|
|
|
@ -54,36 +54,30 @@ void llr_approx(const _Complex float *in, float *out, int N, int M, int B,
|
|
|
|
|
_Complex float *symbols, uint32_t (*S)[6][32], float sigma2) {
|
|
|
|
|
int i, s, b;
|
|
|
|
|
float num, den;
|
|
|
|
|
float new_num, new_den;
|
|
|
|
|
float idiff0, qdiff0, idiff1, qdiff1;
|
|
|
|
|
int change_sign = -1;
|
|
|
|
|
float x, y, d[64];
|
|
|
|
|
|
|
|
|
|
for (s=0; s<N; s++) { /* recevied symbols */
|
|
|
|
|
/* Compute the distances squared d[i] between the received symbol and all constellation points */
|
|
|
|
|
for (i=0; i<M; i++) {
|
|
|
|
|
x = __real__ in[s] - __real__ symbols[i];
|
|
|
|
|
y = __imag__ in[s] - __imag__ symbols[i];
|
|
|
|
|
d[i] = x*x + y*y;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (b=0; b<B; b++) {/* bits per symbol*/
|
|
|
|
|
/* initiate num[b] and den[b] */
|
|
|
|
|
idiff0 = __real__ in[s] - __real__ symbols[S[0][b][0]];
|
|
|
|
|
qdiff0 = __imag__ in[s] - __imag__ symbols[S[0][b][0]];
|
|
|
|
|
num = idiff0*idiff0 + qdiff0*qdiff0;
|
|
|
|
|
|
|
|
|
|
idiff1 = __real__ in[s] - __real__ symbols[S[1][b][0]];
|
|
|
|
|
qdiff1 = __imag__ in[s] - __imag__ symbols[S[1][b][0]];
|
|
|
|
|
den = idiff1*idiff1 + qdiff1*qdiff1;
|
|
|
|
|
|
|
|
|
|
/* half the constellation symbols have '1'|'0' at any bit pos. */
|
|
|
|
|
for (i=1; i<M/2; i++) {
|
|
|
|
|
idiff0 = __real__ in[s] - __real__ symbols[S[0][b][i]];
|
|
|
|
|
qdiff0 = __imag__ in[s] - __imag__ symbols[S[0][b][i]];
|
|
|
|
|
new_num = idiff0*idiff0 + qdiff0*qdiff0;
|
|
|
|
|
num = d[S[0][b][0]];
|
|
|
|
|
den = d[S[1][b][0]];
|
|
|
|
|
|
|
|
|
|
idiff1 = __real__ in[s] - __real__ symbols[S[1][b][i]];
|
|
|
|
|
qdiff1 = __imag__ in[s] - __imag__ symbols[S[1][b][i]];
|
|
|
|
|
new_den = idiff1*idiff1 + qdiff1*qdiff1;
|
|
|
|
|
|
|
|
|
|
if (new_num < num) {
|
|
|
|
|
num = new_num;
|
|
|
|
|
/* Minimum distance squared search between recevied symbol and a constellation point with a
|
|
|
|
|
'1' and a '0' for each bit position */
|
|
|
|
|
for (i=1; i<M/2; i++) { /* half the constellation points have '1'|'0' at any given bit position */
|
|
|
|
|
if (d[S[0][b][i]] < num) {
|
|
|
|
|
num = d[S[0][b][i]];
|
|
|
|
|
}
|
|
|
|
|
if (new_den < den) {
|
|
|
|
|
den = new_den;
|
|
|
|
|
if (d[S[1][b][i]] < den) {
|
|
|
|
|
den = d[S[1][b][i]];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Theoretical LLR and approximate LLR values are positive if
|
|
|
|
@ -93,6 +87,7 @@ void llr_approx(const _Complex float *in, float *out, int N, int M, int B,
|
|
|
|
|
out[s*B+b] = change_sign*(den-num)/sigma2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -115,23 +110,26 @@ void llr_exact(const _Complex float *in, float *out, int N, int M, int B,
|
|
|
|
|
_Complex float *symbols, uint32_t (*S)[6][32], float sigma2) {
|
|
|
|
|
int i, s, b;
|
|
|
|
|
float num, den;
|
|
|
|
|
float idiff0, qdiff0, idiff1, qdiff1;
|
|
|
|
|
int change_sign = -1;
|
|
|
|
|
float x, y, d[64];
|
|
|
|
|
|
|
|
|
|
for (s=0; s<N; s++) { /* recevied symbols */
|
|
|
|
|
/* Compute exp{·} of the distances squared d[i] between the received symbol and all constellation points */
|
|
|
|
|
for (i=0; i<M; i++) {
|
|
|
|
|
x = __real__ in[s] - __real__ symbols[i];
|
|
|
|
|
y = __imag__ in[s] - __imag__ symbols[i];
|
|
|
|
|
d[i] = exp(-1*(x*x + y*y)/sigma2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Sum up the corresponding d[i]'s for each bit position */
|
|
|
|
|
for (b=0; b<B; b++) {/* bits per symbol*/
|
|
|
|
|
/* initiate num[b] and den[b] */
|
|
|
|
|
num = 0;
|
|
|
|
|
den = 0;
|
|
|
|
|
/* half the constellation symbols have '1'|'0' at any bit pos. */
|
|
|
|
|
for (i=0; i<M/2; i++) {
|
|
|
|
|
idiff0 = __real__ in[s] - __real__ symbols[S[0][b][i]];
|
|
|
|
|
qdiff0 = __imag__ in[s] - __imag__ symbols[S[0][b][i]];
|
|
|
|
|
num += exp(-1*(idiff0*idiff0 + qdiff0*qdiff0)/sigma2);
|
|
|
|
|
|
|
|
|
|
idiff1 = __real__ in[s] - __real__ symbols[S[1][b][i]];
|
|
|
|
|
qdiff1 = __imag__ in[s] - __imag__ symbols[S[1][b][i]];
|
|
|
|
|
den += exp(-1*(idiff1*idiff1 + qdiff1*qdiff1)/sigma2);
|
|
|
|
|
for (i=0; i<M/2; i++) { /* half the constellation points have '1'|'0' at any given bit position */
|
|
|
|
|
num += d[S[0][b][i]];
|
|
|
|
|
den += d[S[1][b][i]];
|
|
|
|
|
}
|
|
|
|
|
/* Theoretical LLR and approximate LLR values are positive if
|
|
|
|
|
* symbol(s) with '0' is/are closer and negative if symbol(s)
|
|
|
|
|