell.id,
new_cell.nof_prb,
new_cell.nof_ports,
cfo / 1000);
Info("SYNC: MIB Decoded: Mode=%s, PCI=%d, PRB=%d, Ports=%d, CFO=%.1f KHz\n",
new_cell.frame_type ? "TDD" : "FDD",
new_cell.id,
new_cell.nof_prb,
new_cell.nof_ports,
cfo / 1000);
if (!srslte_cell_isvalid(&new_cell)) {
Error("SYNC: Detected invalid cell.\n");
return CELL_NOT_FOUND;
}
// Save cell pointer
if (cell_) {
*cell_ = new_cell;
}
return CELL_FOUND;
} else if (ret == 0) {
Warning("SYNC: Found PSS but could not decode PBCH\n");
return CELL_NOT_FOUND;
} else {
Error("SYNC: Receiving MIB\n");
return ERROR;
}
}
}; // namespace srsue

@ -0,0 +1,167 @@
/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsue/hdr/phy/sfn_sync.h"
#define Error(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->error(fmt, ##__VA_ARGS__)
#define Warning(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->warning(fmt, ##__VA_ARGS__)
#define Info(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->info(fmt, ##__VA_ARGS__)
#define Debug(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->debug(fmt, ##__VA_ARGS__)
namespace srsue {
sfn_sync::~sfn_sync()
{
srslte_ue_mib_free(&ue_mib);
}
void sfn_sync::init(srslte_ue_sync_t* ue_sync_,
const phy_args_t* phy_args_,
srslte::rf_buffer_t& buffer,
uint32_t buffer_max_samples_,
srslte::log* log_h_,
uint32_t nof_subframes)
{
log_h = log_h_;
ue_sync = ue_sync_;
phy_args = phy_args_;
timeout = nof_subframes;
mib_buffer = buffer;
buffer_max_samples = buffer_max_samples_;
// MIB decoder uses a single receiver antenna in logical channel 0
if (srslte_ue_mib_init(&ue_mib, buffer.get(0), SRSLTE_MAX_PRB)) {
Error("SYNC: Initiating UE MIB decoder\n");
}
}
bool sfn_sync::set_cell(srslte_cell_t cell_)
{
if (srslte_ue_mib_set_cell(&ue_mib, cell_)) {
Error("SYNC: Setting cell: initiating ue_mib\n");
return false;
}
reset();
return true;
}
void sfn_sync::reset()
{
cnt = 0;
srslte_ue_mib_reset(&ue_mib);
}
sfn_sync::ret_code sfn_sync::run_subframe(srslte_cell_t* cell_,
uint32_t* tti_cnt,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only)
{
int ret = srslte_ue_sync_zerocopy(ue_sync, mib_buffer.to_cf_t(), buffer_max_samples);
if (ret < 0) {
Error("SYNC: Error calling ue_sync_get_buffer.\n");
return ERROR;
}
if (ret == 1) {
sfn_sync::ret_code ret2 = decode_mib(cell_, tti_cnt, nullptr, bch_payload, sfidx_only);
if (ret2 != SFN_NOFOUND) {
return ret2;
}
} else {
Info("SYNC: Waiting for PSS while trying to decode MIB (%d/%d)\n", cnt, timeout);
}
cnt++;
if (cnt >= timeout) {
cnt = 0;
return SFN_NOFOUND;
}
return IDLE;
}
sfn_sync::ret_code sfn_sync::decode_mib(srslte_cell_t* cell_,
uint32_t* tti_cnt,
srslte::rf_buffer_t* ext_buffer,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only)
{
// If external buffer provided not equal to internal buffer, copy samples from channel/port 0
if (ext_buffer != nullptr) {
memcpy(mib_buffer.get(0), ext_buffer->get(0), sizeof(cf_t) * ue_sync->sf_len);
}
if (srslte_ue_sync_get_sfidx(ue_sync) == 0) {
// Skip MIB decoding if we are only interested in subframe 0
if (sfidx_only) {
if (tti_cnt) {
*tti_cnt = 0;
}
return SFX0_FOUND;
}
int sfn_offset = 0;
int n = srslte_ue_mib_decode(&ue_mib, bch_payload.data(), NULL, &sfn_offset);
switch (n) {
default:
Error("SYNC: Error decoding MIB while synchronising SFN");
return ERROR;
case SRSLTE_UE_MIB_FOUND:
uint32_t sfn;
srslte_pbch_mib_unpack(bch_payload.data(), cell_, &sfn);
sfn = (sfn + sfn_offset) % 1024;
if (tti_cnt) {
*tti_cnt = 10 * sfn;
// Check if SNR is below the minimum threshold
if (ue_mib.chest_res.snr_db < phy_args->in_sync_snr_db_th) {
Info("SYNC: MIB decoded, SNR is too low (%+.1f < %+.1f)\n",
ue_mib.chest_res.snr_db,
phy_args->in_sync_snr_db_th);
return SFN_NOFOUND;
}
Info("SYNC: DONE, SNR=%.1f dB, TTI=%d, sfn_offset=%d\n", ue_mib.chest_res.snr_db, *tti_cnt, sfn_offset);
}
reset();
return SFN_FOUND;
case SRSLTE_UE_MIB_NOTFOUND:
Info("SYNC: Found PSS but could not decode MIB. SNR=%.1f dB (%d/%d)\n", ue_mib.chest_res.snr_db, cnt, timeout);
return SFN_NOFOUND;
}
}
return IDLE;
}
}; // namespace srsue

@ -78,7 +78,8 @@ void sync::init(srslte::radio_interface_phy* _radio,
return; return;
} }
if (srslte_ue_sync_init_multi(&ue_sync, SRSLTE_MAX_PRB, false, radio_recv_callback, nof_rf_channels, this)) { if (srslte_ue_sync_init_multi(&ue_sync, SRSLTE_MAX_PRB, false, radio_recv_callback, nof_rf_channels, this) !=
SRSLTE_SUCCESS) {
Error("SYNC: Initiating ue_sync\n"); Error("SYNC: Initiating ue_sync\n");
return; return;
} }
@ -98,7 +99,7 @@ void sync::init(srslte::radio_interface_phy* _radio,
// Start intra-frequency measurement // Start intra-frequency measurement
for (uint32_t i = 0; i < worker_com->args->nof_carriers; i++) { for (uint32_t i = 0; i < worker_com->args->nof_carriers; i++) {
auto q = new scell::intra_measure; scell::intra_measure* q = new scell::intra_measure;
q->init(worker_com, stack, log_h); q->init(worker_com, stack, log_h);
intra_freq_meas.push_back(std::unique_ptr<scell::intra_measure>(q)); intra_freq_meas.push_back(std::unique_ptr<scell::intra_measure>(q));
} }
@ -134,10 +135,10 @@ void sync::stop()
void sync::reset() void sync::reset()
{ {
in_sync_cnt = 0; in_sync_cnt = 0;
out_of_sync_cnt = 0; out_of_sync_cnt = 0;
current_earfcn = -1; current_earfcn = -1;
srate_mode = SRATE_NONE; srate_mode = SRATE_NONE;
sfn_p.reset(); sfn_p.reset();
search_p.reset(); search_p.reset();
} }
@ -181,8 +182,8 @@ phy_interface_rrc_lte::cell_search_ret_t sync::cell_search(phy_interface_rrc_lte
std::unique_lock<std::mutex> ul(rrc_mutex); std::unique_lock<std::mutex> ul(rrc_mutex);
phy_interface_rrc_lte::cell_search_ret_t ret = {}; phy_interface_rrc_lte::cell_search_ret_t ret = {};
ret.found = phy_interface_rrc_lte::cell_search_ret_t::ERROR; ret.found = phy_interface_rrc_lte::cell_search_ret_t::ERROR;
ret.last_freq = phy_interface_rrc_lte::cell_search_ret_t::NO_MORE_FREQS; ret.last_freq = phy_interface_rrc_lte::cell_search_ret_t::NO_MORE_FREQS;
// Move state to IDLE // Move state to IDLE
Info("Cell Search: Start EARFCN index=%u/%zd\n", cellsearch_earfcn_index, worker_com->args->dl_earfcn_list.size()); Info("Cell Search: Start EARFCN index=%u/%zd\n", cellsearch_earfcn_index, worker_com->args->dl_earfcn_list.size());
@ -309,13 +310,13 @@ bool sync::cell_select(const phy_interface_rrc_lte::phy_cell_t* new_cell)
intra_freq_meas[0]->set_primary_cell(current_earfcn, cell); intra_freq_meas[0]->set_primary_cell(current_earfcn, cell);
} }
/* Change sampling rate if necessary */ // Change sampling rate if necessary
if (srate_mode != SRATE_CAMP) { if (srate_mode != SRATE_CAMP) {
log_h->info("Cell Select: Setting CAMPING sampling rate\n"); log_h->info("Cell Select: Setting CAMPING sampling rate\n");
set_sampling_rate(); set_sampling_rate();
} }
/* SFN synchronization */ // SFN synchronization
phy_state.run_sfn_sync(); phy_state.run_sfn_sync();
if (phy_state.is_camping()) { if (phy_state.is_camping()) {
Info("Cell Select: SFN synchronized. CAMPING...\n"); Info("Cell Select: SFN synchronized. CAMPING...\n");
@ -333,37 +334,196 @@ bool sync::cell_is_camping()
return phy_state.is_camping(); return phy_state.is_camping();
} }
/** void sync::run_cell_search_state()
* MAIN THREAD {
* cell_search_ret = search_p.run(&cell, mib);
* The main thread process the SYNC state machine. Every state except IDLE must have exclusive access to if (cell_search_ret == search::CELL_FOUND) {
* all variables. If any change of cell configuration must be done, the thread must be in IDLE. stack->bch_decoded_ok(SYNC_CC_IDX, mib.data(), mib.size() / 8);
* }
* On each state except campling, 1 function is called and the thread jumps to the next state based on the output. phy_state.state_exit();
* }
* It has 3 states: Cell search, SFN synchronization, initial measurement and camping.
* - CELL_SEARCH: Initial Cell id and MIB acquisition. Uses 1.92 MHz sampling rate
* - CELL_SYNC: Full sampling rate, uses MIB to obtain SFN. When SFN is obtained, moves to CELL_CAMP
* - CELL_CAMP: Cell camping state. Calls the PHCH workers to process subframes and maintains cell synchronization.
* - IDLE: Receives and discards received samples. Does not maintain synchronization.
*
*/
void sync::run_thread() void sync::run_sfn_sync_state()
{
srslte_cell_t temp_cell = cell;
switch (sfn_p.run_subframe(&temp_cell, &tti, mib)) {
case sfn_sync::SFN_FOUND:
if (memcmp(&cell, &temp_cell, sizeof(srslte_cell_t)) != 0) {
srslte_cell_fprint(stdout, &cell, 0);
srslte_cell_fprint(stdout, &temp_cell, 0);
log_h->error("Detected cell during SFN synchronization differs from configured cell. Cell reselection to "
"cells with different MIB is not supported\n");
log_h->console("Detected cell during SFN synchronization differs from configured cell. Cell reselection "
"to cells with different MIB is not supported\n");
phy_state.state_exit(false);
}
stack->in_sync();
phy_state.state_exit();
break;
case sfn_sync::IDLE:
break;
default:
phy_state.state_exit(false);
break;
}
}
void sync::run_camping_in_sync_state(sf_worker* worker, srslte::rf_buffer_t& sync_buffer)
{ {
sf_worker* worker = nullptr;
srslte_cell_t temp_cell = {};
bool force_camping_sfn_sync = false; // Check tti is synched with ue_sync
if (srslte_ue_sync_get_sfidx(&ue_sync) != tti % 10) {
uint32_t sfn = tti / 10;
tti = (sfn * 10 + srslte_ue_sync_get_sfidx(&ue_sync)) % 10240;
srslte::rf_buffer_t dummy_buffer(sync_nof_rx_subframes); // Force SFN decode, just in case it is in the wrong frame
force_camping_sfn_sync = true;
}
if (is_overflow) {
force_camping_sfn_sync = true;
is_overflow = false;
log_h->info("Detected overflow, trying to resync SFN\n");
}
// Force decode MIB if required
if (force_camping_sfn_sync) {
uint32_t _tti = 0;
srslte_cell_t temp_cell = cell;
sfn_sync::ret_code ret = sfn_p.decode_mib(&temp_cell, &_tti, &sync_buffer, mib);
if (ret == sfn_sync::SFN_FOUND) {
// Force tti
tti = _tti;
// Disable
force_camping_sfn_sync = false;
if (memcmp(&cell, &temp_cell, sizeof(srslte_cell_t)) != 0) {
log_h->error("Detected cell during SFN synchronization differs from configured cell. Cell "
"reselection to cells with different MIB is not supported\n");
log_h->console("Detected cell during SFN synchronization differs from configured cell. Cell "
"reselection to cells with different MIB is not supported\n");
} else {
log_h->info("SFN resynchronized successfully\n");
}
} else {
log_h->warning("SFN not yet synchronized, sending out-of-sync\n");
}
}
Debug("SYNC: Worker %d synchronized\n", worker->get_id());
metrics.sfo = srslte_ue_sync_get_sfo(&ue_sync);
metrics.cfo = srslte_ue_sync_get_cfo(&ue_sync);
metrics.ta_us = worker_com->ta.get_usec();
for (uint32_t i = 0; i < worker_com->args->nof_carriers; i++) {
worker_com->set_sync_metrics(i, metrics);
}
// Check if we need to TX a PRACH
if (prach_buffer->is_ready_to_send(tti)) {
prach_ptr = prach_buffer->generate(get_tx_cfo(), &prach_nof_sf, &prach_power);
if (prach_ptr == nullptr) {
Error("Generating PRACH\n");
}
}
// Compute TX time: Any transmission happens in TTI+4 thus advance 4 ms the reception time
srslte_timestamp_t tx_time;
srslte_ue_sync_get_last_timestamp(&ue_sync, &tx_time); // Get Rx Timestamp
srslte_timestamp_add(&tx_time, 0, FDD_HARQ_DELAY_DL_MS * 1e-3); // Add Tx delay
worker->set_prach(prach_ptr ? &prach_ptr[prach_sf_cnt * SRSLTE_SF_LEN_PRB(cell.nof_prb)] : nullptr, prach_power);
// Set CFO for all Carriers
for (uint32_t cc = 0; cc < worker_com->args->nof_carriers; cc++) {
worker->set_cfo(cc, get_tx_cfo());
worker_com->avg_cfo_hz[cc] = srslte_ue_sync_get_cfo(&ue_sync);
}
worker->set_tti(tti);
worker->set_tx_time(tx_time);
// Advance/reset prach subframe pointer
if (prach_ptr) {
prach_sf_cnt++;
if (prach_sf_cnt == prach_nof_sf) {
prach_sf_cnt = 0;
prach_ptr = nullptr;
}
}
// Start worker
worker_com->semaphore.push(worker);
workers_pool->start_worker(worker);
}
void sync::run_camping_state()
{
sf_worker* worker = (sf_worker*)workers_pool->wait_worker(tti);
srslte::rf_buffer_t sync_buffer = {}; srslte::rf_buffer_t sync_buffer = {};
uint32_t prach_nof_sf = 0; if (worker == nullptr) {
uint32_t prach_sf_cnt = 0; // wait_worker() only returns NULL if it's being closed. Quit now to avoid unnecessary loops here
cf_t* prach_ptr = NULL; running = false;
float prach_power = 0; return;
}
// Map carrier/antenna buffers to worker buffers
for (uint32_t c = 0; c < worker_com->args->nof_carriers; c++) {
for (uint32_t i = 0; i < worker_com->args->nof_rx_ant; i++) {
sync_buffer.set(c, i, worker_com->args->nof_rx_ant, worker->get_buffer(c, i));
}
}
// Primary Cell (PCell) Synchronization
switch (srslte_ue_sync_zerocopy(&ue_sync, sync_buffer.to_cf_t(), worker->get_buffer_len())) {
case 1:
run_camping_in_sync_state(worker, sync_buffer);
break;
case 0:
Warning("SYNC: Out-of-sync detected in PSS/SSS\n");
out_of_sync();
worker->release();
// Force decoding MIB, for making sure that the TTI will be right
if (!force_camping_sfn_sync) {
force_camping_sfn_sync = true;
}
break;
default:
radio_error();
worker->release();
break;
}
}
void sync::run_idle_state()
{
if (radio_h->is_init()) {
uint32_t nsamples = 1920;
if (current_srate > 0) {
nsamples = current_srate / 1000;
}
Debug("Discarding %d samples\n", nsamples);
srslte_timestamp_t rx_time = {};
if (radio_recv_fnc(dummy_buffer, nsamples, &rx_time) == SRSLTE_SUCCESS) {
log_h->console("SYNC: Receiving from radio while in IDLE_RX\n");
}
// If radio is in locked state returns immediately. In that case, do a 1 ms sleep
if (rx_time.frac_secs == 0 && rx_time.full_secs == 0) {
usleep(1000);
}
radio_h->tx_end();
} else {
Debug("Sleeping\n");
usleep(1000);
}
}
void sync::run_thread()
{
while (running) { while (running) {
Debug("SYNC: state=%s, tti=%d\n", phy_state.to_string(), tti); Debug("SYNC: state=%s, tti=%d\n", phy_state.to_string(), tti);
@ -378,191 +538,21 @@ void sync::run_thread()
switch (phy_state.run_state()) { switch (phy_state.run_state()) {
case sync_state::CELL_SEARCH: case sync_state::CELL_SEARCH:
/* Search for a cell in the current frequency and go to IDLE. run_cell_search_state();
* The function search_p.run() will not return until the search finishes
*/
cell_search_ret = search_p.run(&cell, mib);
if (cell_search_ret == search::CELL_FOUND) {
stack->bch_decoded_ok(SYNC_CC_IDX, mib.data(), mib.size() / 8);
}
phy_state.state_exit();
break; break;
case sync_state::SFN_SYNC: case sync_state::SFN_SYNC:
run_sfn_sync_state();
/* SFN synchronization using MIB. run_subframe() receives and processes 1 subframe
* and returns
*/
temp_cell = cell;
switch (sfn_p.run_subframe(&temp_cell, &tti, mib)) {
case sfn_sync::SFN_FOUND:
if (memcmp(&cell, &temp_cell, sizeof(srslte_cell_t))) {
srslte_cell_fprint(stdout, &cell, 0);
srslte_cell_fprint(stdout, &temp_cell, 0);
log_h->error("Detected cell during SFN synchronization differs from configured cell. Cell reselection to "
"cells with different MIB is not supported\n");
log_h->console("Detected cell during SFN synchronization differs from configured cell. Cell reselection "
"to cells with different MIB is not supported\n");
phy_state.state_exit(false);
}
stack->in_sync();
phy_state.state_exit();
break;
case sfn_sync::IDLE:
break;
default:
phy_state.state_exit(false);
break;
}
break; break;
case sync_state::CAMPING: case sync_state::CAMPING:
run_camping_state();
worker = (sf_worker*)workers_pool->wait_worker(tti);
if (worker) {
// Map carrier/antenna buffers to worker buffers
for (uint32_t c = 0; c < worker_com->args->nof_carriers; c++) {
for (uint32_t i = 0; i < worker_com->args->nof_rx_ant; i++) {
sync_buffer.set(c, i, worker_com->args->nof_rx_ant, worker->get_buffer(c, i));
}
}
// Primary Cell (PCell) Synchronization
switch (srslte_ue_sync_zerocopy(&ue_sync, sync_buffer.to_cf_t(), worker->get_buffer_len())) {
case 1:
// Check tti is synched with ue_sync
if (srslte_ue_sync_get_sfidx(&ue_sync) != tti % 10) {
uint32_t sfn = tti / 10;
tti = (sfn * 10 + srslte_ue_sync_get_sfidx(&ue_sync)) % 10240;
// Force SFN decode, just in case it is in the wrong frame
force_camping_sfn_sync = true;
}
if (is_overflow) {
force_camping_sfn_sync = true;
is_overflow = false;
log_h->info("Detected overflow, trying to resync SFN\n");
}
// Force decode MIB if required
if (force_camping_sfn_sync) {
uint32_t _tti = 0;
temp_cell = cell;
sync::sfn_sync::ret_code ret = sfn_p.decode_mib(&temp_cell, &_tti, &sync_buffer, mib);
if (ret == sfn_sync::SFN_FOUND) {
// Force tti
tti = _tti;
// Disable
force_camping_sfn_sync = false;
if (memcmp(&cell, &temp_cell, sizeof(srslte_cell_t))) {
log_h->error("Detected cell during SFN synchronization differs from configured cell. Cell "
"reselection to cells with different MIB is not supported\n");
log_h->console("Detected cell during SFN synchronization differs from configured cell. Cell "
"reselection to cells with different MIB is not supported\n");
} else {
log_h->info("SFN resynchronized successfully\n");
}
} else {
log_h->warning("SFN not yet synchronized, sending out-of-sync\n");
}
}
Debug("SYNC: Worker %d synchronized\n", worker->get_id());
metrics.sfo = srslte_ue_sync_get_sfo(&ue_sync);
metrics.cfo = srslte_ue_sync_get_cfo(&ue_sync);
metrics.ta_us = worker_com->ta.get_usec();
for (uint32_t i = 0; i < worker_com->args->nof_carriers; i++) {
worker_com->set_sync_metrics(i, metrics);
}
// Check if we need to TX a PRACH
if (prach_buffer->is_ready_to_send(tti)) {
prach_ptr = prach_buffer->generate(get_tx_cfo(), &prach_nof_sf, &prach_power);
if (!prach_ptr) {
Error("Generating PRACH\n");
}
}
/* Compute TX time: Any transmission happens in TTI+4 thus advance 4 ms the reception time */
srslte_timestamp_t rx_time, tx_time;
srslte_ue_sync_get_last_timestamp(&ue_sync, &rx_time);
srslte_timestamp_copy(&tx_time, &rx_time);
srslte_timestamp_add(&tx_time, 0, FDD_HARQ_DELAY_DL_MS * 1e-3);
worker->set_prach(prach_ptr ? &prach_ptr[prach_sf_cnt * SRSLTE_SF_LEN_PRB(cell.nof_prb)] : nullptr,
prach_power);
// Set CFO for all Carriers
for (uint32_t cc = 0; cc < worker_com->args->nof_carriers; cc++) {
worker->set_cfo(cc, get_tx_cfo());
worker_com->avg_cfo_hz[cc] = srslte_ue_sync_get_cfo(&ue_sync);
}
worker->set_tti(tti);
worker->set_tx_time(tx_time);
// Advance/reset prach subframe pointer
if (prach_ptr) {
prach_sf_cnt++;
if (prach_sf_cnt == prach_nof_sf) {
prach_sf_cnt = 0;
prach_ptr = nullptr;
}
}
// Start worker
worker_com->semaphore.push(worker);
workers_pool->start_worker(worker);
break;
case 0:
Warning("SYNC: Out-of-sync detected in PSS/SSS\n");
out_of_sync();
worker->release();
// Force decoding MIB, for making sure that the TTI will be right
if (!force_camping_sfn_sync) {
force_camping_sfn_sync = true;
}
break;
default:
radio_error();
break;
}
} else {
// wait_worker() only returns NULL if it's being closed. Quit now to avoid unnecessary loops here
running = false;
}
break; break;
case sync_state::IDLE: case sync_state::IDLE:
if (radio_h->is_init()) { run_idle_state();
uint32_t nsamples = 1920;
if (current_srate > 0) {
nsamples = current_srate / 1000;
}
Debug("Discarding %d samples\n", nsamples);
srslte_timestamp_t rx_time = {};
if (!radio_recv_fnc(dummy_buffer, nsamples, &rx_time)) {
log_h->console("SYNC: Receiving from radio while in IDLE_RX\n");
}
// If radio is in locked state returns immediately. In that case, do a 1 ms sleep
if (rx_time.frac_secs == 0 && rx_time.full_secs == 0) {
usleep(1000);
}
radio_h->tx_end();
} else {
Debug("Sleeping\n");
usleep(1000);
}
break; break;
} }
// Increase TTI counter // Increase TTI counter
tti = (tti + 1) % 10240; tti = TTI_ADD(tti, 1);
} }
} }
@ -786,7 +776,6 @@ void sync::set_sampling_rate()
return; return;
} }
current_sflen = (uint32_t)SRSLTE_SF_LEN_PRB(cell.nof_prb);
if (current_srate != new_srate || srate_mode != SRATE_CAMP) { if (current_srate != new_srate || srate_mode != SRATE_CAMP) {
current_srate = new_srate; current_srate = new_srate;
Info("SYNC: Setting sampling rate %.2f MHz\n", current_srate / 1000000); Info("SYNC: Setting sampling rate %.2f MHz\n", current_srate / 1000000);
@ -887,290 +876,6 @@ void sync::set_rx_gain(float gain)
radio_h->set_rx_gain_th(gain); radio_h->set_rx_gain_th(gain);
} }
/*********
* Cell search class
*/
sync::search::~search()
{
srslte_ue_mib_sync_free(&ue_mib_sync);
srslte_ue_cellsearch_free(&cs);
}
void sync::search::init(srslte::rf_buffer_t& buffer_, srslte::log* log_h_, uint32_t nof_rx_channels, sync* parent)
{
log_h = log_h_;
p = parent;
buffer = buffer_;
if (srslte_ue_cellsearch_init_multi(&cs, 8, radio_recv_callback, nof_rx_channels, parent)) {
Error("SYNC: Initiating UE cell search\n");
}
srslte_ue_cellsearch_set_nof_valid_frames(&cs, 4);
if (srslte_ue_mib_sync_init_multi(&ue_mib_sync, radio_recv_callback, nof_rx_channels, parent)) {
Error("SYNC: Initiating UE MIB synchronization\n");
}
// Set options defined in expert section
p->set_ue_sync_opts(&cs.ue_sync, 0);
force_N_id_2 = -1;
}
void sync::search::reset()
{
srslte_ue_sync_reset(&ue_mib_sync.ue_sync);
}
float sync::search::get_last_cfo()
{
return srslte_ue_sync_get_cfo(&ue_mib_sync.ue_sync);
}
void sync::search::set_agc_enable(bool enable)
{
if (enable) {
srslte_rf_info_t* rf_info = p->radio_h->get_info();
srslte_ue_sync_start_agc(&ue_mib_sync.ue_sync,
callback_set_rx_gain,
rf_info->min_rx_gain,
rf_info->max_rx_gain,
p->radio_h->get_rx_gain());
} else {
ERROR("Error stop AGC not implemented\n");
}
}
sync::search::ret_code sync::search::run(srslte_cell_t* cell_, std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload)
{
srslte_cell_t new_cell = {};
srslte_ue_cellsearch_result_t found_cells[3];
bzero(found_cells, 3 * sizeof(srslte_ue_cellsearch_result_t));
/* Find a cell in the given N_id_2 or go through the 3 of them to find the strongest */
uint32_t max_peak_cell = 0;
int ret = SRSLTE_ERROR;
Info("SYNC: Searching for cell...\n");
log_h->console(".");
if (force_N_id_2 >= 0 && force_N_id_2 < 3) {
ret = srslte_ue_cellsearch_scan_N_id_2(&cs, force_N_id_2, &found_cells[force_N_id_2]);
max_peak_cell = force_N_id_2;
} else {
ret = srslte_ue_cellsearch_scan(&cs, found_cells, &max_peak_cell);
}
if (ret < 0) {
Error("SYNC: Error decoding MIB: Error searching PSS\n");
return ERROR;
} else if (ret == 0) {
Info("SYNC: Could not find any cell in this frequency\n");
return CELL_NOT_FOUND;
}
// Save result
new_cell.id = found_cells[max_peak_cell].cell_id;
new_cell.cp = found_cells[max_peak_cell].cp;
new_cell.frame_type = found_cells[max_peak_cell].frame_type;
float cfo = found_cells[max_peak_cell].cfo;
log_h->console("\n");
Info("SYNC: PSS/SSS detected: Mode=%s, PCI=%d, CFO=%.1f KHz, CP=%s\n",
new_cell.frame_type ? "TDD" : "FDD",
new_cell.id,
cfo / 1000,
srslte_cp_string(new_cell.cp));
if (srslte_ue_mib_sync_set_cell(&ue_mib_sync, new_cell)) {
Error("SYNC: Setting UE MIB cell\n");
return ERROR;
}
// Set options defined in expert section
p->set_ue_sync_opts(&ue_mib_sync.ue_sync, cfo);
srslte_ue_sync_reset(&ue_mib_sync.ue_sync);
/* Find and decode MIB */
int sfn_offset;
ret = srslte_ue_mib_sync_decode(&ue_mib_sync, 40, bch_payload.data(), &new_cell.nof_ports, &sfn_offset);
if (ret == 1) {
srslte_pbch_mib_unpack(bch_payload.data(), &new_cell, NULL);
// pack MIB and store inplace for PCAP dump
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN / 8> mib_packed;
srslte_bit_pack_vector(bch_payload.data(), mib_packed.data(), SRSLTE_BCH_PAYLOAD_LEN);
std::copy(std::begin(mib_packed), std::end(mib_packed), std::begin(bch_payload));
fprintf(stdout,
"Found Cell: Mode=%s, PCI=%d, PRB=%d, Ports=%d, CFO=%.1f KHz\n",
new_cell.frame_type ? "TDD" : "FDD",
new_cell.id,
new_cell.nof_prb,
new_cell.nof_ports,
cfo / 1000);
Info("SYNC: MIB Decoded: Mode=%s, PCI=%d, PRB=%d, Ports=%d, CFO=%.1f KHz\n",
new_cell.frame_type ? "TDD" : "FDD",
new_cell.id,
new_cell.nof_prb,
new_cell.nof_ports,
cfo / 1000);
if (!srslte_cell_isvalid(&new_cell)) {
Error("SYNC: Detected invalid cell.\n");
return CELL_NOT_FOUND;
}
// Save cell pointer
if (cell_) {
*cell_ = new_cell;
}
return CELL_FOUND;
} else if (ret == 0) {
Warning("SYNC: Found PSS but could not decode PBCH\n");
return CELL_NOT_FOUND;
} else {
Error("SYNC: Receiving MIB\n");
return ERROR;
}
}
/*********
* SFN synchronizer class
*/
sync::sfn_sync::~sfn_sync()
{
srslte_ue_mib_free(&ue_mib);
}
void sync::sfn_sync::init(srslte_ue_sync_t* ue_sync_,
const phy_args_t* phy_args_,
srslte::rf_buffer_t& buffer,
uint32_t buffer_max_samples_,
srslte::log* log_h_,
uint32_t nof_subframes)
{
log_h = log_h_;
ue_sync = ue_sync_;
phy_args = phy_args_;
timeout = nof_subframes;
mib_buffer = buffer;
buffer_max_samples = buffer_max_samples_;
// MIB decoder uses a single receiver antenna in logical channel 0
if (srslte_ue_mib_init(&ue_mib, buffer.get(0), SRSLTE_MAX_PRB)) {
Error("SYNC: Initiating UE MIB decoder\n");
}
}
bool sync::sfn_sync::set_cell(srslte_cell_t cell_)
{
if (srslte_ue_mib_set_cell(&ue_mib, cell_)) {
Error("SYNC: Setting cell: initiating ue_mib\n");
return false;
}
reset();
return true;
}
void sync::sfn_sync::reset()
{
cnt = 0;
srslte_ue_mib_reset(&ue_mib);
}
sync::sfn_sync::ret_code sync::sfn_sync::run_subframe(srslte_cell_t* cell_,
uint32_t* tti_cnt,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only)
{
int ret = srslte_ue_sync_zerocopy(ue_sync, mib_buffer.to_cf_t(), buffer_max_samples);
if (ret < 0) {
Error("SYNC: Error calling ue_sync_get_buffer.\n");
return ERROR;
}
if (ret == 1) {
sync::sfn_sync::ret_code ret2 = decode_mib(cell_, tti_cnt, nullptr, bch_payload, sfidx_only);
if (ret2 != SFN_NOFOUND) {
return ret2;
}
} else {
Info("SYNC: Waiting for PSS while trying to decode MIB (%d/%d)\n", cnt, timeout);
}
cnt++;
if (cnt >= timeout) {
cnt = 0;
return SFN_NOFOUND;
}
return IDLE;
}
sync::sfn_sync::ret_code sync::sfn_sync::decode_mib(srslte_cell_t* cell_,
uint32_t* tti_cnt,
srslte::rf_buffer_t* ext_buffer,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only)
{
// If external buffer provided not equal to internal buffer, copy samples from channel/port 0
if (ext_buffer != nullptr) {
memcpy(mib_buffer.get(0), ext_buffer->get(0), sizeof(cf_t) * ue_sync->sf_len);
}
if (srslte_ue_sync_get_sfidx(ue_sync) == 0) {
// Skip MIB decoding if we are only interested in subframe 0
if (sfidx_only) {
if (tti_cnt) {
*tti_cnt = 0;
}
return SFX0_FOUND;
}
int sfn_offset = 0;
int n = srslte_ue_mib_decode(&ue_mib, bch_payload.data(), NULL, &sfn_offset);
switch (n) {
default:
Error("SYNC: Error decoding MIB while synchronising SFN");
return ERROR;
case SRSLTE_UE_MIB_FOUND:
uint32_t sfn;
srslte_pbch_mib_unpack(bch_payload.data(), cell_, &sfn);
sfn = (sfn + sfn_offset) % 1024;
if (tti_cnt) {
*tti_cnt = 10 * sfn;
// Check if SNR is below the minimum threshold
if (ue_mib.chest_res.snr_db < phy_args->in_sync_snr_db_th) {
Info("SYNC: MIB decoded, SNR is too low (%+.1f < %+.1f)\n",
ue_mib.chest_res.snr_db,
phy_args->in_sync_snr_db_th);
return SFN_NOFOUND;
}
Info("SYNC: DONE, SNR=%.1f dB, TTI=%d, sfn_offset=%d\n", ue_mib.chest_res.snr_db, *tti_cnt, sfn_offset);
}
reset();
return SFN_FOUND;
case SRSLTE_UE_MIB_NOTFOUND:
Info("SYNC: Found PSS but could not decode MIB. SNR=%.1f dB (%d/%d)\n", ue_mib.chest_res.snr_db, cnt, timeout);
return SFN_NOFOUND;
}
}
return IDLE;
}
/********** /**********
* PHY measurements * PHY measurements
* *

Loading…
Cancel
Save