Implement SSB search based on correlation

master
Xavier Arteaga 4 years ago committed by Xavier Arteaga
parent 6fb81c7619
commit 648f0af437

@ -80,17 +80,23 @@ typedef struct SRSRAN_API {
float scs_hz; ///< Subcarrier spacing in Hz float scs_hz; ///< Subcarrier spacing in Hz
uint32_t max_symbol_sz; ///< Maximum symbol size given the minimum supported SCS and sampling rate uint32_t max_symbol_sz; ///< Maximum symbol size given the minimum supported SCS and sampling rate
uint32_t symbol_sz; ///< Current SSB symbol size (for the given base-band sampling rate) uint32_t symbol_sz; ///< Current SSB symbol size (for the given base-band sampling rate)
uint32_t corr_sz; ///< Correlation size
uint32_t corr_window; ///< Correlation window length
int32_t f_offset; ///< Current SSB integer frequency offset (multiple of SCS) int32_t f_offset; ///< Current SSB integer frequency offset (multiple of SCS)
uint32_t t_offset; ///< Current SSB integer time offset (number of samples) uint32_t t_offset; ///< Current SSB integer time offset (number of samples)
uint32_t cp_sz[SRSRAN_SSB_DURATION_NSYMB]; ///< CP length for each SSB symbol uint32_t cp_sz[SRSRAN_SSB_DURATION_NSYMB]; ///< CP length for each SSB symbol
/// Internal Objects /// Internal Objects
srsran_dft_plan_t ifft; ///< IFFT object for modulating the SSB srsran_dft_plan_t ifft; ///< IFFT object for modulating the SSB
srsran_dft_plan_t fft; ///< FFT object for demodulate the SSB. srsran_dft_plan_t fft; ///< FFT object for demodulate the SSB.
srsran_dft_plan_t fft_corr; ///< FFT for correlation
srsran_dft_plan_t ifft_corr; ///< IFFT for correlation
/// Frequency/Time domain temporal data /// Frequency/Time domain temporal data
cf_t* tmp_freq; cf_t* tmp_freq; ///< Temporal frequency domain buffer
cf_t* tmp_time; cf_t* tmp_time; ///< Temporal time domain buffer
cf_t* tmp_corr; ///< Temporal correlation frequency domain buffer
cf_t* pss_seq[SRSRAN_NOF_NID_2_NR]; ///< Possible frequency domain PSS for find
} srsran_ssb_t; } srsran_ssb_t;
/** /**
@ -148,8 +154,11 @@ srsran_ssb_add(srsran_ssb_t* q, uint32_t N_id, const srsran_pbch_msg_nr_t* msg,
* @param meas SSB-based CSI measurement of the most suitable cell identifier * @param meas SSB-based CSI measurement of the most suitable cell identifier
* @return SRSRAN_SUCCESS if the parameters are valid, SRSRAN_ERROR code otherwise * @return SRSRAN_SUCCESS if the parameters are valid, SRSRAN_ERROR code otherwise
*/ */
SRSRAN_API int SRSRAN_API int srsran_ssb_csi_search(srsran_ssb_t* q,
srsran_ssb_csi_search(srsran_ssb_t* q, const cf_t* in, uint32_t* N_id, srsran_csi_trs_measurements_t* meas); const cf_t* in,
uint32_t nof_samples,
uint32_t* N_id,
srsran_csi_trs_measurements_t* meas);
/** /**
* @brief Perform Channel State Information (CSI) measurement from the SSB * @brief Perform Channel State Information (CSI) measurement from the SSB

@ -27,6 +27,31 @@
*/ */
#define SSB_FREQ_OFFSET_MAX_ERROR_HZ 0.01 #define SSB_FREQ_OFFSET_MAX_ERROR_HZ 0.01
/**
* Correlation size in number of FFTs. It is desired to be power of 2
*/
#define SSB_CORR_SZ 4
static int ssb_init_corr(srsran_ssb_t* q)
{
// Initialise correlation only if it is enabled
if (!q->args.enable_correlate) {
return SRSRAN_SUCCESS;
}
// For each PSS sequence allocate
for (uint32_t N_id_2 = 0; N_id_2 < SRSRAN_NOF_NID_2_NR; N_id_2++) {
// Allocate sequences
q->pss_seq[N_id_2] = srsran_vec_cf_malloc(2 * q->max_symbol_sz);
if (q->pss_seq[N_id_2] == NULL) {
ERROR("Malloc");
return SRSRAN_ERROR;
}
}
return SRSRAN_SUCCESS;
}
int srsran_ssb_init(srsran_ssb_t* q, const srsran_ssb_args_t* args) int srsran_ssb_init(srsran_ssb_t* q, const srsran_ssb_args_t* args)
{ {
// Verify input parameters // Verify input parameters
@ -46,13 +71,19 @@ int srsran_ssb_init(srsran_ssb_t* q, const srsran_ssb_args_t* args)
q->max_symbol_sz = (uint32_t)round(q->args.max_srate_hz / q->scs_hz); q->max_symbol_sz = (uint32_t)round(q->args.max_srate_hz / q->scs_hz);
// Allocate temporal data // Allocate temporal data
q->tmp_time = srsran_vec_cf_malloc(q->max_symbol_sz); q->tmp_time = srsran_vec_cf_malloc(SSB_CORR_SZ * q->max_symbol_sz);
q->tmp_freq = srsran_vec_cf_malloc(q->max_symbol_sz); q->tmp_freq = srsran_vec_cf_malloc(SSB_CORR_SZ * q->max_symbol_sz);
if (q->tmp_time == NULL || q->tmp_time == NULL) { q->tmp_corr = srsran_vec_cf_malloc(SSB_CORR_SZ * q->max_symbol_sz);
if (q->tmp_time == NULL || q->tmp_freq == NULL || q->tmp_corr == NULL) {
ERROR("Malloc"); ERROR("Malloc");
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
// Allocate correlation buffers
if (ssb_init_corr(q) < SRSRAN_SUCCESS) {
return SRSRAN_ERROR;
}
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
@ -70,8 +101,21 @@ void srsran_ssb_free(srsran_ssb_t* q)
free(q->tmp_freq); free(q->tmp_freq);
} }
if (q->tmp_corr != NULL) {
free(q->tmp_corr);
}
// For each PSS sequence allocate
for (uint32_t N_id_2 = 0; N_id_2 < SRSRAN_NOF_NID_2_NR; N_id_2++) {
if (q->pss_seq[N_id_2] != NULL) {
free(q->pss_seq[N_id_2]);
}
}
srsran_dft_plan_free(&q->ifft); srsran_dft_plan_free(&q->ifft);
srsran_dft_plan_free(&q->fft); srsran_dft_plan_free(&q->fft);
srsran_dft_plan_free(&q->fft_corr);
srsran_dft_plan_free(&q->ifft_corr);
SRSRAN_MEM_ZERO(q, srsran_ssb_t, 1); SRSRAN_MEM_ZERO(q, srsran_ssb_t, 1);
} }
@ -225,6 +269,94 @@ static int ssb_first_symbol(const srsran_ssb_cfg_t* cfg, uint32_t ssb_i)
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
// Modulates a given symbol l and stores the time domain signal in q->tmp_time
static void ssb_modulate_symbol(srsran_ssb_t* q, cf_t ssb_grid[SRSRAN_SSB_NOF_RE], uint32_t l)
{
// Select symbol in grid
cf_t* ptr = &ssb_grid[l * SRSRAN_SSB_BW_SUBC];
// Map grid into frequency domain symbol
if (q->f_offset >= SRSRAN_SSB_BW_SUBC / 2) {
srsran_vec_cf_copy(&q->tmp_freq[q->f_offset - SRSRAN_SSB_BW_SUBC / 2], ptr, SRSRAN_SSB_BW_SUBC);
} else if (q->f_offset <= -SRSRAN_SSB_BW_SUBC / 2) {
srsran_vec_cf_copy(&q->tmp_freq[q->symbol_sz + q->f_offset - SRSRAN_SSB_BW_SUBC / 2], ptr, SRSRAN_SSB_BW_SUBC);
} else {
srsran_vec_cf_copy(
&q->tmp_freq[0], &ptr[SRSRAN_SSB_BW_SUBC / 2 - q->f_offset], SRSRAN_SSB_BW_SUBC / 2 + q->f_offset);
srsran_vec_cf_copy(&q->tmp_freq[q->symbol_sz - SRSRAN_SSB_BW_SUBC / 2 + q->f_offset],
&ptr[0],
SRSRAN_SSB_BW_SUBC / 2 - q->f_offset);
}
// Convert to time domain
srsran_dft_run_guru_c(&q->ifft);
// Normalise output
float norm = sqrtf((float)q->symbol_sz);
if (isnormal(norm)) {
srsran_vec_sc_prod_cfc(q->tmp_time, 1.0f / norm, q->tmp_time, q->symbol_sz);
}
}
static int ssb_setup_corr(srsran_ssb_t* q)
{
// Skip if disabled
if (!q->args.enable_correlate) {
return SRSRAN_SUCCESS;
}
// Skip if the symbol size is unchanged
uint32_t corr_sz = q->symbol_sz * SSB_CORR_SZ;
if (q->corr_sz == corr_sz) {
return SRSRAN_SUCCESS;
}
q->corr_sz = corr_sz;
q->corr_window = corr_sz - q->symbol_sz;
// Free correlation
srsran_dft_plan_free(&q->fft_corr);
srsran_dft_plan_free(&q->ifft_corr);
// Prepare correlation FFT
if (srsran_dft_plan_guru_c(&q->fft_corr, (int)corr_sz, SRSRAN_DFT_FORWARD, q->tmp_time, q->tmp_freq, 1, 1, 1, 1, 1) <
SRSRAN_SUCCESS) {
ERROR("Error planning correlation DFT");
return SRSRAN_ERROR;
}
if (srsran_dft_plan_guru_c(
&q->ifft_corr, (int)corr_sz, SRSRAN_DFT_BACKWARD, q->tmp_corr, q->tmp_time, 1, 1, 1, 1, 1) < SRSRAN_SUCCESS) {
ERROR("Error planning correlation DFT");
return SRSRAN_ERROR;
}
// Initialise frequency domain
srsran_vec_cf_zero(q->tmp_freq, q->symbol_sz);
// Zero the time domain signal last samples
srsran_vec_cf_zero(&q->tmp_time[q->symbol_sz], q->corr_window);
// Initialise correlation sequence
for (uint32_t N_id_2 = 0; N_id_2 < SRSRAN_NOF_NID_2_NR; N_id_2++) {
// Put the PSS in SSB grid
cf_t ssb_grid[SRSRAN_SSB_NOF_RE] = {};
if (srsran_pss_nr_put(ssb_grid, N_id_2, 1.0f) < SRSRAN_SUCCESS) {
ERROR("Error putting PDD N_id_2=%d", N_id_2);
return SRSRAN_ERROR;
}
// Modulate symbol with PSS
ssb_modulate_symbol(q, ssb_grid, SRSRAN_PSS_NR_SYMBOL_IDX);
// Convert to frequency domain
srsran_dft_run_guru_c(&q->fft_corr);
// Copy frequency domain sequence
srsran_vec_cf_copy(q->pss_seq[N_id_2], q->tmp_freq, q->corr_sz);
}
return SRSRAN_SUCCESS;
}
int srsran_ssb_set_cfg(srsran_ssb_t* q, const srsran_ssb_cfg_t* cfg) int srsran_ssb_set_cfg(srsran_ssb_t* q, const srsran_ssb_cfg_t* cfg)
{ {
// Verify input parameters // Verify input parameters
@ -238,10 +370,9 @@ int srsran_ssb_set_cfg(srsran_ssb_t* q, const srsran_ssb_cfg_t* cfg)
// Get first symbol // Get first symbol
int l_begin = ssb_first_symbol(cfg, 0); int l_begin = ssb_first_symbol(cfg, 0);
if (l_begin < SRSRAN_SUCCESS) { if (l_begin < SRSRAN_SUCCESS) {
ERROR("Calculating first SSB symbol"); // set it to 2 in case it is not selected
return SRSRAN_ERROR; l_begin = 2;
} }
l_begin = 2;
float t_offset_s = srsran_symbol_offset_s((uint32_t)l_begin, cfg->scs); float t_offset_s = srsran_symbol_offset_s((uint32_t)l_begin, cfg->scs);
if (isnan(t_offset_s) || isinf(t_offset_s) || t_offset_s < 0.0f) { if (isnan(t_offset_s) || isinf(t_offset_s) || t_offset_s < 0.0f) {
@ -286,7 +417,7 @@ int srsran_ssb_set_cfg(srsran_ssb_t* q, const srsran_ssb_cfg_t* cfg)
} }
// Replan iFFT // Replan iFFT
if ((q->args.enable_encode) && q->symbol_sz != symbol_sz) { if ((q->args.enable_encode || q->args.enable_correlate) && q->symbol_sz != symbol_sz) {
// free the current IFFT, it internally checks if the plan was created // free the current IFFT, it internally checks if the plan was created
srsran_dft_plan_free(&q->ifft); srsran_dft_plan_free(&q->ifft);
@ -315,6 +446,12 @@ int srsran_ssb_set_cfg(srsran_ssb_t* q, const srsran_ssb_cfg_t* cfg)
q->cfg = *cfg; q->cfg = *cfg;
q->symbol_sz = symbol_sz; q->symbol_sz = symbol_sz;
// Initialise correlation
if (ssb_setup_corr(q) < SRSRAN_SUCCESS) {
ERROR("Error initialising correlation");
return SRSRAN_ERROR;
}
if (!isnormal(q->cfg.beta_pss)) { if (!isnormal(q->cfg.beta_pss)) {
q->cfg.beta_pss = SRSRAN_SSB_DEFAULT_BETA; q->cfg.beta_pss = SRSRAN_SSB_DEFAULT_BETA;
} }
@ -394,30 +531,7 @@ int srsran_ssb_add(srsran_ssb_t* q, uint32_t N_id, const srsran_pbch_msg_nr_t* m
// Get CP length // Get CP length
uint32_t cp_len = q->cp_sz[l]; uint32_t cp_len = q->cp_sz[l];
// Select symbol in grid ssb_modulate_symbol(q, ssb_grid, l);
cf_t* ptr = &ssb_grid[l * SRSRAN_SSB_BW_SUBC];
// Map grid into frequency domain symbol
if (q->f_offset >= SRSRAN_SSB_BW_SUBC / 2) {
srsran_vec_cf_copy(&q->tmp_freq[q->f_offset - SRSRAN_SSB_BW_SUBC / 2], ptr, SRSRAN_SSB_BW_SUBC);
} else if (q->f_offset <= -SRSRAN_SSB_BW_SUBC / 2) {
srsran_vec_cf_copy(&q->tmp_freq[q->symbol_sz + q->f_offset - SRSRAN_SSB_BW_SUBC / 2], ptr, SRSRAN_SSB_BW_SUBC);
} else {
srsran_vec_cf_copy(
&q->tmp_freq[0], &ptr[SRSRAN_SSB_BW_SUBC / 2 - q->f_offset], SRSRAN_SSB_BW_SUBC / 2 + q->f_offset);
srsran_vec_cf_copy(&q->tmp_freq[q->symbol_sz - SRSRAN_SSB_BW_SUBC / 2 + q->f_offset],
&ptr[0],
SRSRAN_SSB_BW_SUBC / 2 - q->f_offset);
}
// Convert to time domain
srsran_dft_run_guru_c(&q->ifft);
// Normalise output
float norm = sqrtf((float)q->symbol_sz);
if (isnormal(norm)) {
srsran_vec_sc_prod_cfc(q->tmp_time, 1.0f / norm, q->tmp_time, q->symbol_sz);
}
// Add cyclic prefix to input; // Add cyclic prefix to input;
srsran_vec_sum_ccc(in_ptr, &q->tmp_time[q->symbol_sz - cp_len], out_ptr, cp_len); srsran_vec_sum_ccc(in_ptr, &q->tmp_time[q->symbol_sz - cp_len], out_ptr, cp_len);
@ -433,9 +547,9 @@ int srsran_ssb_add(srsran_ssb_t* q, uint32_t N_id, const srsran_pbch_msg_nr_t* m
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
static int ssb_demodulate(srsran_ssb_t* q, const cf_t* in, cf_t ssb_grid[SRSRAN_SSB_NOF_RE]) static int ssb_demodulate(srsran_ssb_t* q, const cf_t* in, uint32_t t_offset, cf_t ssb_grid[SRSRAN_SSB_NOF_RE])
{ {
const cf_t* in_ptr = &in[q->t_offset]; const cf_t* in_ptr = &in[t_offset];
for (uint32_t l = 0; l < SRSRAN_SSB_DURATION_NSYMB; l++) { for (uint32_t l = 0; l < SRSRAN_SSB_DURATION_NSYMB; l++) {
// Get CP length // Get CP length
uint32_t cp_len = q->cp_sz[l]; uint32_t cp_len = q->cp_sz[l];
@ -561,31 +675,95 @@ ssb_measure(srsran_ssb_t* q, const cf_t ssb_grid[SRSRAN_SSB_NOF_RE], uint32_t N_
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
int srsran_ssb_csi_search(srsran_ssb_t* q, const cf_t* in, uint32_t* N_id, srsran_csi_trs_measurements_t* meas)
static int
ssb_pss_search(srsran_ssb_t* q, const cf_t* in, uint32_t nof_samples, uint32_t* found_N_id_2, uint32_t* found_delay)
{
// verify it is initialised
if (q->corr_sz == 0) {
return SRSRAN_ERROR;
}
// Correlation best sequence
float best_corr = 0;
uint32_t best_delay = 0;
uint32_t best_N_id_2 = 0;
// Delay in correlation window
uint32_t t_offset = 0;
while ((t_offset + q->corr_sz) < nof_samples) {
// Prepare time domain signal
srsran_vec_cf_copy(q->tmp_time, &in[t_offset], q->corr_sz);
// Convert to frequency domain
srsran_dft_run_guru_c(&q->fft_corr);
// Try each N_id_2 sequence
for (uint32_t N_id_2 = 0; N_id_2 < SRSRAN_NOF_NID_2_NR; N_id_2++) {
// Actual correlation in frequency domain
srsran_vec_prod_conj_ccc(q->tmp_freq, q->pss_seq[N_id_2], q->tmp_corr, q->corr_sz);
// Convert to time domain
srsran_dft_run_guru_c(&q->ifft_corr);
// Find maximum
uint32_t this_max_idx = srsran_vec_max_abs_ci(q->tmp_time, q->corr_window);
float corr = SRSRAN_CSQABS(q->tmp_time[this_max_idx]);
// Update if the correlation is better than the current best
if (best_corr < corr) {
best_corr = corr;
best_delay = this_max_idx + t_offset;
best_N_id_2 = N_id_2;
}
}
// Advance time
t_offset += q->corr_window;
}
// Save findings
*found_delay = best_delay;
*found_N_id_2 = best_N_id_2;
return SRSRAN_SUCCESS;
}
int srsran_ssb_csi_search(srsran_ssb_t* q,
const cf_t* in,
uint32_t nof_samples,
uint32_t* N_id,
srsran_csi_trs_measurements_t* meas)
{ {
// Verify inputs // Verify inputs
if (q == NULL || in == NULL || N_id == NULL || meas == NULL || !isnormal(q->scs_hz)) { if (q == NULL || in == NULL || N_id == NULL || meas == NULL || !isnormal(q->scs_hz)) {
return SRSRAN_ERROR_INVALID_INPUTS; return SRSRAN_ERROR_INVALID_INPUTS;
} }
if (!q->args.enable_measure) { if (!q->args.enable_correlate) {
ERROR("SSB is not configured for search"); ERROR("SSB is not configured for search");
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
cf_t ssb_grid[SRSRAN_SSB_NOF_RE] = {}; // Search for PSS in time domain
uint32_t N_id_2 = 0;
// Demodulate uint32_t t_offset = 0;
if (ssb_demodulate(q, in, ssb_grid) < SRSRAN_SUCCESS) { if (ssb_pss_search(q, in, nof_samples, &N_id_2, &t_offset) < SRSRAN_SUCCESS) {
ERROR("Error demodulating"); ERROR("Error searching for N_id_2");
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
// Find best N_id_2 // Remove CP offset prior demodulation
uint32_t N_id_2 = 0; if (t_offset >= q->cp_sz[0]) {
float pss_corr = 0.0f; t_offset -= q->cp_sz[0];
if (srsran_pss_nr_find(ssb_grid, &pss_corr, &N_id_2) < SRSRAN_SUCCESS) { } else {
ERROR("Error searching for N_id_2"); t_offset = 0;
}
// Demodulate
cf_t ssb_grid[SRSRAN_SSB_NOF_RE] = {};
if (ssb_demodulate(q, in, t_offset, ssb_grid) < SRSRAN_SUCCESS) {
ERROR("Error demodulating");
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
@ -606,6 +784,9 @@ int srsran_ssb_csi_search(srsran_ssb_t* q, const cf_t* in, uint32_t* N_id, srsra
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }
// Add delay to measure
meas->delay_us += (float)(1e6 * t_offset / q->cfg.srate_hz);
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
} }
@ -624,7 +805,7 @@ int srsran_ssb_csi_measure(srsran_ssb_t* q, uint32_t N_id, const cf_t* in, srsra
cf_t ssb_grid[SRSRAN_SSB_NOF_RE] = {}; cf_t ssb_grid[SRSRAN_SSB_NOF_RE] = {};
// Demodulate // Demodulate
if (ssb_demodulate(q, in, ssb_grid) < SRSRAN_SUCCESS) { if (ssb_demodulate(q, in, q->t_offset, ssb_grid) < SRSRAN_SUCCESS) {
ERROR("Error demodulating"); ERROR("Error demodulating");
return SRSRAN_ERROR; return SRSRAN_ERROR;
} }

@ -124,19 +124,18 @@ static int test_case_1(srsran_ssb_t* ssb)
gettimeofday(&t[1], NULL); gettimeofday(&t[1], NULL);
uint32_t N_id_found = 0; uint32_t N_id_found = 0;
srsran_csi_trs_measurements_t meas_search = {}; srsran_csi_trs_measurements_t meas_search = {};
TESTASSERT(srsran_ssb_csi_search(ssb, buffer, &N_id_found, &meas_search) == SRSRAN_SUCCESS); TESTASSERT(srsran_ssb_csi_search(ssb, buffer, sf_len, &N_id_found, &meas_search) == SRSRAN_SUCCESS);
gettimeofday(&t[2], NULL); gettimeofday(&t[2], NULL);
get_time_interval(t); get_time_interval(t);
t_find_usec += t[0].tv_usec + t[0].tv_sec * 1000000UL; t_find_usec += t[0].tv_usec + t[0].tv_sec * 1000000UL;
// Print measurement // Print measurement
char str[512]; char str[512] = {};
srsran_csi_meas_info(&meas_search, str, sizeof(str)); srsran_csi_meas_info(&meas_search, str, sizeof(str));
INFO("test_case_1 - pci=%d %s", pci, str); INFO("test_case_1 - search pci=%d %s", pci, str);
// Assert find and measurements // Assert find
TESTASSERT(N_id_found == pci); TESTASSERT(N_id_found == pci);
TESTASSERT(assert_measure(&meas_search) == SRSRAN_SUCCESS);
// Measure // Measure
gettimeofday(&t[1], NULL); gettimeofday(&t[1], NULL);
@ -146,12 +145,16 @@ static int test_case_1(srsran_ssb_t* ssb)
get_time_interval(t); get_time_interval(t);
t_meas_usec += t[0].tv_usec + t[0].tv_sec * 1000000UL; t_meas_usec += t[0].tv_usec + t[0].tv_sec * 1000000UL;
srsran_csi_meas_info(&meas, str, sizeof(str));
INFO("test_case_1 - measure pci=%d %s", pci, str);
// Assert measurements // Assert measurements
TESTASSERT(assert_measure(&meas) == SRSRAN_SUCCESS); TESTASSERT(assert_measure(&meas) == SRSRAN_SUCCESS);
} }
INFO("test_case_1 - %.1f usec/search; %.1f usec/measurement", INFO("test_case_1 - %.1f usec/search; Max srate %.1f MSps; %.1f usec/measurement",
(double)t_find_usec / (double)SRSRAN_NOF_NID_NR, (double)t_find_usec / (double)SRSRAN_NOF_NID_NR,
(double)sf_len * (double)SRSRAN_NOF_NID_NR / (double)t_find_usec,
(double)t_meas_usec / (double)SRSRAN_NOF_NID_NR); (double)t_meas_usec / (double)SRSRAN_NOF_NID_NR);
return SRSRAN_SUCCESS; return SRSRAN_SUCCESS;
@ -171,6 +174,7 @@ int main(int argc, char** argv)
srsran_ssb_args_t ssb_args = {}; srsran_ssb_args_t ssb_args = {};
ssb_args.enable_encode = true; ssb_args.enable_encode = true;
ssb_args.enable_measure = true; ssb_args.enable_measure = true;
ssb_args.enable_correlate = true;
if (buffer == NULL) { if (buffer == NULL) {
ERROR("Malloc"); ERROR("Malloc");

Loading…
Cancel
Save