Merge pull request #41 from marojevic/master

Optimization of soft-demodulation algorithm
master
Ismael Gómez-Miguelez 10 years ago
commit 9069f93fcd

@ -54,36 +54,30 @@ void llr_approx(const _Complex float *in, float *out, int N, int M, int B,
_Complex float *symbols, uint32_t (*S)[6][32], float sigma2) { _Complex float *symbols, uint32_t (*S)[6][32], float sigma2) {
int i, s, b; int i, s, b;
float num, den; float num, den;
float new_num, new_den;
float idiff0, qdiff0, idiff1, qdiff1;
int change_sign = -1; int change_sign = -1;
float x, y, d[64];
for (s=0; s<N; s++) { /* recevied symbols */ for (s=0; s<N; s++) { /* recevied symbols */
/* Compute the distances squared d[i] between the received symbol and all constellation points */
for (i=0; i<M; i++) {
x = __real__ in[s] - __real__ symbols[i];
y = __imag__ in[s] - __imag__ symbols[i];
d[i] = x*x + y*y;
}
for (b=0; b<B; b++) {/* bits per symbol*/ for (b=0; b<B; b++) {/* bits per symbol*/
/* initiate num[b] and den[b] */ /* initiate num[b] and den[b] */
idiff0 = __real__ in[s] - __real__ symbols[S[0][b][0]]; num = d[S[0][b][0]];
qdiff0 = __imag__ in[s] - __imag__ symbols[S[0][b][0]]; den = d[S[1][b][0]];
num = idiff0*idiff0 + qdiff0*qdiff0;
idiff1 = __real__ in[s] - __real__ symbols[S[1][b][0]];
qdiff1 = __imag__ in[s] - __imag__ symbols[S[1][b][0]];
den = idiff1*idiff1 + qdiff1*qdiff1;
/* half the constellation symbols have '1'|'0' at any bit pos. */
for (i=1; i<M/2; i++) {
idiff0 = __real__ in[s] - __real__ symbols[S[0][b][i]];
qdiff0 = __imag__ in[s] - __imag__ symbols[S[0][b][i]];
new_num = idiff0*idiff0 + qdiff0*qdiff0;
idiff1 = __real__ in[s] - __real__ symbols[S[1][b][i]]; /* Minimum distance squared search between recevied symbol and a constellation point with a
qdiff1 = __imag__ in[s] - __imag__ symbols[S[1][b][i]]; '1' and a '0' for each bit position */
new_den = idiff1*idiff1 + qdiff1*qdiff1; for (i=1; i<M/2; i++) { /* half the constellation points have '1'|'0' at any given bit position */
if (d[S[0][b][i]] < num) {
if (new_num < num) { num = d[S[0][b][i]];
num = new_num;
} }
if (new_den < den) { if (d[S[1][b][i]] < den) {
den = new_den; den = d[S[1][b][i]];
} }
} }
/* Theoretical LLR and approximate LLR values are positive if /* Theoretical LLR and approximate LLR values are positive if
@ -93,6 +87,7 @@ void llr_approx(const _Complex float *in, float *out, int N, int M, int B,
out[s*B+b] = change_sign*(den-num)/sigma2; out[s*B+b] = change_sign*(den-num)/sigma2;
} }
} }
} }
/** /**
@ -115,23 +110,26 @@ void llr_exact(const _Complex float *in, float *out, int N, int M, int B,
_Complex float *symbols, uint32_t (*S)[6][32], float sigma2) { _Complex float *symbols, uint32_t (*S)[6][32], float sigma2) {
int i, s, b; int i, s, b;
float num, den; float num, den;
float idiff0, qdiff0, idiff1, qdiff1;
int change_sign = -1; int change_sign = -1;
float x, y, d[64];
for (s=0; s<N; s++) { /* recevied symbols */ for (s=0; s<N; s++) { /* recevied symbols */
/* Compute exp{·} of the distances squared d[i] between the received symbol and all constellation points */
for (i=0; i<M; i++) {
x = __real__ in[s] - __real__ symbols[i];
y = __imag__ in[s] - __imag__ symbols[i];
d[i] = exp(-1*(x*x + y*y)/sigma2);
}
/* Sum up the corresponding d[i]'s for each bit position */
for (b=0; b<B; b++) {/* bits per symbol*/ for (b=0; b<B; b++) {/* bits per symbol*/
/* initiate num[b] and den[b] */ /* initiate num[b] and den[b] */
num = 0; num = 0;
den = 0; den = 0;
/* half the constellation symbols have '1'|'0' at any bit pos. */
for (i=0; i<M/2; i++) {
idiff0 = __real__ in[s] - __real__ symbols[S[0][b][i]];
qdiff0 = __imag__ in[s] - __imag__ symbols[S[0][b][i]];
num += exp(-1*(idiff0*idiff0 + qdiff0*qdiff0)/sigma2);
idiff1 = __real__ in[s] - __real__ symbols[S[1][b][i]]; for (i=0; i<M/2; i++) { /* half the constellation points have '1'|'0' at any given bit position */
qdiff1 = __imag__ in[s] - __imag__ symbols[S[1][b][i]]; num += d[S[0][b][i]];
den += exp(-1*(idiff1*idiff1 + qdiff1*qdiff1)/sigma2); den += d[S[1][b][i]];
} }
/* Theoretical LLR and approximate LLR values are positive if /* Theoretical LLR and approximate LLR values are positive if
* symbol(s) with '0' is/are closer and negative if symbol(s) * symbol(s) with '0' is/are closer and negative if symbol(s)

Loading…
Cancel
Save