|
|
@ -49,47 +49,113 @@
|
|
|
|
const static lte_mod_t modulations[4] =
|
|
|
|
const static lte_mod_t modulations[4] =
|
|
|
|
{ LTE_BPSK, LTE_QPSK, LTE_QAM16, LTE_QAM64 };
|
|
|
|
{ LTE_BPSK, LTE_QPSK, LTE_QAM16, LTE_QAM64 };
|
|
|
|
|
|
|
|
|
|
|
|
int pusch_cp(pusch_t *q, ra_prb_t *prb_alloc, cf_t *input, cf_t *output, bool advance_input)
|
|
|
|
static int f_hop_sum(pusch_t *q, uint32_t i) {
|
|
|
|
|
|
|
|
uint32_t sum = 0;
|
|
|
|
|
|
|
|
for (uint32_t k=i*10+1;k<i*10+9;i++) {
|
|
|
|
|
|
|
|
sum += (q->seq_type2_fo.c[k]<<(k-(i*10+1)));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int f_hop(pusch_t *q, ra_ul_hopping_t *hopping, int i) {
|
|
|
|
|
|
|
|
if (i == -1) {
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
if (hopping->n_sb == 1) {
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
} else if (hopping->n_sb == 2) {
|
|
|
|
|
|
|
|
return (f_hop(q, hopping, i-1) + f_hop_sum(q, i))%2;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
return (f_hop(q, hopping, i-1) + f_hop_sum(q, i)%(hopping->n_sb-1)+1)%hopping->n_sb;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int f_m(pusch_t *q, ra_ul_hopping_t *hopping, uint32_t i) {
|
|
|
|
|
|
|
|
if (hopping->n_sb == 1) {
|
|
|
|
|
|
|
|
if (hopping->hop_mode == hop_mode_inter_sf) {
|
|
|
|
|
|
|
|
return hopping->current_tx_nb%2;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
return i%2;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
return q->seq_type2_fo.c[i*10];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int pusch_cp(pusch_t *q, harq_t *harq, cf_t *input, cf_t *output, bool advance_input)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
cf_t *in_ptr = input;
|
|
|
|
cf_t *in_ptr = input;
|
|
|
|
cf_t *out_ptr = output;
|
|
|
|
cf_t *out_ptr = output;
|
|
|
|
|
|
|
|
ra_ul_hopping_t *hopping = &harq->ul_hopping;
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t L_ref = 3;
|
|
|
|
uint32_t L_ref = 3;
|
|
|
|
if (CP_ISEXT(q->cell.cp)) {
|
|
|
|
if (CP_ISEXT(q->cell.cp)) {
|
|
|
|
L_ref = 2;
|
|
|
|
L_ref = 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INFO("PUSCH Freq hopping: %d\n", harq->ul_alloc.freq_hopping);
|
|
|
|
for (uint32_t slot=0;slot<2;slot++) {
|
|
|
|
for (uint32_t slot=0;slot<2;slot++) {
|
|
|
|
|
|
|
|
uint32_t n_prb_tilde = harq->ul_alloc.n_prb[slot];
|
|
|
|
|
|
|
|
if (harq->ul_alloc.freq_hopping == 1) {
|
|
|
|
|
|
|
|
if (hopping->hop_mode == hop_mode_inter_sf) {
|
|
|
|
|
|
|
|
n_prb_tilde = harq->ul_alloc.n_prb[hopping->current_tx_nb%2];
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
n_prb_tilde = harq->ul_alloc.n_prb[slot];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (harq->ul_alloc.freq_hopping == 2) {
|
|
|
|
|
|
|
|
/* Freq hopping type 2 as defined in 5.3.4 of 36.211 */
|
|
|
|
|
|
|
|
uint32_t n_vrb_tilde = harq->ul_alloc.n_prb[0];
|
|
|
|
|
|
|
|
if (hopping->n_sb > 1) {
|
|
|
|
|
|
|
|
n_vrb_tilde -= (hopping->hopping_offset-1)/2+1;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
int i=0;
|
|
|
|
|
|
|
|
if (hopping->hop_mode == hop_mode_inter_sf) {
|
|
|
|
|
|
|
|
i = harq->sf_idx;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
i = 2*harq->sf_idx+slot;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t n_rb_sb = q->cell.nof_prb;
|
|
|
|
|
|
|
|
if (hopping->n_sb > 1) {
|
|
|
|
|
|
|
|
n_rb_sb = (n_rb_sb-hopping->hopping_offset-hopping->hopping_offset%2)/hopping->n_sb;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
n_prb_tilde = (n_vrb_tilde+f_hop(q, hopping, i)*n_rb_sb+
|
|
|
|
|
|
|
|
(n_rb_sb-1)-2*(n_vrb_tilde%n_rb_sb)*f_m(q, hopping, i))%(n_rb_sb*hopping->n_sb);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
INFO("n_prb_tilde: %d, n_vrb_tilde: %d, n_rb_sb: %d, n_sb: %d\n", n_prb_tilde, n_vrb_tilde, n_rb_sb, hopping->n_sb);
|
|
|
|
|
|
|
|
if (hopping->n_sb > 1) {
|
|
|
|
|
|
|
|
n_prb_tilde += (hopping->hopping_offset-1)/2+1;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
INFO("Allocating PUSCH %d PRB to index %d at slot %d\n",harq->ul_alloc.L_prb, n_prb_tilde,slot);
|
|
|
|
for (uint32_t l=0;l<CP_NSYMB(q->cell.cp);l++) {
|
|
|
|
for (uint32_t l=0;l<CP_NSYMB(q->cell.cp);l++) {
|
|
|
|
if (l != L_ref) {
|
|
|
|
if (l != L_ref) {
|
|
|
|
for (uint32_t n=0;n<q->cell.nof_prb;n++) {
|
|
|
|
uint32_t idx = RE_IDX(q->cell.nof_prb, l+slot*CP_NSYMB(q->cell.cp),
|
|
|
|
if (prb_alloc->slot[slot].prb_idx[n]) {
|
|
|
|
n_prb_tilde*RE_X_RB);
|
|
|
|
uint32_t idx = RE_IDX(q->cell.nof_prb, l+slot*CP_NSYMB(q->cell.cp), n*RE_X_RB);
|
|
|
|
|
|
|
|
if (advance_input) {
|
|
|
|
if (advance_input) {
|
|
|
|
out_ptr = &output[idx];
|
|
|
|
out_ptr = &output[idx];
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
in_ptr = &input[idx];
|
|
|
|
in_ptr = &input[idx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
memcpy(out_ptr, in_ptr, RE_X_RB * sizeof(cf_t));
|
|
|
|
memcpy(out_ptr, in_ptr, harq->ul_alloc.L_prb * RE_X_RB * sizeof(cf_t));
|
|
|
|
if (advance_input) {
|
|
|
|
if (advance_input) {
|
|
|
|
in_ptr += RE_X_RB;
|
|
|
|
in_ptr += harq->ul_alloc.L_prb*RE_X_RB;
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
out_ptr += RE_X_RB;
|
|
|
|
out_ptr += harq->ul_alloc.L_prb*RE_X_RB;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return RE_X_RB*harq->ul_alloc.L_prb;
|
|
|
|
return RE_X_RB*prb_alloc->slot[0].nof_prb;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int pusch_put(pusch_t *q, ra_prb_t *prb_alloc, cf_t *input, cf_t *output) {
|
|
|
|
int pusch_put(pusch_t *q, harq_t *harq, cf_t *input, cf_t *output) {
|
|
|
|
return pusch_cp(q, prb_alloc, input, output, true);
|
|
|
|
return pusch_cp(q, harq, input, output, true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int pusch_get(pusch_t *q, ra_prb_t *prb_alloc, cf_t *input, cf_t *output) {
|
|
|
|
int pusch_get(pusch_t *q, harq_t *harq, cf_t *input, cf_t *output) {
|
|
|
|
return pusch_cp(q, prb_alloc, input, output, false);
|
|
|
|
return pusch_cp(q, harq, input, output, false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -117,6 +183,12 @@ int pusch_init(pusch_t *q, lte_cell_t cell) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Precompute sequence for type2 frequency hopping */
|
|
|
|
|
|
|
|
if (sequence_LTE_pr(&q->seq_type2_fo, 210, q->cell.id)) {
|
|
|
|
|
|
|
|
fprintf(stderr, "Error initiating type2 frequency hopping sequence\n");
|
|
|
|
|
|
|
|
goto clean;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
demod_soft_init(&q->demod, q->max_re);
|
|
|
|
demod_soft_init(&q->demod, q->max_re);
|
|
|
|
demod_soft_alg_set(&q->demod, APPROX);
|
|
|
|
demod_soft_alg_set(&q->demod, APPROX);
|
|
|
|
|
|
|
|
|
|
|
@ -239,14 +311,14 @@ int pusch_decode(pusch_t *q, harq_t *harq, cf_t *sf_symbols, cf_t *ce, float noi
|
|
|
|
harq->sf_idx, lte_mod_string(harq->mcs.mod), harq->mcs.tbs, harq->nof_re, harq->nof_bits, harq->rv);
|
|
|
|
harq->sf_idx, lte_mod_string(harq->mcs.mod), harq->mcs.tbs, harq->nof_re, harq->nof_bits, harq->rv);
|
|
|
|
|
|
|
|
|
|
|
|
/* extract symbols */
|
|
|
|
/* extract symbols */
|
|
|
|
n = pusch_get(q, &harq->prb_alloc, sf_symbols, q->pusch_d);
|
|
|
|
n = pusch_get(q, harq, sf_symbols, q->pusch_d);
|
|
|
|
if (n != harq->nof_re) {
|
|
|
|
if (n != harq->nof_re) {
|
|
|
|
fprintf(stderr, "Error expecting %d symbols but got %d\n", harq->nof_re, n);
|
|
|
|
fprintf(stderr, "Error expecting %d symbols but got %d\n", harq->nof_re, n);
|
|
|
|
return LIBLTE_ERROR;
|
|
|
|
return LIBLTE_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* extract channel estimates */
|
|
|
|
/* extract channel estimates */
|
|
|
|
n = pusch_get(q, &harq->prb_alloc, ce, q->ce);
|
|
|
|
n = pusch_get(q, harq, ce, q->ce);
|
|
|
|
if (n != harq->nof_re) {
|
|
|
|
if (n != harq->nof_re) {
|
|
|
|
fprintf(stderr, "Error expecting %d symbols but got %d\n", harq->nof_re, n);
|
|
|
|
fprintf(stderr, "Error expecting %d symbols but got %d\n", harq->nof_re, n);
|
|
|
|
return LIBLTE_ERROR;
|
|
|
|
return LIBLTE_ERROR;
|
|
|
@ -256,7 +328,7 @@ int pusch_decode(pusch_t *q, harq_t *harq, cf_t *sf_symbols, cf_t *ce, float noi
|
|
|
|
harq->nof_re, noise_estimate);
|
|
|
|
harq->nof_re, noise_estimate);
|
|
|
|
|
|
|
|
|
|
|
|
dft_predecoding(&q->dft_precoding, q->pusch_z, q->pusch_d,
|
|
|
|
dft_predecoding(&q->dft_precoding, q->pusch_z, q->pusch_d,
|
|
|
|
harq->prb_alloc.slot[0].nof_prb, harq->nof_symb);
|
|
|
|
harq->ul_alloc.L_prb, harq->nof_symb);
|
|
|
|
|
|
|
|
|
|
|
|
/* demodulate symbols
|
|
|
|
/* demodulate symbols
|
|
|
|
* The MAX-log-MAP algorithm used in turbo decoding is unsensitive to SNR estimation,
|
|
|
|
* The MAX-log-MAP algorithm used in turbo decoding is unsensitive to SNR estimation,
|
|
|
@ -322,10 +394,10 @@ int pusch_uci_encode(pusch_t *q, harq_t *harq, uint8_t *data, uci_data_t uci_dat
|
|
|
|
mod_modulate(&q->mod[harq->mcs.mod], (uint8_t*) q->pusch_q, q->pusch_d, harq->nof_bits);
|
|
|
|
mod_modulate(&q->mod[harq->mcs.mod], (uint8_t*) q->pusch_q, q->pusch_d, harq->nof_bits);
|
|
|
|
|
|
|
|
|
|
|
|
dft_precoding(&q->dft_precoding, q->pusch_d, q->pusch_z,
|
|
|
|
dft_precoding(&q->dft_precoding, q->pusch_d, q->pusch_z,
|
|
|
|
harq->prb_alloc.slot[0].nof_prb, harq->nof_symb);
|
|
|
|
harq->ul_alloc.L_prb, harq->nof_symb);
|
|
|
|
|
|
|
|
|
|
|
|
/* mapping to resource elements */
|
|
|
|
/* mapping to resource elements */
|
|
|
|
pusch_put(q, &harq->prb_alloc, q->pusch_z, sf_symbols);
|
|
|
|
pusch_put(q, harq, q->pusch_z, sf_symbols);
|
|
|
|
|
|
|
|
|
|
|
|
ret = LIBLTE_SUCCESS;
|
|
|
|
ret = LIBLTE_SUCCESS;
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|