move undelivered_pdcp_sdus class methods to .cc file. Fixed the forwarding of pending PDCP SNs during S1 handover

master
Francisco 4 years ago committed by Francisco Paisana
parent 17fa79f24c
commit a3cb21d378

@ -34,12 +34,7 @@ namespace srslte {
class undelivered_sdus_queue
{
public:
explicit undelivered_sdus_queue(srslte::task_sched_handle task_sched)
{
for (auto& e : sdus) {
e.discard_timer = task_sched.get_unique_timer();
}
}
explicit undelivered_sdus_queue(srslte::task_sched_handle task_sched);
bool empty() const { return count == 0; }
bool is_full() const { return count >= capacity; }
@ -51,136 +46,31 @@ public:
return sdus[sn].sdu != nullptr and sdus[sn].sdu->md.pdcp_sn == sn;
}
// Getter for the number of discard timers. Used for debugging.
size_t nof_discard_timers() const
{
return std::count_if(sdus.begin(), sdus.end(), [](const sdu_data& s) {
return s.sdu != nullptr and s.discard_timer.is_valid() and s.discard_timer.is_running();
});
}
size_t nof_discard_timers() const;
bool add_sdu(uint32_t sn,
const srslte::unique_byte_buffer_t& sdu,
uint32_t discard_timeout,
const std::function<void(uint32_t)>& callback)
{
assert(discard_timeout < capacity and "Invalid discard timeout value");
assert(not has_sdu(sn) && "Cannot add repeated SNs");
if (is_full()) {
return false;
}
// Make sure we don't associate more than half of the PDCP SN space of contiguous PDCP SDUs
if (not empty()) {
int32_t diff = sn - fms;
if (diff > (int32_t)(capacity / 2)) {
return false;
}
if (diff <= 0 && diff > -((int32_t)(capacity / 2))) {
return false;
}
}
// Allocate buffer and exit on error
srslte::unique_byte_buffer_t tmp = make_byte_buffer();
if (tmp == nullptr) {
return false;
}
// Update FMS and LMS if necessary
if (empty()) {
fms = sn;
lms = sn;
} else {
update_lms(sn);
}
// Add SDU
count++;
sdus[sn].sdu = std::move(tmp);
sdus[sn].sdu->md.pdcp_sn = sn;
sdus[sn].sdu->N_bytes = sdu->N_bytes;
memcpy(sdus[sn].sdu->msg, sdu->msg, sdu->N_bytes);
if (discard_timeout > 0) {
sdus[sn].discard_timer.set(discard_timeout, callback);
sdus[sn].discard_timer.run();
}
sdus[sn].sdu->set_timestamp(); // Metrics
bytes += sdu->N_bytes;
return true;
}
const std::function<void(uint32_t)>& callback);
unique_byte_buffer_t& operator[](uint32_t sn)
{
assert(has_sdu(sn));
return sdus[sn].sdu;
}
bool clear_sdu(uint32_t sn)
{
if (not has_sdu(sn)) {
return false;
}
count--;
bytes -= sdus[sn].sdu->N_bytes;
sdus[sn].discard_timer.clear();
sdus[sn].sdu.reset();
// Find next FMS,
update_fms();
return true;
}
void clear()
{
count = 0;
bytes = 0;
fms = 0;
for (uint32_t sn = 0; sn < capacity; sn++) {
sdus[sn].discard_timer.clear();
sdus[sn].sdu.reset();
}
}
bool clear_sdu(uint32_t sn);
void clear();
uint32_t get_bytes() const { return bytes; }
uint32_t get_fms() const { return fms; }
void set_fms(uint32_t fms_) { fms = fms_; }
void update_fms()
{
if (empty()) {
fms = increment_sn(fms);
return;
}
for (uint32_t i = 0; i < capacity; ++i) {
uint32_t sn = increment_sn(fms + i);
if (has_sdu(sn)) {
fms = sn;
return;
}
}
fms = increment_sn(fms);
}
void update_lms(uint32_t sn)
{
if (empty()) {
lms = fms;
return;
}
int32_t diff = sn - lms;
if (diff > 0 && sn > lms) {
lms = sn;
} else if (diff < 0 && sn < lms) {
lms = sn;
}
}
void update_fms();
void update_lms(uint32_t sn);
uint32_t get_lms() const { return lms; }
std::map<uint32_t, srslte::unique_byte_buffer_t> get_buffered_sdus();
private:
const static uint32_t capacity = 4096;
const static uint32_t invalid_sn = -1;

@ -19,6 +19,147 @@
namespace srslte {
undelivered_sdus_queue::undelivered_sdus_queue(srslte::task_sched_handle task_sched)
{
for (auto& e : sdus) {
e.discard_timer = task_sched.get_unique_timer();
}
}
bool undelivered_sdus_queue::add_sdu(uint32_t sn,
const srslte::unique_byte_buffer_t& sdu,
uint32_t discard_timeout,
const std::function<void(uint32_t)>& callback)
{
assert(discard_timeout < capacity and "Invalid discard timeout value");
assert(not has_sdu(sn) && "Cannot add repeated SNs");
if (is_full()) {
return false;
}
// Make sure we don't associate more than half of the PDCP SN space of contiguous PDCP SDUs
if (not empty()) {
int32_t diff = sn - fms;
if (diff > (int32_t)(capacity / 2)) {
return false;
}
if (diff <= 0 && diff > -((int32_t)(capacity / 2))) {
return false;
}
}
// Allocate buffer and exit on error
srslte::unique_byte_buffer_t tmp = make_byte_buffer();
if (tmp == nullptr) {
return false;
}
// Update FMS and LMS if necessary
if (empty()) {
fms = sn;
lms = sn;
} else {
update_lms(sn);
}
// Add SDU
count++;
sdus[sn].sdu = std::move(tmp);
sdus[sn].sdu->md.pdcp_sn = sn;
sdus[sn].sdu->N_bytes = sdu->N_bytes;
memcpy(sdus[sn].sdu->msg, sdu->msg, sdu->N_bytes);
if (discard_timeout > 0) {
sdus[sn].discard_timer.set(discard_timeout, callback);
sdus[sn].discard_timer.run();
}
sdus[sn].sdu->set_timestamp(); // Metrics
bytes += sdu->N_bytes;
return true;
}
bool undelivered_sdus_queue::clear_sdu(uint32_t sn)
{
if (not has_sdu(sn)) {
return false;
}
count--;
bytes -= sdus[sn].sdu->N_bytes;
sdus[sn].discard_timer.clear();
sdus[sn].sdu.reset();
// Find next FMS,
update_fms();
return true;
}
void undelivered_sdus_queue::clear()
{
count = 0;
bytes = 0;
fms = 0;
for (uint32_t sn = 0; sn < capacity; sn++) {
sdus[sn].discard_timer.clear();
sdus[sn].sdu.reset();
}
}
size_t undelivered_sdus_queue::nof_discard_timers() const
{
return std::count_if(sdus.begin(), sdus.end(), [](const sdu_data& s) {
return s.sdu != nullptr and s.discard_timer.is_valid() and s.discard_timer.is_running();
});
}
void undelivered_sdus_queue::update_fms()
{
if (empty()) {
fms = increment_sn(fms);
return;
}
for (uint32_t i = 0; i < capacity; ++i) {
uint32_t sn = increment_sn(fms + i);
if (has_sdu(sn)) {
fms = sn;
return;
}
}
fms = increment_sn(fms);
}
void undelivered_sdus_queue::update_lms(uint32_t sn)
{
if (empty()) {
lms = fms;
return;
}
int32_t diff = sn - lms;
if (diff > 0 && sn > lms) {
lms = sn;
} else if (diff < 0 && sn < lms) {
lms = sn;
}
}
std::map<uint32_t, srslte::unique_byte_buffer_t> undelivered_sdus_queue::get_buffered_sdus()
{
std::map<uint32_t, srslte::unique_byte_buffer_t> fwd_sdus;
for (auto& sdu : sdus) {
if (sdu.sdu != nullptr) {
// TODO: Find ways to avoid deep copy
srslte::unique_byte_buffer_t fwd_sdu = make_byte_buffer();
*fwd_sdu = *sdu.sdu;
fwd_sdus.emplace(sdu.sdu->md.pdcp_sn, std::move(fwd_sdu));
}
}
return fwd_sdus;
}
/****************************************************************************
* PDCP Entity LTE class
***************************************************************************/
pdcp_entity_lte::pdcp_entity_lte(srsue::rlc_interface_pdcp* rlc_,
srsue::rrc_interface_pdcp* rrc_,
srsue::gw_interface_pdcp* gw_,
@ -701,19 +842,7 @@ void pdcp_entity_lte::set_bearer_state(const pdcp_lte_state_t& state)
std::map<uint32_t, srslte::unique_byte_buffer_t> pdcp_entity_lte::get_buffered_pdus()
{
logger.info("Buffered PDUs requested, buffer_size=%d", undelivered_sdus.size());
std::map<uint32_t, srslte::unique_byte_buffer_t> cpy{};
// Deep copy undelivered SDUs
// TODO: investigate wheter the deep copy can be avoided by moving the undelivered SDU queue.
// That can only be done just before the PDCP is disabled though.
for (uint32_t sn = 0; sn < undelivered_sdus.get_capacity(); sn++) {
if (undelivered_sdus.has_sdu(sn)) {
logger.debug(undelivered_sdus[sn]->msg, undelivered_sdus[sn]->N_bytes, "Forwarding buffered PDU with SN=%d", sn);
cpy[sn] = make_byte_buffer();
(*cpy[sn]) = *(undelivered_sdus[sn]);
}
}
return cpy;
return undelivered_sdus.get_buffered_sdus();
}
/****************************************************************************

Loading…
Cancel
Save