adding NPDCCH

master
Andre Puschmann 5 years ago
parent 073c57dc3d
commit 81b46723f6

@ -45,7 +45,9 @@
#define SRSLTE_PC_MAX 23 // Maximum TX power for Category 1 UE (in dBm)
#define SRSLTE_NUM_PCI 504
#define SRSLTE_NOF_NID_1 (168)
#define SRSLTE_NOF_NID_2 (3)
#define SRSLTE_NUM_PCI (SRSLTE_NOF_NID_1 * SRSLTE_NOF_NID_2)
#define SRSLTE_MAX_RADIOS 3 // Maximum number of supported RF devices
#define SRSLTE_MAX_CARRIERS 5 // Maximum number of supported simultaneous carriers

@ -0,0 +1,83 @@
/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/**
*
* @file dci_nbiot.h
*
* @brief Downlink control information (DCI) for NB-IoT.
*
* Packing/Unpacking functions to convert between bit streams
* and packed DCI UL/DL grants defined in ra_nbiot.h
*
* Reference: 3GPP TS 36.212 version 13.2.0 Release 13 Sec. 6.4.3
*
*/
#ifndef SRSLTE_DCI_NBIOT_H
#define SRSLTE_DCI_NBIOT_H
#include <stdint.h>
#include "srslte/config.h"
#include "srslte/phy/common/phy_common.h"
#include "srslte/phy/phch/dci.h"
#include "srslte/phy/phch/ra_nbiot.h"
#define SRSLTE_DCI_MAX_BITS 128
#define SRSLTE_NBIOT_RAR_GRANT_LEN 15
SRSLTE_API void srslte_nbiot_dci_rar_grant_unpack(srslte_nbiot_dci_rar_grant_t* rar,
const uint8_t grant[SRSLTE_NBIOT_RAR_GRANT_LEN]);
SRSLTE_API int srslte_nbiot_dci_msg_to_dl_grant(const srslte_dci_msg_t* msg,
const uint16_t msg_rnti,
srslte_ra_nbiot_dl_dci_t* dl_dci,
srslte_ra_nbiot_dl_grant_t* grant,
const uint32_t sfn,
const uint32_t sf_idx,
const uint32_t r_max,
const srslte_nbiot_mode_t mode);
SRSLTE_API int srslte_nbiot_dci_msg_to_ul_grant(const srslte_dci_msg_t* msg,
srslte_ra_nbiot_ul_dci_t* ul_dci,
srslte_ra_nbiot_ul_grant_t* grant,
const uint32_t rx_tti,
const srslte_npusch_sc_spacing_t spacing);
SRSLTE_API int
srslte_nbiot_dci_rar_to_ul_grant(srslte_nbiot_dci_rar_grant_t* rar, srslte_ra_nbiot_ul_grant_t* grant, uint32_t rx_tti);
SRSLTE_API bool srslte_nbiot_dci_location_isvalid(const srslte_dci_location_t* c);
SRSLTE_API int srslte_dci_msg_pack_npdsch(const srslte_ra_nbiot_dl_dci_t* data,
const srslte_dci_format_t format,
srslte_dci_msg_t* msg,
const bool crc_is_crnti);
SRSLTE_API int
srslte_dci_msg_unpack_npdsch(const srslte_dci_msg_t* msg, srslte_ra_nbiot_dl_dci_t* data, const bool crc_is_crnti);
SRSLTE_API int srslte_dci_msg_unpack_npusch(const srslte_dci_msg_t* msg, srslte_ra_nbiot_ul_dci_t* data);
SRSLTE_API uint32_t srslte_dci_nbiot_format_sizeof(srslte_dci_format_t format);
#endif // SRSLTE_DCI_NBIOT_H

@ -0,0 +1,133 @@
/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSLTE_NPDCCH_H
#define SRSLTE_NPDCCH_H
#include "srslte/config.h"
#include "srslte/phy/common/phy_common.h"
#include "srslte/phy/fec/convcoder.h"
#include "srslte/phy/fec/crc.h"
#include "srslte/phy/fec/rm_conv.h"
#include "srslte/phy/fec/viterbi.h"
#include "srslte/phy/mimo/layermap.h"
#include "srslte/phy/mimo/precoding.h"
#include "srslte/phy/modem/demod_soft.h"
#include "srslte/phy/modem/mod.h"
#include "srslte/phy/phch/dci.h"
#include "srslte/phy/phch/regs.h"
#include "srslte/phy/scrambling/scrambling.h"
#define SRSLTE_RARNTI_END_NBIOT 0x0100
#define SRSLTE_NBIOT_NUM_NRS_SYMS 8
#define SRSLTE_NPDCCH_MAX_RE (SRSLTE_NRE * SRSLTE_CP_NORM_SF_NSYMB - SRSLTE_NBIOT_NUM_NRS_SYMS)
#define SRSLTE_NBIOT_DCI_MAX_SIZE 23
#define SRSLTE_AL_REPETITION_USS 64 // Higher layer configured parameter al-Repetition-USS
typedef enum SRSLTE_API {
SRSLTE_NPDCCH_FORMAT1 = 0,
SRSLTE_NPDCCH_FORMAT0_LOWER_HALF,
SRSLTE_NPDCCH_FORMAT0_UPPER_HALF,
SRSLTE_NPDCCH_FORMAT_NITEMS
} srslte_npdcch_format_t;
static const char srslte_npdcch_format_text[SRSLTE_NPDCCH_FORMAT_NITEMS][30] = {"Format 1",
"Format 0 (Lower Half)",
"Format 0 (Upper Half)"};
/**
* @brief Narrowband Physical downlink control channel (NPDCCH)
*
* Reference: 3GPP TS 36.211 version 13.2.0 Release 11 Sec. 6.8 and 10.2.5
*/
typedef struct SRSLTE_API {
srslte_nbiot_cell_t cell;
uint32_t nof_cce;
uint32_t ncce_bits;
uint32_t max_bits;
uint32_t i_n_start; /// start of the first OFDM symbol (signalled through NB-SIB1)
uint32_t nof_nbiot_refs; /// number of NRS symbols per OFDM symbol
uint32_t nof_lte_refs; /// number of CRS symbols per OFDM symbol
uint32_t num_decoded_symbols;
/* buffers */
cf_t* ce[SRSLTE_MAX_PORTS];
cf_t* symbols[SRSLTE_MAX_PORTS];
cf_t* x[SRSLTE_MAX_PORTS];
cf_t* d;
uint8_t* e;
float rm_f[3 * (SRSLTE_DCI_MAX_BITS + 16)];
float* llr[2]; // Two layers of LLRs for Format0 and Format1 NPDCCH
/* tx & rx objects */
srslte_modem_table_t mod;
srslte_sequence_t seq[SRSLTE_NOF_SF_X_FRAME];
srslte_viterbi_t decoder;
srslte_crc_t crc;
} srslte_npdcch_t;
SRSLTE_API int srslte_npdcch_init(srslte_npdcch_t* q);
SRSLTE_API void srslte_npdcch_free(srslte_npdcch_t* q);
SRSLTE_API int srslte_npdcch_set_cell(srslte_npdcch_t* q, srslte_nbiot_cell_t cell);
/// Encoding function
SRSLTE_API int srslte_npdcch_encode(srslte_npdcch_t* q,
srslte_dci_msg_t* msg,
srslte_dci_location_t location,
uint16_t rnti,
cf_t* sf_symbols[SRSLTE_MAX_PORTS],
uint32_t nsubframe);
/// Decoding functions: Extract the LLRs and save them in the srslte_npdcch_t object
SRSLTE_API int srslte_npdcch_extract_llr(srslte_npdcch_t* q,
cf_t* sf_symbols,
cf_t* ce[SRSLTE_MAX_PORTS],
float noise_estimate,
uint32_t sf_idx);
/// Decoding functions: Try to decode a DCI message after calling srslte_npdcch_extract_llr
SRSLTE_API int srslte_npdcch_decode_msg(srslte_npdcch_t* q,
srslte_dci_msg_t* msg,
srslte_dci_location_t* location,
srslte_dci_format_t format,
uint16_t* crc_rem);
SRSLTE_API int
srslte_npdcch_dci_decode(srslte_npdcch_t* q, float* e, uint8_t* data, uint32_t E, uint32_t nof_bits, uint16_t* crc);
SRSLTE_API int
srslte_npdcch_dci_encode(srslte_npdcch_t* q, uint8_t* data, uint8_t* e, uint32_t nof_bits, uint32_t E, uint16_t rnti);
SRSLTE_API void
srslte_npdcch_dci_encode_conv(srslte_npdcch_t* q, uint8_t* data, uint32_t nof_bits, uint8_t* coded_data, uint16_t rnti);
SRSLTE_API uint32_t srslte_npdcch_ue_locations(srslte_dci_location_t* c, uint32_t max_candidates);
SRSLTE_API uint32_t srslte_npdcch_common_locations(srslte_dci_location_t* c, uint32_t max_candidates);
int srslte_npdcch_cp(srslte_npdcch_t* q, cf_t* input, cf_t* output, bool put, srslte_npdcch_format_t format);
int srslte_npdcch_put(srslte_npdcch_t* q, cf_t* symbols, cf_t* sf_symbols, srslte_npdcch_format_t format);
int srslte_npdcch_get(srslte_npdcch_t* q, cf_t* symbols, cf_t* sf_symbols, srslte_npdcch_format_t format);
#endif // SRSLTE_NPDCCH_H

@ -190,7 +190,6 @@ typedef struct SRSLTE_API {
/// Functions
SRSLTE_API int srslte_ra_nbiot_dl_dci_to_grant(srslte_ra_nbiot_dl_dci_t* dci,
uint16_t msg_rnti,
srslte_ra_nbiot_dl_grant_t* grant,
uint32_t sfn,
uint32_t sf_idx,

@ -52,4 +52,6 @@ SRSLTE_API int rf_search_and_decode_mib(srslte_rf_t* rf,
srslte_cell_t* cell,
float* cfo);
SRSLTE_API int rf_cell_search_nbiot(srslte_rf_t* rf, cell_search_cfg_t* config, srslte_nbiot_cell_t* cell, float* cfo);
#endif // SRSLTE_RF_UTILS_H

@ -1446,6 +1446,12 @@ char* srslte_dci_format_string(srslte_dci_format_t format)
return "Format2A";
case SRSLTE_DCI_FORMAT2B:
return "Format2B";
case SRSLTE_DCI_FORMATN0:
return "FormatN0";
case SRSLTE_DCI_FORMATN1:
return "FormatN1";
case SRSLTE_DCI_FORMATN2:
return "FormatN2";
default:
return "N/A"; // fatal error
}

@ -0,0 +1,474 @@
/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include "srslte/phy/common/phy_common.h"
#include "srslte/phy/phch/dci_nbiot.h"
#include "srslte/phy/utils/bit.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
/* Creates the UL NPUSCH resource allocation grant from the random access respone message
*/
int srslte_nbiot_dci_rar_to_ul_grant(srslte_nbiot_dci_rar_grant_t* rar,
srslte_ra_nbiot_ul_grant_t* grant,
uint32_t rx_tti)
{
// create DCI from rar grant
srslte_ra_nbiot_ul_dci_t dci;
bzero(&dci, sizeof(srslte_ra_nbiot_ul_dci_t));
dci.i_rep = rar->n_rep;
dci.i_sc = rar->i_sc;
dci.i_mcs = rar->i_mcs;
dci.i_delay = rar->i_delay;
dci.sc_spacing = (rar->sc_spacing == 1) ? SRSLTE_NPUSCH_SC_SPACING_15000 : SRSLTE_NPUSCH_SC_SPACING_3750;
// use DCI to fill default UL grant values
grant->format = SRSLTE_NPUSCH_FORMAT1; // UL-SCH is always format 1
if (srslte_ra_nbiot_ul_rar_dci_to_grant(&dci, grant, rx_tti)) {
fprintf(stderr, "Error converting RAR DCI to grant.\n");
return SRSLTE_ERROR;
}
if (SRSLTE_VERBOSE_ISINFO()) {
srslte_ra_nbiot_ul_grant_fprint(stdout, grant);
}
return SRSLTE_SUCCESS;
}
/* Unpack RAR UL grant as defined in Section 16.3.3 of 36.213 */
void srslte_nbiot_dci_rar_grant_unpack(srslte_nbiot_dci_rar_grant_t* rar,
const uint8_t grant[SRSLTE_NBIOT_RAR_GRANT_LEN])
{
uint8_t* grant_ptr = (uint8_t*)grant;
rar->sc_spacing = srslte_bit_pack(&grant_ptr, 1);
rar->i_sc = srslte_bit_pack(&grant_ptr, 6);
rar->i_delay = srslte_bit_pack(&grant_ptr, 2);
rar->n_rep = srslte_bit_pack(&grant_ptr, 3);
rar->i_mcs = srslte_bit_pack(&grant_ptr, 3);
}
// Creates the UL NPUSCH resource allocation grant from a DCI format N0 message
int srslte_nbiot_dci_msg_to_ul_grant(const srslte_dci_msg_t* msg,
srslte_ra_nbiot_ul_dci_t* ul_dci,
srslte_ra_nbiot_ul_grant_t* grant,
const uint32_t rx_tti,
const srslte_npusch_sc_spacing_t spacing)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (msg != NULL && ul_dci != NULL && grant != NULL) {
ret = SRSLTE_ERROR;
bzero(ul_dci, sizeof(srslte_ra_nbiot_ul_dci_t));
bzero(grant, sizeof(srslte_ra_nbiot_ul_grant_t));
if (srslte_dci_msg_unpack_npusch(msg, ul_dci)) {
return ret;
}
if (srslte_ra_nbiot_ul_dci_to_grant(ul_dci, grant, rx_tti, spacing)) {
return ret;
}
if (SRSLTE_VERBOSE_ISINFO()) {
srslte_ra_npusch_fprint(stdout, ul_dci);
srslte_ra_nbiot_ul_grant_fprint(stdout, grant);
}
ret = SRSLTE_SUCCESS;
}
return ret;
}
/* Unpacks a NB-IoT DCI message and configures the DL grant object
*/
int srslte_nbiot_dci_msg_to_dl_grant(const srslte_dci_msg_t* msg,
const uint16_t msg_rnti,
srslte_ra_nbiot_dl_dci_t* dl_dci,
srslte_ra_nbiot_dl_grant_t* grant,
const uint32_t sfn,
const uint32_t sf_idx,
const uint32_t r_max,
const srslte_nbiot_mode_t mode)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (msg != NULL && grant != NULL && dl_dci != NULL) {
ret = SRSLTE_ERROR;
bzero(dl_dci, sizeof(srslte_ra_nbiot_dl_dci_t));
bzero(grant, sizeof(srslte_ra_nbiot_dl_grant_t));
bool crc_is_crnti = false;
if (msg_rnti >= SRSLTE_CRNTI_START && msg_rnti <= SRSLTE_CRNTI_END) {
crc_is_crnti = true;
}
srslte_dci_format_t tmp = msg->format;
ret = srslte_dci_msg_unpack_npdsch(msg, dl_dci, crc_is_crnti);
if (ret) {
fprintf(stderr, "Can't unpack DCI message %s (%d)\n", srslte_dci_format_string(tmp), tmp);
return ret;
}
ret = srslte_ra_nbiot_dl_dci_to_grant(dl_dci, grant, sfn, sf_idx, r_max, false, mode);
if (ret) {
fprintf(stderr, "Can't convert DCI %s to grant (%d)\n", srslte_dci_format_string(tmp), tmp);
return ret;
}
if (SRSLTE_VERBOSE_ISINFO()) {
srslte_nbiot_dl_dci_fprint(stdout, dl_dci);
srslte_ra_nbiot_dl_grant_fprint(stdout, grant);
}
ret = SRSLTE_SUCCESS;
}
return ret;
}
// For NB-IoT there are only three possible combinations, i.e.
// L' L nNCCE
// #1 1 0 0
// #2 1 0 1
// #3 2 1 0
bool srslte_nbiot_dci_location_isvalid(const srslte_dci_location_t* c)
{
if ((c->L == 1 && c->ncce <= 1) || (c->L == 2 && c->ncce == 0)) {
return true;
} else {
return false;
}
}
uint32_t dci_formatN0_sizeof()
{
return 23;
}
uint32_t dci_formatN1_sizeof()
{
// same as for formatN0
return dci_formatN0_sizeof();
}
uint32_t dci_formatN2_sizeof()
{
return 15;
}
/* Packs DCI format N0 data to a sequence of bits and store them in msg according
* to 36.212 13.2.0 clause 6.4.3.1
*
* TODO: TPC and cyclic shift for DM RS not implemented
*/
int dci_formatN0_pack(srslte_ra_nbiot_ul_dci_t* data, srslte_dci_msg_t* msg, uint32_t nof_prb)
{
// pack bits
uint8_t* y = msg->payload;
*y++ = 0; // format differentiation
// TODO: Implement packing
// Subcarrier indication 6 bits
// Resource assignment 3 bits
// Scheduling delay 2 bits
// Modulation and coding scheme 4 bits
// Redundancy version 1 bit
// Repetition number 3 bits
// New data indicator 1 bit
// DCI subframe repetition number 2 bits
return SRSLTE_ERROR;
}
/* Packs DCI format N1 data to a sequence of bits and store them in msg according
* to 36.212 v13.2.0 clause 6.4.3.2
*
* TODO: implement packing for NPRACH case
*/
int dci_formatN1_pack(const srslte_ra_nbiot_dl_dci_t* data, srslte_dci_msg_t* msg, bool crc_is_crnti)
{
int last_bits_val = 0;
uint8_t* y = (uint8_t*)msg->payload;
*y++ = 1; // format differentiation
// NPDCCH order indicator 1 bit
*y++ = data->alloc.is_ra;
if (data->alloc.is_ra) {
// Starting number of NPRACH repetitions 2 bits
// Subcarrier indication of NPRACH 6 bits
// All the remaining bits in format N1
last_bits_val = 1;
} else {
// default NPDSCH scheduling
// Scheduling delay 3 bits
srslte_bit_unpack(data->alloc.i_delay, &y, 3);
// Resource assignment 3 bits
srslte_bit_unpack(data->alloc.i_sf, &y, 3);
// Modulation and coding scheme 4 bits
srslte_bit_unpack(data->mcs_idx, &y, 4);
// Repetition number 4 bits
srslte_bit_unpack(data->alloc.i_rep, &y, 4);
// New data indicator 1 bit
if (crc_is_crnti) {
*y++ = 0;
} else {
*y++ = data->ndi;
}
// HARQ-ACK resource 4 bits
if (crc_is_crnti) {
// reserved
y += 4;
} else {
srslte_bit_unpack(data->alloc.harq_ack, &y, 4);
}
}
// Padding with zeros until reaching final size
uint32_t n = dci_formatN1_sizeof();
while (y - msg->payload < n) {
*y++ = last_bits_val;
}
msg->nof_bits = (y - msg->payload);
return SRSLTE_SUCCESS;
}
// According to Section 6.4.3.1 in TS36.212 v13.2.0
int dci_formatN0_unpack(const srslte_dci_msg_t* msg, srslte_ra_nbiot_ul_dci_t* data)
{
uint8_t* y = (uint8_t*)msg->payload;
// make sure it has the expected length
if (msg->nof_bits != dci_formatN1_sizeof()) {
fprintf(stderr, "Invalid message length for format N1\n");
return SRSLTE_ERROR;
}
// Format differentiation - 1 bit
data->format = srslte_bit_pack(&y, 1);
// Subcarrier indication 6 bits
data->i_sc = srslte_bit_pack(&y, 6);
// Resource assignment 3 bits
data->i_ru = srslte_bit_pack(&y, 3);
// Scheduling delay 2 bits
data->i_delay = srslte_bit_pack(&y, 2);
// Modulation and coding scheme 4
data->i_mcs = srslte_bit_pack(&y, 4);
// Redundancy version 1 bit
data->i_rv = srslte_bit_pack(&y, 1);
// Repetition number 3 bits
data->i_rep = srslte_bit_pack(&y, 3);
// New data indicator 1 bit
data->ndi = srslte_bit_pack(&y, 1);
// DCI subframe repetition number 2 bits
data->dci_sf_rep_num = srslte_bit_pack(&y, 2);
// According to 16.5.1.1, SC spacing is determined by RAR grant
// TODO: Add support for 3.75kHz
data->sc_spacing = SRSLTE_NPUSCH_SC_SPACING_15000;
return SRSLTE_SUCCESS;
}
int dci_formatN1_unpack(const srslte_dci_msg_t* msg, srslte_ra_nbiot_dl_dci_t* data, bool crc_is_crnti)
{
uint8_t* y = (uint8_t*)msg->payload;
// make sure it has the expected length
if (msg->nof_bits != dci_formatN1_sizeof()) {
fprintf(stderr, "Invalid message length for format N1\n");
return SRSLTE_ERROR;
}
// Format differentiation - 1 bit
data->format = srslte_bit_pack(&y, 1);
data->dci_is_n2 = false;
// The NPDCCH order indicator (if bit is one, this is for RA procedure)
data->alloc.is_ra = srslte_bit_pack(&y, 1);
if (data->alloc.is_ra) {
// This is a RA precedure, set field according to Section 6.4.3.2 in TS36.212
data->alloc.nprach_start = srslte_bit_pack(&y, 2);
data->alloc.nprach_sc = srslte_bit_pack(&y, 6);
// set remaining field to 1
data->alloc.i_delay = 0xffff;
data->alloc.i_sf = 0xffff;
data->mcs_idx = 0xffff;
data->alloc.i_rep = 0xffff;
data->ndi = true;
data->alloc.harq_ack = 0xffff;
data->alloc.dci_sf_rep_num = 0xffff;
} else {
// default NPDSCH scheduling
// Scheduling delay 3 bits
data->alloc.i_delay = srslte_bit_pack(&y, 3);
// Resource assignment 3 bits
data->alloc.i_sf = srslte_bit_pack(&y, 3);
// Modulation and coding scheme 4 bits
data->mcs_idx = srslte_bit_pack(&y, 4);
// Repetition number 4 bits
data->alloc.i_rep = srslte_bit_pack(&y, 4);
// New data indicator 1 bit
if (crc_is_crnti) {
data->ndi = *y++ ? true : false;
} else {
y++; // NDI reserved
}
// HARQ-ACK resource 4 bits
data->alloc.harq_ack = srslte_bit_pack(&y, 4);
// DCI subframe repetition number 2 bits
data->alloc.dci_sf_rep_num = srslte_bit_pack(&y, 2);
}
return SRSLTE_SUCCESS;
}
int dci_formatN2_unpack(const srslte_dci_msg_t* msg, srslte_ra_nbiot_dl_dci_t* data)
{
uint8_t* y = (uint8_t*)msg->payload;
// make sure it has the expected length
if (msg->nof_bits != dci_formatN2_sizeof()) {
fprintf(stderr, "Invalid message length for format N2\n");
return SRSLTE_ERROR;
}
data->dci_is_n2 = true;
// Flag for paging/direct indication differentiation 1 bit, with value 0 for direct indication and value 1 for
// paging
data->format = srslte_bit_pack(&y, 1);
if (data->format == 0) {
// Direct Indication information 8 bits provide direct indication of system information update and other fields
data->dir_indication_info = srslte_bit_pack(&y, 8);
} else {
// Paging
// Resource assignment 3 bits
data->alloc.i_sf = srslte_bit_pack(&y, 3);
// Modulation and coding scheme 4 bits
data->mcs_idx = srslte_bit_pack(&y, 4);
// Repetition number 4 bits
data->alloc.i_rep = srslte_bit_pack(&y, 4);
// DCI subframe repetition number 3 bits
data->alloc.dci_sf_rep_num = srslte_bit_pack(&y, 3);
}
return SRSLTE_SUCCESS;
}
uint32_t srslte_dci_nbiot_format_sizeof(const srslte_dci_format_t format)
{
switch (format) {
case SRSLTE_DCI_FORMATN0:
return dci_formatN0_sizeof();
case SRSLTE_DCI_FORMATN1:
return dci_formatN1_sizeof();
case SRSLTE_DCI_FORMATN2:
return dci_formatN2_sizeof();
default:
printf("Error computing DCI bits: Unknown format %d\n", format);
return 0;
}
}
int srslte_dci_msg_unpack_npdsch(const srslte_dci_msg_t* msg, srslte_ra_nbiot_dl_dci_t* data, const bool crc_is_crnti)
{
switch (msg->format) {
case SRSLTE_DCI_FORMATN1:
return dci_formatN1_unpack(msg, data, crc_is_crnti);
case SRSLTE_DCI_FORMATN2:
return dci_formatN2_unpack(msg, data);
default:
fprintf(stderr, "DCI unpack npdsch: Invalid DCI format %s\n", srslte_dci_format_string(msg->format));
return SRSLTE_ERROR;
}
}
int srslte_dci_msg_unpack_npusch(const srslte_dci_msg_t* msg, srslte_ra_nbiot_ul_dci_t* data)
{
switch (msg->format) {
case SRSLTE_DCI_FORMATN0:
return dci_formatN0_unpack(msg, data);
default:
fprintf(stderr, "DCI unpack npusch: Invalid DCI format %s\n", srslte_dci_format_string(msg->format));
return SRSLTE_ERROR;
}
}
int srslte_dci_msg_pack_npdsch(const srslte_ra_nbiot_dl_dci_t* data,
const srslte_dci_format_t format,
srslte_dci_msg_t* msg,
const bool crc_is_crnti)
{
msg->format = format;
switch (format) {
case SRSLTE_DCI_FORMATN1:
return dci_formatN1_pack(data, msg, crc_is_crnti);
default:
fprintf(stderr, "DCI pack npdsch: Invalid DCI format %s in \n", srslte_dci_format_string(format));
return SRSLTE_ERROR;
}
}

@ -0,0 +1,800 @@
/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include "prb_dl.h"
#include "srslte/phy/common/phy_common.h"
#include "srslte/phy/phch/dci_nbiot.h"
#include "srslte/phy/phch/npdcch.h"
#include "srslte/phy/utils/bit.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
#define DUMP_SIGNALS 0
#define RE_EXT_DEBUG 0
/** Initializes the NPDCCH transmitter and receiver */
int srslte_npdcch_init(srslte_npdcch_t* q)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q != NULL) {
ret = SRSLTE_ERROR;
bzero(q, sizeof(srslte_npdcch_t));
q->nof_cce = 2; // One Format1 NPDCCH occupying both NCCEs
// Allocate memory for the maximum number of NPDCCH bits, i.e. one full PRB
q->max_bits = SRSLTE_CP_NORM_SF_NSYMB * SRSLTE_NRE * 2;
q->ncce_bits = q->max_bits / 2;
INFO("Init NPDCCH: Max bits: %d, %d ports.\n", q->max_bits, q->cell.nof_ports);
if (srslte_modem_table_lte(&q->mod, SRSLTE_MOD_QPSK)) {
goto clean;
}
if (srslte_crc_init(&q->crc, SRSLTE_LTE_CRC16, 16)) {
goto clean;
}
int poly[3] = {0x6D, 0x4F, 0x57};
if (srslte_viterbi_init(&q->decoder, SRSLTE_VITERBI_37, poly, SRSLTE_NBIOT_DCI_MAX_SIZE + 16, true)) {
goto clean;
}
q->e = srslte_vec_malloc(sizeof(uint8_t) * q->max_bits);
if (!q->e) {
goto clean;
}
for (int i = 0; i < 2; i++) {
q->llr[i] = srslte_vec_malloc(sizeof(float) * q->max_bits);
if (!q->llr[i]) {
goto clean;
}
bzero(q->llr[i], sizeof(float) * q->max_bits);
}
q->d = srslte_vec_malloc(sizeof(cf_t) * q->max_bits / 2);
if (!q->d) {
goto clean;
}
for (uint32_t i = 0; i < SRSLTE_MAX_PORTS; i++) {
q->ce[i] = srslte_vec_malloc(sizeof(cf_t) * q->max_bits / 2);
if (!q->ce[i]) {
goto clean;
}
for (uint32_t k = 0; k < q->max_bits / 2; k++) {
q->ce[i][k] = 1;
}
q->x[i] = srslte_vec_malloc(sizeof(cf_t) * q->max_bits / 2);
if (!q->x[i]) {
goto clean;
}
q->symbols[i] = srslte_vec_malloc(sizeof(cf_t) * q->max_bits / 2);
if (!q->symbols[i]) {
goto clean;
}
memset(q->symbols[i], 0, sizeof(cf_t) * q->max_bits / 2);
}
ret = SRSLTE_SUCCESS;
}
clean:
if (ret == SRSLTE_ERROR) {
srslte_npdcch_free(q);
}
return ret;
}
void srslte_npdcch_free(srslte_npdcch_t* q)
{
if (q->e) {
free(q->e);
}
for (uint32_t i = 0; i < 2; i++) {
if (q->llr[i]) {
free(q->llr[i]);
}
}
if (q->d) {
free(q->d);
}
for (uint32_t i = 0; i < SRSLTE_MAX_PORTS; i++) {
if (q->ce[i]) {
free(q->ce[i]);
}
if (q->x[i]) {
free(q->x[i]);
}
if (q->symbols[i]) {
free(q->symbols[i]);
}
}
for (uint32_t i = 0; i < SRSLTE_NOF_SF_X_FRAME; i++) {
srslte_sequence_free(&q->seq[i]);
}
srslte_modem_table_free(&q->mod);
srslte_viterbi_free(&q->decoder);
bzero(q, sizeof(srslte_npdcch_t));
}
int srslte_npdcch_set_cell(srslte_npdcch_t* q, srslte_nbiot_cell_t cell)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q != NULL && srslte_nbiot_cell_isvalid(&cell)) {
ret = SRSLTE_ERROR;
if (q->cell.n_id_ncell != cell.n_id_ncell || q->cell.base.nof_prb == 0) {
q->cell = cell;
if (q->cell.mode == SRSLTE_NBIOT_MODE_INBAND_SAME_PCI || q->cell.mode == SRSLTE_NBIOT_MODE_INBAND_DIFFERENT_PCI) {
q->i_n_start = 3;
} else {
q->i_n_start = 0;
}
// FIXME: Add case for LTE cell with 4 ports
if (q->cell.nof_ports == 1) {
q->nof_nbiot_refs = 2;
} else {
q->nof_nbiot_refs = 4;
}
if (q->cell.base.nof_ports == 1) {
q->nof_lte_refs = 2;
} else {
q->nof_lte_refs = 4;
}
// Update the maximum number of NPDCCH bits, i.e. one PRB minus the starting offset minus the reference symbols
q->max_bits = srslte_ra_nbiot_dl_grant_nof_re(q->cell, q->i_n_start) * 2;
q->ncce_bits = q->max_bits / 2;
for (int i = 0; i < SRSLTE_NOF_SF_X_FRAME; i++) {
if (srslte_sequence_npdcch(&q->seq[i], 2 * i, q->cell.n_id_ncell, q->max_bits)) {
return SRSLTE_ERROR;
}
}
}
ret = SRSLTE_SUCCESS;
}
return ret;
}
int srslte_npdcch_dci_decode(srslte_npdcch_t* q, float* e, uint8_t* data, uint32_t E, uint32_t nof_bits, uint16_t* crc)
{
uint16_t p_bits, crc_res;
uint8_t* x;
if (q != NULL) {
if (data != NULL && E <= q->max_bits && nof_bits <= SRSLTE_DCI_MAX_BITS) {
bzero(q->rm_f, sizeof(float) * 3 * (SRSLTE_DCI_MAX_BITS + 16));
uint32_t coded_len = 3 * (nof_bits + 16);
// unrate matching
srslte_rm_conv_rx(e, E, q->rm_f, coded_len);
// viterbi decoder
srslte_viterbi_decode_f(&q->decoder, q->rm_f, data, nof_bits + 16);
x = &data[nof_bits];
p_bits = (uint16_t)srslte_bit_pack(&x, 16);
crc_res = ((uint16_t)srslte_crc_checksum(&q->crc, data, nof_bits) & 0xffff);
if (crc) {
*crc = p_bits ^ crc_res;
}
return SRSLTE_SUCCESS;
} else {
fprintf(stderr, "Invalid parameters: E: %d, max_bits: %d, nof_bits: %d\n", E, q->max_bits, nof_bits);
return SRSLTE_ERROR_INVALID_INPUTS;
}
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
/** Tries to decode a DCI message from the LLRs stored in the srslte_npdcch_t structure by the function
* srslte_npdcch_extract_llr(). This function can be called multiple times.
* The decoded message is stored in msg and the CRC remainder in crc_rem pointer
*
*/
int srslte_npdcch_decode_msg(srslte_npdcch_t* q,
srslte_dci_msg_t* msg,
srslte_dci_location_t* location,
srslte_dci_format_t format,
uint16_t* crc_rem)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
int num_decoded_symbols = 0;
if (q != NULL && msg != NULL && srslte_nbiot_dci_location_isvalid(location)) {
uint32_t nof_bits = (format == SRSLTE_DCI_FORMATN2) ? 15 : 23;
uint32_t e_bits = q->ncce_bits * location->L;
// Get the right softbits for this aggregation level
float* llr = (location->L == 1) ? q->llr[0] : q->llr[1];
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("LLR:\n");
srslte_vec_fprint_f(stdout, llr, q->max_bits);
}
double mean = 0;
for (int i = 0; i < e_bits; i++) {
mean += fabsf(llr[location->ncce * q->ncce_bits + i]);
}
mean /= e_bits;
if (mean > 0.3) {
ret = srslte_npdcch_dci_decode(q, &llr[location->ncce * q->ncce_bits], msg->payload, e_bits, nof_bits, crc_rem);
if (ret == SRSLTE_SUCCESS) {
num_decoded_symbols = e_bits / 2;
msg->nof_bits = nof_bits;
// Check format differentiation
if (format == SRSLTE_DCI_FORMATN0 || format == SRSLTE_DCI_FORMATN1) {
msg->format = (msg->payload[0] == 0) ? SRSLTE_DCI_FORMATN0 : SRSLTE_DCI_FORMATN1;
} else {
msg->format = format;
}
} else {
fprintf(stderr, "Error calling npdcch_dci_decode\n");
}
if (crc_rem) {
DEBUG("Decoded DCI: nCCE=%d, L=%d, format=%s, msg_len=%d, mean=%f, crc_rem=0x%x\n",
location->ncce,
location->L,
srslte_dci_format_string(msg->format),
nof_bits,
mean,
*crc_rem);
}
} else {
DEBUG("Skipping DCI: nCCE=%d, L=%d, msg_len=%d, mean=%f\n", location->ncce, location->L, nof_bits, mean);
}
ret = SRSLTE_SUCCESS;
} else {
fprintf(stderr, "Invalid parameters, location=%d,%d\n", location->ncce, location->L);
}
q->num_decoded_symbols = num_decoded_symbols;
return ret;
}
/** Extracts the LLRs from srslte_dci_location_t location of the subframe and stores them in the srslte_npdcch_t
* structure. DCI messages can be extracted from this location calling the function srslte_npdcch_decode_msg(). Every
* time this function is called (with a different location), the last demodulated symbols are overwritten and new
* messages from other locations can be decoded
*/
int srslte_npdcch_extract_llr(srslte_npdcch_t* q,
cf_t* sf_symbols,
cf_t* ce[SRSLTE_MAX_PORTS],
float noise_estimate,
uint32_t sf_idx)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
/* Set pointers for layermapping & precoding */
uint32_t num_symbols, e_bits;
float* llr;
cf_t* x[SRSLTE_MAX_LAYERS];
if (q != NULL && sf_idx < 10) {
ret = SRSLTE_ERROR;
for (int i = 0; i < SRSLTE_NPDCCH_FORMAT_NITEMS; i++) {
// set parameters according to NPDCCH format
switch (i) {
case SRSLTE_NPDCCH_FORMAT0_LOWER_HALF:
e_bits = q->ncce_bits;
llr = q->llr[0];
break;
case SRSLTE_NPDCCH_FORMAT0_UPPER_HALF:
e_bits = q->ncce_bits;
llr = &q->llr[0][q->ncce_bits];
break;
case SRSLTE_NPDCCH_FORMAT1:
e_bits = q->ncce_bits * 2;
llr = q->llr[1];
break;
default:
return ret;
}
num_symbols = e_bits / 2;
DEBUG("Extracting LLRs for NPDCCH %s: E: %d, SF: %d\n", srslte_npdcch_format_text[i], e_bits, sf_idx);
if (i != SRSLTE_NPDCCH_FORMAT0_UPPER_HALF) {
// don't overwrite lower half LLRs
bzero(llr, sizeof(float) * q->max_bits);
}
// number of layers equals number of ports
for (int f = 0; f < q->cell.nof_ports; f++) {
x[f] = q->x[f];
}
memset(&x[q->cell.nof_ports], 0, sizeof(cf_t*) * (SRSLTE_MAX_LAYERS - q->cell.nof_ports));
// extract symbols
int n = srslte_npdcch_get(q, sf_symbols, q->symbols[0], i);
if (num_symbols != n) {
fprintf(stderr, "Expected %d NPDCCH symbols but got %d symbols\n", num_symbols, n);
return ret;
}
#if DUMP_SIGNALS
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("SAVED FILE npdcch_rx_mapping_output.bin: NPDCCH after extracting symbols\n");
srslte_vec_save_file("npdcch_rx_mapping_output.bin", q->symbols[0], n * sizeof(cf_t));
}
#endif
// extract channel estimates
for (int p = 0; p < q->cell.nof_ports; p++) {
n = srslte_npdcch_get(q, ce[p], q->ce[p], i);
if (num_symbols != n) {
fprintf(stderr, "Expected %d NPDCCH symbols but got %d symbols\n", num_symbols, n);
return ret;
}
}
// in control channels, only diversity is supported
if (q->cell.nof_ports == 1) {
// no need for layer demapping
srslte_predecoding_single(q->symbols[0], q->ce[0], q->d, NULL, num_symbols, 1.0, noise_estimate);
} else {
srslte_predecoding_diversity(q->symbols[0], q->ce, x, q->cell.nof_ports, num_symbols, 1.0);
srslte_layerdemap_diversity(x, q->d, q->cell.nof_ports, num_symbols / q->cell.nof_ports);
}
#if DUMP_SIGNALS
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("SAVED FILE npdcch_rx_predecode_output.bin: NPDCCH after predecoding symbols\n");
srslte_vec_save_file("npdcch_rx_predecode_output.bin", q->d, q->num_decoded_symbols * sizeof(cf_t));
}
#endif
// demodulate symbols
srslte_demod_soft_demodulate(SRSLTE_MOD_QPSK, q->d, llr, num_symbols);
// descramble
srslte_scrambling_f_offset(&q->seq[sf_idx], llr, 0, e_bits);
#if DUMP_SIGNALS
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("SAVED FILE npdcch_rx_descramble_output.bin: NPDCCH after de-scrambling\n");
srslte_vec_save_file("npdcch_rx_descramble_output.bin", llr, e_bits);
}
#endif
}
ret = SRSLTE_SUCCESS;
}
return ret;
}
static void crc_set_mask_rnti(uint8_t* crc, uint16_t rnti)
{
uint8_t mask[16] = {};
uint8_t* r = mask;
DEBUG("Mask CRC with RNTI 0x%x\n", rnti);
srslte_bit_unpack(rnti, &r, 16);
for (uint32_t i = 0; i < 16; i++) {
crc[i] = (crc[i] + mask[i]) % 2;
}
}
void srslte_npdcch_dci_encode_conv(srslte_npdcch_t* q,
uint8_t* data,
uint32_t nof_bits,
uint8_t* coded_data,
uint16_t rnti)
{
srslte_convcoder_t encoder;
int poly[3] = {0x6D, 0x4F, 0x57};
encoder.K = 7;
encoder.R = 3;
encoder.tail_biting = true;
memcpy(encoder.poly, poly, 3 * sizeof(int));
srslte_crc_attach(&q->crc, data, nof_bits);
crc_set_mask_rnti(&data[nof_bits], rnti);
#if DUMP_SIGNALS
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("SAVED FILE npdcch_tx_convcoder_input.bin: NPDCCH before convolution coding\n");
srslte_vec_save_file("npdcch_tx_convcoder_input.bin", data, nof_bits + 16);
}
#endif
srslte_convcoder_encode(&encoder, data, coded_data, nof_bits + 16);
}
/** 36.212 5.3.3.2 to 5.3.3.4
* TODO: UE transmit antenna selection CRC mask
*/
int srslte_npdcch_dci_encode(srslte_npdcch_t* q,
uint8_t* data,
uint8_t* e,
uint32_t nof_bits,
uint32_t E,
uint16_t rnti)
{
uint8_t tmp[3 * (SRSLTE_DCI_MAX_BITS + 16)];
if (q != NULL && data != NULL && e != NULL && nof_bits < SRSLTE_DCI_MAX_BITS && E <= q->max_bits) {
srslte_npdcch_dci_encode_conv(q, data, nof_bits, tmp, rnti);
DEBUG("CConv output: ");
if (SRSLTE_VERBOSE_ISDEBUG()) {
srslte_vec_fprint_b(stdout, tmp, 3 * (nof_bits + 16));
}
srslte_rm_conv_tx(tmp, 3 * (nof_bits + 16), e, E);
return SRSLTE_SUCCESS;
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
int srslte_npdcch_encode(srslte_npdcch_t* q,
srslte_dci_msg_t* msg,
srslte_dci_location_t location,
uint16_t rnti,
cf_t* sf_symbols[SRSLTE_MAX_PORTS],
uint32_t nsubframe)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q != NULL && sf_symbols != NULL && nsubframe < 10 && srslte_nbiot_dci_location_isvalid(&location)) {
ret = SRSLTE_ERROR;
uint32_t e_bits = q->nof_cce * q->ncce_bits;
uint32_t nof_symbols = e_bits / 2;
if (msg->nof_bits < SRSLTE_DCI_MAX_BITS - 16) {
DEBUG("Encoding DCI: Nbits: %d, E: %d, nCCE: %d, L: %d, RNTI: 0x%x, sf_idx: %d\n",
msg->nof_bits,
e_bits,
location.ncce,
location.L,
rnti,
nsubframe);
if (srslte_npdcch_dci_encode(q, msg->payload, q->e, msg->nof_bits, e_bits, rnti) != SRSLTE_SUCCESS) {
fprintf(stderr, "Error encoding DCI\n");
return SRSLTE_ERROR;
}
// number of layers equals number of ports
cf_t* x[SRSLTE_MAX_LAYERS] = {NULL};
for (int i = 0; i < q->cell.nof_ports; i++) {
x[i] = q->x[i];
}
memset(&x[q->cell.nof_ports], 0, sizeof(cf_t*) * (SRSLTE_MAX_LAYERS - q->cell.nof_ports));
#if DUMP_SIGNALS
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("SAVED FILE npdcch_tx_scramble_input.bin: NPDCCH before scrambling\n");
srslte_vec_save_file("npdcch_tx_scramble_input.bin", q->e, e_bits);
}
#endif
srslte_scrambling_b_offset(&q->seq[nsubframe], q->e, 72 * location.ncce, e_bits);
#if DUMP_SIGNALS
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("SAVED FILE npdcch_tx_mod_input.bin: NPDCCH before modulation\n");
srslte_vec_save_file("npdcch_tx_mod_input.bin", q->e, e_bits);
}
#endif
srslte_mod_modulate(&q->mod, q->e, q->d, e_bits);
#if DUMP_SIGNALS
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("SAVED FILE npdcch_tx_precode_input.bin: NPDCCH before precoding symbols\n");
srslte_vec_save_file("npdcch_tx_precode_input.bin", q->d, nof_symbols * sizeof(cf_t));
}
#endif
// layer mapping & precoding
if (q->cell.nof_ports > 1) {
srslte_layermap_diversity(q->d, x, q->cell.nof_ports, nof_symbols);
srslte_precoding_diversity(x, q->symbols, q->cell.nof_ports, nof_symbols / q->cell.nof_ports, 1.0);
} else {
memcpy(q->symbols[0], q->d, nof_symbols * sizeof(cf_t));
}
#if DUMP_SIGNALS
if (SRSLTE_VERBOSE_ISDEBUG()) {
DEBUG("SAVED FILE npdcch_tx_mapping_input.bin: NPDCCH before mapping to resource elements\n");
srslte_vec_save_file("npdcch_tx_mapping_input.bin", q->symbols[0], nof_symbols * sizeof(cf_t));
}
#endif
// mapping to resource elements
for (int i = 0; i < q->cell.nof_ports; i++) {
srslte_npdcch_put(q, q->symbols[i], sf_symbols[i], SRSLTE_NPDCCH_FORMAT1);
}
ret = SRSLTE_SUCCESS;
} else {
fprintf(stderr, "Illegal DCI message nCCE: %d, L: %d, nof_cce: %d\n", location.ncce, location.L, q->nof_cce);
}
} else {
fprintf(stderr, "Invalid parameters: L=%d, nCCE=%d\n", location.L, location.ncce);
}
return ret;
}
/** 36.213 v9.1.1
* Computes up to max_candidates UE-specific candidates for DCI messages and saves them
* in the structure pointed by c.
* Returns the number of candidates saved in the array c.
*/
uint32_t srslte_npdcch_ue_locations(srslte_dci_location_t* c, uint32_t max_candidates)
{
// NPDCCH format 1 takes both NCCE
c[0].L = 2;
c[0].ncce = 0;
// NPDCCH format 0 only takes one NCCE so two of them may be transmitted in one subframe
c[1].L = 1;
c[1].ncce = 0;
c[2].L = 1;
c[2].ncce = 1;
return max_candidates;
}
uint32_t srslte_npdcch_common_locations(srslte_dci_location_t* c, uint32_t max_candidates)
{
return srslte_npdcch_ue_locations(c, max_candidates);
}
int srslte_npdcch_cp(srslte_npdcch_t* q, cf_t* input, cf_t* output, bool put, srslte_npdcch_format_t format)
{
// sanity check
if (q == NULL || input == NULL || output == NULL) {
return SRSLTE_ERROR_INVALID_INPUTS;
}
#if RE_EXT_DEBUG
int num_extracted = 0;
#endif
cf_t *in_ptr = input, *out_ptr = output;
bool skip_crs = false;
if (put) {
out_ptr += (q->i_n_start * q->cell.base.nof_prb * SRSLTE_NRE) + q->cell.nbiot_prb * SRSLTE_NRE;
} else {
in_ptr += (q->i_n_start * q->cell.base.nof_prb * SRSLTE_NRE) + q->cell.nbiot_prb * SRSLTE_NRE;
}
if (q->cell.mode == SRSLTE_NBIOT_MODE_INBAND_SAME_PCI || q->cell.mode == SRSLTE_NBIOT_MODE_INBAND_DIFFERENT_PCI) {
skip_crs = true;
}
// start mapping at specified OFDM symbol
for (int l = q->i_n_start; l < SRSLTE_CP_NORM_SF_NSYMB; l++) {
uint32_t delta = (q->cell.base.nof_prb - 1) * SRSLTE_NRE; // the number of REs skipped in each OFDM symbol
uint32_t offset = 0; // the number of REs left out before start of the REF signal RE
if (l == 5 || l == 6 || l == 12 || l == 13) {
// always skip NRS
if (q->nof_nbiot_refs == 2) {
if (l == 5 || l == 12) {
offset = q->cell.n_id_ncell % 6;
delta = q->cell.n_id_ncell % 6 == 5 ? 1 : 0;
} else {
offset = (q->cell.n_id_ncell + 3) % 6;
delta = (q->cell.n_id_ncell + 3) % 6 == 5 ? 1 : 0;
}
} else if (q->nof_nbiot_refs == 4) {
offset = q->cell.n_id_ncell % 3;
delta = (q->cell.n_id_ncell + ((q->cell.n_id_ncell >= 5) ? 0 : 3)) % 6 == 5 ? 1 : 0;
} else {
// FIXME: not handled right now
return SRSLTE_ERROR;
}
switch (format) {
case SRSLTE_NPDCCH_FORMAT0_LOWER_HALF:
prb_cp_ref(&in_ptr, &out_ptr, offset, q->nof_nbiot_refs, q->nof_nbiot_refs, put);
// we have copied too much, rewind ptr
if (put) {
in_ptr -= (SRSLTE_NRE - q->nof_nbiot_refs) / 2;
} else {
out_ptr -= (SRSLTE_NRE - q->nof_nbiot_refs) / 2;
}
break;
case SRSLTE_NPDCCH_FORMAT0_UPPER_HALF:
// FIXME: this causes valgrind to detect an invalid memory access
#if 0
// skip lower half
if (put) {
out_ptr += SRSLTE_NRE / 2;
} else {
in_ptr += SRSLTE_NRE / 2;
}
#endif
// copy REs
prb_cp_ref(&in_ptr, &out_ptr, offset, q->nof_nbiot_refs, q->nof_nbiot_refs, put);
// we have copied too much, rewind ptr
if (put) {
in_ptr -= (SRSLTE_NRE - q->nof_nbiot_refs) / 2;
} else {
out_ptr -= (SRSLTE_NRE - q->nof_nbiot_refs) / 2;
}
break;
case SRSLTE_NPDCCH_FORMAT1:
prb_cp_ref(&in_ptr, &out_ptr, offset, q->nof_nbiot_refs, q->nof_nbiot_refs, put);
break;
default:
printf("Wrong NPDCCH format!\n");
return SRSLTE_ERROR;
}
} else if ((l == 0 || l == 4 || l == 7 || l == 11) && skip_crs) {
// skip LTE's CRS (FIXME: use base cell ID?)
if (q->nof_lte_refs == 2) {
if (l == 0 || l == 7) {
offset = q->cell.base.id % 6;
delta = (q->cell.base.id + 3) % 6 == 2 ? 1 : 0;
} else if (l == 4 || l == 11) {
offset = (q->cell.base.id + 3) % 6;
delta = (q->cell.base.id + ((q->cell.base.id <= 5) ? 3 : 0)) % 6 == 5 ? 1 : 0;
}
} else {
offset = q->cell.base.id % 3;
delta = q->cell.base.id % 3 == 2 ? 1 : 0;
}
switch (format) {
case SRSLTE_NPDCCH_FORMAT0_LOWER_HALF:
prb_cp_ref(&in_ptr, &out_ptr, offset, q->nof_lte_refs, q->nof_lte_refs, put);
// we have copied too much, rewind ptr
if (put) {
in_ptr -= (SRSLTE_NRE - q->nof_lte_refs) / 2;
} else {
out_ptr -= (SRSLTE_NRE - q->nof_lte_refs) / 2;
}
break;
case SRSLTE_NPDCCH_FORMAT0_UPPER_HALF:
// skip lower half
if (put) {
out_ptr += SRSLTE_NRE / 2;
} else {
in_ptr += SRSLTE_NRE / 2;
}
// copy REs
prb_cp_ref(&in_ptr, &out_ptr, offset, q->nof_lte_refs, q->nof_lte_refs, put);
// we have copied too much, rewind ptr
if (put) {
in_ptr -= (SRSLTE_NRE - q->nof_lte_refs) / 2;
} else {
out_ptr -= (SRSLTE_NRE - q->nof_lte_refs) / 2;
}
break;
case SRSLTE_NPDCCH_FORMAT1:
prb_cp_ref(&in_ptr, &out_ptr, offset, q->nof_lte_refs, q->nof_lte_refs, put);
break;
default:
printf("Wrong NPDCCH format!\n");
return SRSLTE_ERROR;
}
} else {
switch (format) {
case SRSLTE_NPDCCH_FORMAT0_LOWER_HALF:
prb_cp_half(&in_ptr, &out_ptr, 1);
// skip upper half
if (put) {
out_ptr += SRSLTE_NRE / 2;
} else {
in_ptr += SRSLTE_NRE / 2;
}
break;
case SRSLTE_NPDCCH_FORMAT0_UPPER_HALF:
// skip lower half
if (put) {
out_ptr += SRSLTE_NRE / 2;
} else {
in_ptr += SRSLTE_NRE / 2;
}
prb_cp_half(&in_ptr, &out_ptr, 1);
break;
case SRSLTE_NPDCCH_FORMAT1:
// occupy entire symbol
prb_cp(&in_ptr, &out_ptr, 1);
break;
default:
printf("Wrong NPDCCH format!\n");
return SRSLTE_ERROR;
}
}
if (put) {
out_ptr += delta;
} else {
in_ptr += delta;
}
#if RE_EXT_DEBUG
printf("\nl=%d, delta=%d offset=%d\n", l, delta, offset);
uint32_t num_extracted_this_sym = abs((int)(output - out_ptr)) - num_extracted;
printf(" - extracted total of %d RE after symbol %d (this symbol=%d)\n",
abs((int)(output - out_ptr)),
l,
num_extracted_this_sym);
srslte_vec_fprint_c(stdout, &output[num_extracted], num_extracted_this_sym);
num_extracted = abs((int)(output - out_ptr));
#endif
}
int r;
if (put) {
r = abs((int)(input - in_ptr));
} else {
r = abs((int)(output - out_ptr));
}
return r;
}
/**
* Puts NPDCCH in the subframe
*
* Returns the number of symbols written to sf_symbols
*
* 36.211 10.3 section 6.3.5
*/
int srslte_npdcch_put(srslte_npdcch_t* q, cf_t* symbols, cf_t* sf_symbols, srslte_npdcch_format_t format)
{
return srslte_npdcch_cp(q, symbols, sf_symbols, true, format);
}
/**
* Extracts NPDCCH from the subframe
*
* Returns the number of symbols read
*
* 36.211 10.3 section 6.3.5
*/
int srslte_npdcch_get(srslte_npdcch_t* q, cf_t* sf_symbols, cf_t* symbols, srslte_npdcch_format_t format)
{
return srslte_npdcch_cp(q, sf_symbols, symbols, false, format);
}

@ -265,13 +265,16 @@ bool srslte_ra_nbiot_dl_has_ref_signal_inband(uint32_t tti)
return srslte_ra_nbiot_dl_has_ref_signal(tti);
}
/// Valid NB-IoT DL subframes are subframes that DON'T carry:
/// - NPBCH (subframe 0)
/// - NPSS (subframe 5)
/// - NSSS (subframe 9 in all even frames)
bool srslte_ra_nbiot_is_valid_dl_sf(uint32_t tti)
{
return (tti % 10 == 0 || tti % 10 == 5 || (tti % 10 == 9 && (tti / 10 % 2 == 0)));
return !(tti % 10 == 0 || tti % 10 == 5 || (tti % 10 == 9 && ((tti / 10) % 2 == 0)));
}
int srslte_ra_nbiot_dl_dci_to_grant(srslte_ra_nbiot_dl_dci_t* dci,
uint16_t msg_rnti,
srslte_ra_nbiot_dl_grant_t* grant,
uint32_t sfn,
uint32_t sf_idx,

@ -282,6 +282,19 @@ add_test(pdcch_file_test pdcch_file_test -c 1 -f 3 -n 6 -p 1 -i ${CMAKE_CURRENT_
add_test(pdsch_pdcch_file_test pdsch_pdcch_file_test -c 1 -f 3 -n 6 -p 1 -i ${CMAKE_CURRENT_SOURCE_DIR}/signal.1.92M.amar.dat)
add_test(pmch_file_test pmch_file_test -i ${CMAKE_CURRENT_SOURCE_DIR}/pmch_100prbs_MCS2_SR0.bin)
########################################################################
# NPDCCH TEST
########################################################################
add_executable(npdcch_test npdcch_test.c)
target_link_libraries(npdcch_test srslte_phy)
add_test(npdcch_formatN1_test npdcch_test -o FormatN1)
add_executable(npdcch_file_test npdcch_file_test.c)
target_link_libraries(npdcch_file_test srslte_phy)
add_test(npdcch_formatN0_file_test npdcch_file_test -c 0 -t 8624 -r 258 -L 1 -l 0 -v -o FormatN0 -i ${CMAKE_CURRENT_SOURCE_DIR}/signal_nbiot_dci_formatN0_L_1_nid0_tti_8624_rnti_0x102.bin)
add_test(npdcch_formatN1_file_test npdcch_file_test -c 0 -t 5461 -r 137 -L 2 -l 0 -v -o FormatN1 -i ${CMAKE_CURRENT_SOURCE_DIR}/signal_nbiot_dci_formatN1_nid0_tti_5461_rnti_0x89.bin)
########################################################################
# PUSCH TEST
########################################################################

@ -0,0 +1,260 @@
/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/phy/ch_estimation/chest_dl_nbiot.h"
#include "srslte/phy/dft/ofdm.h"
#include "srslte/phy/io/filesource.h"
#include "srslte/phy/phch/dci_nbiot.h"
#include "srslte/phy/phch/npdcch.h"
#include "srslte/phy/phch/ra_nbiot.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
char* input_file_name = NULL;
srslte_dci_format_t dci_format = SRSLTE_DCI_FORMATN0;
uint16_t rnti = 0;
uint32_t tti = 0;
int nof_frames = 1;
srslte_dci_location_t dci_location = {};
srslte_nbiot_cell_t cell = {.base = {.nof_prb = 1, .nof_ports = 1, .cp = SRSLTE_CP_NORM, .id = 0},
.nbiot_prb = 0,
.n_id_ncell = 0,
.nof_ports = 1,
.mode = SRSLTE_NBIOT_MODE_STANDALONE};
void usage(char* prog)
{
printf("Usage: %s [cprndv] -i input_file\n", prog);
printf("\t-c cell id [Default %d]\n", cell.base.id);
printf("\t-p cell.nof_ports [Default %d]\n", cell.base.nof_ports);
printf("\t-o DCI Format [Default %s]\n", srslte_dci_format_string(dci_format));
printf("\t-L DCI location L value [Default %d]\n", dci_location.L);
printf("\t-l DCI location ncee value [Default %d]\n", dci_location.ncce);
printf("\t-r rnti [Default %d]\n", rnti);
printf("\t-t tti [Default %d]\n", tti);
printf("\t-v [set srslte_verbose to debug, default none]\n");
}
void parse_args(int argc, char** argv)
{
int opt;
while ((opt = getopt(argc, argv, "icplLrontv")) != -1) {
switch (opt) {
case 'i':
input_file_name = argv[optind];
break;
case 'p':
cell.base.nof_ports = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'c':
cell.base.id = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'l':
dci_location.ncce = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'L':
dci_location.L = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'r':
rnti = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'o':
dci_format = srslte_dci_format_from_string(argv[optind]);
if (dci_format == SRSLTE_DCI_NOF_FORMATS) {
ERROR("Error unsupported format %s\n", argv[optind]);
exit(-1);
}
break;
case 't':
tti = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'v':
srslte_verbose++;
break;
default:
usage(argv[0]);
exit(-1);
}
}
if (!input_file_name) {
usage(argv[0]);
exit(-1);
}
}
int main(int argc, char** argv)
{
cf_t * input_buffer = NULL, *fft_buffer = NULL, *ce[SRSLTE_MAX_PORTS] = {NULL};
srslte_filesource_t fsrc;
srslte_chest_dl_nbiot_t chest;
srslte_ofdm_t fft;
srslte_npdcch_t npdcch = {};
srslte_dci_msg_t dci_rx = {};
int ret = SRSLTE_ERROR;
int frame_cnt = 0;
int nof_decoded_dcis = 0;
int nread = 0;
parse_args(argc, argv);
// we need to allocate RE's for a full 6 PRB cell
int nof_re = 6 * SRSLTE_SF_LEN_RE(cell.base.nof_prb, cell.base.cp);
// init memory
for (int i = 0; i < SRSLTE_MAX_PORTS; i++) {
ce[i] = srslte_vec_cf_malloc(nof_re);
if (!ce[i]) {
perror("malloc");
goto quit;
}
for (int j = 0; j < nof_re; j++) {
ce[i][j] = 1;
}
}
if (srslte_filesource_init(&fsrc, input_file_name, SRSLTE_COMPLEX_FLOAT_BIN)) {
fprintf(stderr, "Error opening file %s\n", input_file_name);
goto quit;
}
uint32_t sf_len = SRSLTE_SF_LEN(srslte_symbol_sz(cell.base.nof_prb));
input_buffer = srslte_vec_cf_malloc(sf_len);
if (!input_buffer) {
perror("malloc");
goto quit;
}
fft_buffer = srslte_vec_cf_malloc(sf_len);
if (!fft_buffer) {
perror("malloc");
goto quit;
}
if (srslte_chest_dl_nbiot_init(&chest, SRSLTE_NBIOT_MAX_PRB)) {
fprintf(stderr, "Error initializing equalizer\n");
goto quit;
}
if (srslte_chest_dl_nbiot_set_cell(&chest, cell) != SRSLTE_SUCCESS) {
fprintf(stderr, "Error setting equalizer cell configuration\n");
goto quit;
}
if (srslte_ofdm_rx_init(&fft, cell.base.cp, input_buffer, fft_buffer, cell.base.nof_prb)) {
fprintf(stderr, "Error initializing FFT\n");
goto quit;
}
srslte_ofdm_set_freq_shift(&fft, SRSLTE_NBIOT_FREQ_SHIFT_FACTOR);
if (srslte_npdcch_init(&npdcch)) {
fprintf(stderr, "Error creating NPDCCH object\n");
goto quit;
}
if (srslte_npdcch_set_cell(&npdcch, cell)) {
fprintf(stderr, "Error configuring NPDCCH object\n");
goto quit;
}
do {
nread = srslte_filesource_read(&fsrc, input_buffer, sf_len);
if (nread == sf_len) {
// Run FFT and estimate channel
srslte_ofdm_rx_sf(&fft);
INFO("%d.%d: Estimating channel.\n", frame_cnt, tti % 10);
srslte_chest_dl_nbiot_estimate(&chest, fft_buffer, ce, tti % 10);
// Extract LLR
float noise_est = srslte_chest_dl_nbiot_get_noise_estimate(&chest);
if (srslte_npdcch_extract_llr(&npdcch, fft_buffer, ce, noise_est, tti % 10)) {
fprintf(stderr, "Error extracting LLRs\n");
goto quit;
}
uint16_t crc_rem = 0;
if (srslte_npdcch_decode_msg(&npdcch, &dci_rx, &dci_location, dci_format, &crc_rem)) {
fprintf(stderr, "Error decoding DCI message\n");
goto quit;
}
if (crc_rem != rnti) {
printf("Received invalid DCI CRC 0x%x\n", crc_rem);
goto quit;
} else {
if (dci_format == SRSLTE_DCI_FORMATN0) {
// process as UL grant
srslte_ra_nbiot_ul_dci_t dci_unpacked;
srslte_ra_nbiot_ul_grant_t grant;
// Creates the UL NPUSCH resource allocation grant from a DCI format N0 message
if (srslte_nbiot_dci_msg_to_ul_grant(&dci_rx, &dci_unpacked, &grant, tti, SRSLTE_NPUSCH_SC_SPACING_15000)) {
fprintf(stderr, "Error unpacking DCI\n");
goto quit;
}
} else {
// process as DL grant
srslte_ra_nbiot_dl_dci_t dci_unpacked;
srslte_ra_nbiot_dl_grant_t grant;
if (srslte_nbiot_dci_msg_to_dl_grant(
&dci_rx, rnti, &dci_unpacked, &grant, tti / 10, tti % 10, 64 /* TODO: remove */, cell.mode)) {
fprintf(stderr, "Error unpacking DCI\n");
goto quit;
}
}
nof_decoded_dcis++;
}
tti++;
if (tti == 10240) {
tti = 0;
frame_cnt++;
}
}
} while (nread > 0 && frame_cnt < nof_frames);
quit:
srslte_npdcch_free(&npdcch);
srslte_filesource_free(&fsrc);
free(input_buffer);
free(fft_buffer);
srslte_chest_dl_nbiot_free(&chest);
srslte_ofdm_rx_free(&fft);
for (int i = 0; i < SRSLTE_MAX_PORTS; i++) {
if (ce[i]) {
free(ce[i]);
}
}
if (nof_decoded_dcis > 0) {
printf("Ok\n");
ret = SRSLTE_SUCCESS;
} else {
printf("Error\n");
}
return ret;
}

@ -0,0 +1,261 @@
/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include "srslte/phy/phch/dci_nbiot.h"
#include "srslte/phy/phch/npdcch.h"
#include "srslte/phy/phch/ra_nbiot.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
#define RNTI (0x1234)
#define HAVE_OFDM 0
srslte_dci_format_t dci_format = SRSLTE_DCI_FORMATN0;
srslte_nbiot_cell_t cell = {.base = {.nof_prb = 1, .nof_ports = 1, .cp = SRSLTE_CP_NORM, .id = 0},
.nbiot_prb = 0,
.n_id_ncell = 0,
.nof_ports = 1,
.mode = SRSLTE_NBIOT_MODE_STANDALONE};
void usage(char* prog)
{
printf("Usage: %s [cpndv]\n", prog);
printf("\t-c cell id [Default %d]\n", cell.base.id);
printf("\t-o DCI Format [Default %s]\n", srslte_dci_format_string(dci_format));
printf("\t-p cell.nof_ports [Default %d]\n", cell.base.nof_ports);
printf("\t-n cell.nof_prb [Default %d]\n", cell.base.nof_prb);
printf("\t-v [set srslte_verbose to debug, default none]\n");
}
void parse_args(int argc, char** argv)
{
int opt;
while ((opt = getopt(argc, argv, "cpnov")) != -1) {
switch (opt) {
case 'p':
cell.base.nof_ports = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'n':
cell.base.nof_prb = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'c':
cell.base.id = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'o':
dci_format = srslte_dci_format_from_string(argv[optind]);
if (dci_format == SRSLTE_DCI_NOF_FORMATS) {
ERROR("Error unsupported format %s\n", argv[optind]);
exit(-1);
}
break;
case 'v':
srslte_verbose++;
break;
default:
usage(argv[0]);
exit(-1);
}
}
}
int main(int argc, char** argv)
{
srslte_npdcch_t npdcch = {};
srslte_dci_msg_t dci_tx = {}, dci_rx = {};
srslte_dci_location_t dci_location = {};
uint32_t tti = 6521;
uint16_t rnti = 0x1234;
cf_t* ce[SRSLTE_MAX_PORTS] = {NULL};
cf_t* slot_symbols[SRSLTE_MAX_PORTS] = {NULL};
int ret = SRSLTE_ERROR;
parse_args(argc, argv);
// we need to allocate RE's for a full 6 PRB cell
int nof_re = 6 * SRSLTE_SF_LEN_RE(cell.base.nof_prb, cell.base.cp);
// init memory
for (int i = 0; i < SRSLTE_MAX_PORTS; i++) {
ce[i] = malloc(sizeof(cf_t) * nof_re);
if (!ce[i]) {
perror("malloc");
exit(-1);
}
for (int j = 0; j < nof_re; j++) {
ce[i][j] = 1;
}
slot_symbols[i] = malloc(sizeof(cf_t) * nof_re);
if (!slot_symbols[i]) {
perror("malloc");
exit(-1);
}
}
#if HAVE_OFDM
cf_t td_signal[nof_re * 2];
#endif
if (srslte_npdcch_init(&npdcch)) {
fprintf(stderr, "Error creating NPDCCH object\n");
exit(-1);
}
if (srslte_npdcch_set_cell(&npdcch, cell)) {
fprintf(stderr, "Error configuring NPDCCH object\n");
exit(-1);
}
if (dci_format == SRSLTE_DCI_FORMATN0) {
// UL grant
srslte_ra_nbiot_ul_dci_t dci = {};
dci.format = dci_format;
srslte_ra_nbiot_ul_grant_t grant;
if (srslte_ra_nbiot_ul_dci_to_grant(&dci, &grant, tti, SRSLTE_NPUSCH_SC_SPACING_15000)) {
fprintf(stderr, "Error converting DCI message\n");
}
fprintf(stderr, "FormatN0 packing not supported\n");
return SRSLTE_ERROR;
} else if (dci_format == SRSLTE_DCI_FORMATN1) {
// DL grant
srslte_ra_nbiot_dl_dci_t ra_dl = {};
ra_dl.mcs_idx = 5;
ra_dl.ndi = 0;
ra_dl.rv_idx = 0;
// NB-IoT specific fields
ra_dl.alloc.has_sib1 = false;
ra_dl.alloc.is_ra = false;
ra_dl.alloc.i_delay = 4;
ra_dl.alloc.i_sf = 0;
ra_dl.alloc.i_rep = 0;
ra_dl.alloc.harq_ack = 1;
ra_dl.alloc.i_n_start = 0;
srslte_nbiot_dl_dci_fprint(stdout, &ra_dl);
// pack DCI
srslte_dci_msg_pack_npdsch(&ra_dl, dci_format, &dci_tx, false);
srslte_dci_location_set(&dci_location, 2, 0);
} else {
fprintf(stderr, "FormatN2 packing not supported\n");
return SRSLTE_ERROR;
}
if (srslte_npdcch_encode(&npdcch, &dci_tx, dci_location, RNTI, slot_symbols, 0)) {
fprintf(stderr, "Error encoding DCI message\n");
goto quit;
}
// combine outputs
for (int i = 1; i < cell.base.nof_ports; i++) {
for (int j = 0; j < nof_re; j++) {
slot_symbols[0][j] += slot_symbols[i][j];
}
}
#if HAVE_OFDM
srslte_ofdm_t ofdm_tx;
srslte_ofdm_t ofdm_rx;
if (srslte_ofdm_tx_init(&ofdm_tx, SRSLTE_CP_NORM, slot_symbols[0], td_signal, cell.base.nof_prb)) {
fprintf(stderr, "Error creating iFFT object\n");
exit(-1);
}
// srslte_ofdm_set_normalize(&ofdm_tx, true);
if (srslte_ofdm_rx_init(&ofdm_rx, SRSLTE_CP_NORM, td_signal, slot_symbols[0], cell.base.nof_prb)) {
fprintf(stderr, "Error initializing FFT\n");
return -1;
}
// transfer into time doamin and back
srslte_ofdm_tx_sf(&ofdm_tx);
srslte_ofdm_rx_sf(&ofdm_rx);
srslte_ofdm_tx_free(&ofdm_tx);
srslte_ofdm_rx_free(&ofdm_rx);
#endif
if (srslte_npdcch_extract_llr(&npdcch, slot_symbols[0], ce, 0, 0)) {
fprintf(stderr, "Error extracting LLRs\n");
goto quit;
}
uint16_t crc_rem = 0;
if (srslte_npdcch_decode_msg(&npdcch, &dci_rx, &dci_location, dci_format, &crc_rem)) {
fprintf(stderr, "Error decoding DCI message\n");
goto quit;
}
if (crc_rem != RNTI) {
printf("Received invalid DCI CRC 0x%x\n", crc_rem);
goto quit;
}
// compare DCIs
if (memcmp(dci_tx.payload, dci_rx.payload, dci_tx.nof_bits)) {
printf("Error in DCI: Received data does not match\n");
goto quit;
}
if (dci_format == SRSLTE_DCI_FORMATN0) {
// UL grant
// ..
} else {
// DL grant
srslte_ra_nbiot_dl_dci_t dci_unpacked;
srslte_ra_nbiot_dl_grant_t grant;
if (srslte_nbiot_dci_msg_to_dl_grant(
&dci_rx, rnti, &dci_unpacked, &grant, tti / 10, tti % 10, 64 /* fixme: remove */, cell.mode)) {
fprintf(stderr, "Error unpacking DCI\n");
return SRSLTE_ERROR;
}
srslte_nbiot_dl_dci_fprint(stdout, &dci_unpacked);
}
ret = SRSLTE_SUCCESS;
quit:
srslte_npdcch_free(&npdcch);
for (int i = 0; i < SRSLTE_MAX_PORTS; i++) {
if (ce[i]) {
free(ce[i]);
}
if (slot_symbols[i]) {
free(slot_symbols[i]);
}
}
if (ret) {
printf("Error\n");
} else {
printf("Ok\n");
}
exit(ret);
}

@ -33,6 +33,7 @@
#include "srslte/phy/rf/rf.h"
#include "srslte/phy/rf/rf_utils.h"
#include "srslte/phy/ue/ue_cell_search_nbiot.h"
int rf_rssi_scan(srslte_rf_t* rf, float* freqs, float* rssi, int nof_bands, double fs, int nsamp)
{
@ -88,9 +89,9 @@ int srslte_rf_recv_wrapper_cs(void* h, cf_t* data[SRSLTE_MAX_PORTS], uint32_t ns
return srslte_rf_recv_with_time_multi(h, ptr, nsamples, 1, NULL, NULL);
}
double srslte_rf_set_rx_gain_th_wrapper(void* h, double f)
static SRSLTE_AGC_CALLBACK(srslte_rf_set_rx_gain_wrapper)
{
return srslte_rf_set_rx_gain_th((srslte_rf_t*)h, f);
srslte_rf_set_rx_gain((srslte_rf_t*)h, gain_db);
}
/** This function is simply a wrapper to the ue_cell_search module for rf devices
@ -264,3 +265,82 @@ int rf_search_and_decode_mib(srslte_rf_t* rf,
}
return ret;
}
int rf_cell_search_nbiot(srslte_rf_t* rf, cell_search_cfg_t* config, srslte_nbiot_cell_t* cell, float* cfo)
{
int ret = SRSLTE_ERROR;
srslte_ue_cellsearch_nbiot_t cs = {};
srslte_nbiot_ue_cellsearch_result_t found_cells[3] = {};
if (srslte_ue_cellsearch_nbiot_init(&cs, config->max_frames_pss, srslte_rf_recv_wrapper_cs, (void*)rf)) {
fprintf(stderr, "Error initiating UE cell detect\n");
return SRSLTE_ERROR;
}
if (config->nof_valid_pss_frames) {
srslte_ue_cellsearch_nbiot_set_nof_valid_frames(&cs, config->nof_valid_pss_frames);
}
if (config->init_agc > 0) {
srslte_ue_sync_nbiot_start_agc(&cs.ue_sync, srslte_rf_set_rx_gain_wrapper, config->init_agc);
}
DEBUG("Setting sampling frequency %.2f MHz for NPSS search\n", SRSLTE_CS_SAMP_FREQ / 1000000);
srslte_rf_set_rx_srate(rf, SRSLTE_CS_SAMP_FREQ);
INFO("Starting receiver...\n");
srslte_rf_start_rx_stream(rf, false);
ret = srslte_ue_cellsearch_nbiot_scan(&cs);
if (ret == SRSLTE_ERROR) {
fprintf(stderr, "Could not find any cell in this frequency\n");
goto clean_exit;
}
INFO("Stopping receiver...\n");
srslte_rf_stop_rx_stream(rf);
// Find a cell
INFO("Running N_id_ncell detection\n");
uint32_t max_peak_cell = 0;
ret = srslte_ue_cellsearch_nbiot_detect(&cs, found_cells);
if (ret != SRSLTE_SUCCESS) {
fprintf(stderr, "Could not detect cell ID\n");
goto clean_exit;
}
// Only show first cell
for (int i = 0; i < 1; i++) {
if (i == max_peak_cell) {
printf("*");
} else {
printf(" ");
}
printf("Found n_id_ncell: %3d DetectRatio=%2.0f%% PSR=%.2f, Power=%.1f dBm\n",
found_cells[i].n_id_ncell,
found_cells[i].mode * 100,
found_cells[i].psr,
20 * log10(found_cells[i].peak * 1000));
}
// Save result
if (cell) {
cell->n_id_ncell = found_cells[max_peak_cell].n_id_ncell;
}
// Save CFO
if (cfo) {
*cfo = found_cells[max_peak_cell].cfo;
}
// Save AGC value for MIB decoding
if (config->init_agc > 0) {
config->init_agc = srslte_agc_get_gain(&cs.ue_sync.agc);
}
clean_exit:
srslte_rf_stop_rx_stream(rf);
srslte_ue_cellsearch_nbiot_free(&cs);
return ret;
}

@ -130,11 +130,9 @@ int srslte_ue_sync_nbiot_start_agc(srslte_nbiot_ue_sync_t* q,
SRSLTE_AGC_CALLBACK(set_gain_callback),
float init_gain_value)
{
uint32_t nframes;
uint32_t nframes = 0;
if (q->nof_recv_sf == 1) {
nframes = 10;
} else {
nframes = 0;
}
int n = srslte_agc_init_uhd(&q->agc, SRSLTE_AGC_MODE_PEAK_AMPLITUDE, nframes, set_gain_callback, q->stream);
q->do_agc = n == 0 ? true : false;

Loading…
Cancel
Save