|
|
@ -25,7 +25,7 @@
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include <complex.h>
|
|
|
|
#include <complex.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <string.h>
|
|
|
@ -35,47 +35,144 @@
|
|
|
|
#include "liblte/phy/mimo/precoding.h"
|
|
|
|
#include "liblte/phy/mimo/precoding.h"
|
|
|
|
#include "liblte/phy/utils/vector.h"
|
|
|
|
#include "liblte/phy/utils/vector.h"
|
|
|
|
|
|
|
|
|
|
|
|
int precoding_single(cf_t *x, cf_t *y, int nof_symbols) {
|
|
|
|
|
|
|
|
memcpy(y, x, nof_symbols * sizeof(cf_t));
|
|
|
|
/************************************************
|
|
|
|
|
|
|
|
*
|
|
|
|
|
|
|
|
* RECEIVER SIDE FUNCTIONS
|
|
|
|
|
|
|
|
*
|
|
|
|
|
|
|
|
**************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int precoding_init(precoding_t *q, uint32_t max_frame_len) {
|
|
|
|
|
|
|
|
if (q) {
|
|
|
|
|
|
|
|
bzero(q, sizeof(precoding_t));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q->h_mod = vec_malloc(sizeof(cf_t) * max_frame_len);
|
|
|
|
|
|
|
|
if (!q->h_mod) {
|
|
|
|
|
|
|
|
perror("malloc");
|
|
|
|
|
|
|
|
goto clean_exit;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
q->y_mod = vec_malloc(sizeof(float) * max_frame_len);
|
|
|
|
|
|
|
|
if (!q->y_mod) {
|
|
|
|
|
|
|
|
perror("malloc");
|
|
|
|
|
|
|
|
goto clean_exit;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
q->z_real = vec_malloc(sizeof(float) * max_frame_len);
|
|
|
|
|
|
|
|
if (!q->z_real) {
|
|
|
|
|
|
|
|
perror("malloc");
|
|
|
|
|
|
|
|
goto clean_exit;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
q->z_imag = vec_malloc(sizeof(float) * max_frame_len);
|
|
|
|
|
|
|
|
if (!q->z_imag) {
|
|
|
|
|
|
|
|
perror("malloc");
|
|
|
|
|
|
|
|
goto clean_exit;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
q->max_frame_len = max_frame_len;
|
|
|
|
|
|
|
|
return LIBLTE_SUCCESS;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
return LIBLTE_ERROR_INVALID_INPUTS;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
clean_exit:
|
|
|
|
|
|
|
|
precoding_free(q);
|
|
|
|
|
|
|
|
return LIBLTE_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void precoding_free(precoding_t *q) {
|
|
|
|
|
|
|
|
if (q->h_mod) {
|
|
|
|
|
|
|
|
free(q->h_mod);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (q->y_mod) {
|
|
|
|
|
|
|
|
free(q->y_mod);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (q->z_real) {
|
|
|
|
|
|
|
|
free(q->z_real);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (q->z_imag) {
|
|
|
|
|
|
|
|
free(q->z_imag);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
bzero(q, sizeof(precoding_t));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ZF SISO equalizer: x=y/h */
|
|
|
|
|
|
|
|
int predecoding_single_zf(precoding_t *q, cf_t *y, cf_t *h, cf_t *x, int nof_symbols) {
|
|
|
|
|
|
|
|
if (nof_symbols <= q->max_frame_len) {
|
|
|
|
|
|
|
|
vec_div_ccc(y, h, q->y_mod, x, q->z_real, q->z_imag, nof_symbols);
|
|
|
|
return nof_symbols;
|
|
|
|
return nof_symbols;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
return LIBLTE_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int precoding_diversity(cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_ports,
|
|
|
|
|
|
|
|
int nof_symbols) {
|
|
|
|
/* MMSE SISO equalizer x=y*h'/(h*h'+no) */
|
|
|
|
|
|
|
|
int predecoding_single_mmse(precoding_t *q, cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) {
|
|
|
|
|
|
|
|
if (nof_symbols <= q->max_frame_len) {
|
|
|
|
|
|
|
|
// h*h'
|
|
|
|
|
|
|
|
vec_prod_conj_ccc(h, h, q->h_mod, nof_symbols);
|
|
|
|
|
|
|
|
// real(h*h')
|
|
|
|
|
|
|
|
vec_deinterleave_real_cf(q->h_mod, q->y_mod, nof_symbols);
|
|
|
|
|
|
|
|
// (h*h' + n0)
|
|
|
|
|
|
|
|
vec_sc_add_fff(q->y_mod, noise_estimate, q->y_mod, nof_symbols);
|
|
|
|
|
|
|
|
// y*h'
|
|
|
|
|
|
|
|
vec_prod_conj_ccc(y, h, x, nof_symbols);
|
|
|
|
|
|
|
|
// decompose real/imag parts
|
|
|
|
|
|
|
|
vec_deinterleave_cf(x, q->z_real, q->z_imag, nof_symbols);
|
|
|
|
|
|
|
|
// real and imag division
|
|
|
|
|
|
|
|
vec_div_fff(q->z_real, q->y_mod, q->z_real, nof_symbols);
|
|
|
|
|
|
|
|
vec_div_fff(q->z_imag, q->y_mod, q->z_imag, nof_symbols);
|
|
|
|
|
|
|
|
// interleave again
|
|
|
|
|
|
|
|
vec_interleave_cf(q->z_real, q->z_imag, x, nof_symbols);
|
|
|
|
|
|
|
|
return nof_symbols;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
return LIBLTE_ERROR;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ZF STBC equalizer */
|
|
|
|
|
|
|
|
int predecoding_diversity_zf(precoding_t *q, cf_t *y, cf_t *h[MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
|
|
|
|
|
|
int nof_ports, int nof_symbols) {
|
|
|
|
int i;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
|
|
|
|
|
|
|
|
float hh, hh02, hh13;
|
|
|
|
if (nof_ports == 2) {
|
|
|
|
if (nof_ports == 2) {
|
|
|
|
/* FIXME: Use VOLK here */
|
|
|
|
/* TODO: Use VOLK here */
|
|
|
|
for (i = 0; i < nof_symbols; i++) {
|
|
|
|
for (i = 0; i < nof_symbols / 2; i++) {
|
|
|
|
y[0][2 * i] = x[0][i] / sqrtf(2);
|
|
|
|
h0 = h[0][2 * i];
|
|
|
|
y[1][2 * i] = -conjf(x[1][i]) / sqrtf(2);
|
|
|
|
h1 = h[1][2 * i];
|
|
|
|
y[0][2 * i + 1] = x[1][i] / sqrtf(2);
|
|
|
|
hh = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
|
|
y[1][2 * i + 1] = conjf(x[0][i]) / sqrtf(2);
|
|
|
|
+ crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1);
|
|
|
|
|
|
|
|
r0 = y[2 * i];
|
|
|
|
|
|
|
|
r1 = y[2 * i + 1];
|
|
|
|
|
|
|
|
if (hh == 0) {
|
|
|
|
|
|
|
|
hh = 1e-2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 2 * i;
|
|
|
|
x[0][i] = (conjf(h0) * r0 + h1 * conjf(r1)) / hh * sqrt(2);
|
|
|
|
|
|
|
|
x[1][i] = (-h1 * conj(r0) + conj(h0) * r1) / hh * sqrt(2);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return i;
|
|
|
|
} else if (nof_ports == 4) {
|
|
|
|
} else if (nof_ports == 4) {
|
|
|
|
//int m_ap = (nof_symbols%4)?(nof_symbols*4-2):nof_symbols*4;
|
|
|
|
|
|
|
|
int m_ap = 4 * nof_symbols;
|
|
|
|
|
|
|
|
for (i = 0; i < m_ap / 4; i++) {
|
|
|
|
|
|
|
|
y[0][4 * i] = x[0][i] / sqrtf(2);
|
|
|
|
|
|
|
|
y[1][4 * i] = 0;
|
|
|
|
|
|
|
|
y[2][4 * i] = -conjf(x[1][i]) / sqrtf(2);
|
|
|
|
|
|
|
|
y[3][4 * i] = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y[0][4 * i + 1] = x[1][i] / sqrtf(2);
|
|
|
|
int m_ap = (nof_symbols % 4) ? ((nof_symbols - 2) / 4) : nof_symbols / 4;
|
|
|
|
y[1][4 * i + 1] = 0;
|
|
|
|
for (i = 0; i < m_ap; i++) {
|
|
|
|
y[2][4 * i + 1] = conjf(x[0][i]) / sqrtf(2);
|
|
|
|
h0 = h[0][4 * i];
|
|
|
|
y[3][4 * i + 1] = 0;
|
|
|
|
h1 = h[1][4 * i + 2];
|
|
|
|
|
|
|
|
h2 = h[2][4 * i];
|
|
|
|
|
|
|
|
h3 = h[3][4 * i + 2];
|
|
|
|
|
|
|
|
hh02 = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
|
|
|
|
|
|
+ crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2);
|
|
|
|
|
|
|
|
hh13 = crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1)
|
|
|
|
|
|
|
|
+ crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3);
|
|
|
|
|
|
|
|
r0 = y[4 * i];
|
|
|
|
|
|
|
|
r1 = y[4 * i + 1];
|
|
|
|
|
|
|
|
r2 = y[4 * i + 2];
|
|
|
|
|
|
|
|
r3 = y[4 * i + 3];
|
|
|
|
|
|
|
|
|
|
|
|
y[0][4 * i + 2] = 0;
|
|
|
|
x[0][i] = (conjf(h0) * r0 + h2 * conjf(r1)) / hh02 * sqrt(2);
|
|
|
|
y[1][4 * i + 2] = x[2][i] / sqrtf(2);
|
|
|
|
x[1][i] = (-h2 * conjf(r0) + conjf(h0) * r1) / hh02 * sqrt(2);
|
|
|
|
y[2][4 * i + 2] = 0;
|
|
|
|
x[2][i] = (conjf(h1) * r2 + h3 * conjf(r3)) / hh13 * sqrt(2);
|
|
|
|
y[3][4 * i + 2] = -conjf(x[3][i]) / sqrtf(2);
|
|
|
|
x[3][i] = (-h3 * conjf(r2) + conjf(h1) * r3) / hh13 * sqrt(2);
|
|
|
|
|
|
|
|
|
|
|
|
y[0][4 * i + 3] = 0;
|
|
|
|
|
|
|
|
y[1][4 * i + 3] = x[3][i] / sqrtf(2);
|
|
|
|
|
|
|
|
y[2][4 * i + 3] = 0;
|
|
|
|
|
|
|
|
y[3][4 * i + 3] = conjf(x[2][i]) / sqrtf(2);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 4 * i;
|
|
|
|
return i;
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
|
|
return -1;
|
|
|
|
return -1;
|
|
|
@ -83,8 +180,8 @@ int precoding_diversity(cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_ports,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
|
|
int precoding_type(cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_layers,
|
|
|
|
int predecoding_type(precoding_t *q, cf_t *y, cf_t *h[MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
|
|
int nof_ports, int nof_symbols, lte_mimo_type_t type) {
|
|
|
|
int nof_ports, int nof_layers, int nof_symbols, lte_mimo_type_t type) {
|
|
|
|
|
|
|
|
|
|
|
|
if (nof_ports > MAX_PORTS) {
|
|
|
|
if (nof_ports > MAX_PORTS) {
|
|
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", MAX_PORTS,
|
|
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", MAX_PORTS,
|
|
|
@ -100,7 +197,7 @@ int precoding_type(cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_layers,
|
|
|
|
switch (type) {
|
|
|
|
switch (type) {
|
|
|
|
case SINGLE_ANTENNA:
|
|
|
|
case SINGLE_ANTENNA:
|
|
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
|
|
return precoding_single(x[0], y[0], nof_symbols);
|
|
|
|
return predecoding_single_zf(q, y, h[0], x[0], nof_symbols);
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
fprintf(stderr,
|
|
|
|
fprintf(stderr,
|
|
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
|
@ -109,12 +206,13 @@ int precoding_type(cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_layers,
|
|
|
|
break;
|
|
|
|
break;
|
|
|
|
case TX_DIVERSITY:
|
|
|
|
case TX_DIVERSITY:
|
|
|
|
if (nof_ports == nof_layers) {
|
|
|
|
if (nof_ports == nof_layers) {
|
|
|
|
return precoding_diversity(x, y, nof_ports, nof_symbols);
|
|
|
|
return predecoding_diversity_zf(q, y, h, x, nof_ports, nof_symbols);
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
fprintf(stderr,
|
|
|
|
fprintf(stderr,
|
|
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
|
|
return -1;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
case SPATIAL_MULTIPLEX:
|
|
|
|
case SPATIAL_MULTIPLEX:
|
|
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
|
|
return -1;
|
|
|
|
return -1;
|
|
|
@ -123,65 +221,57 @@ int precoding_type(cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_layers,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float y_mod[110*12*14];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* ZF detector */
|
|
|
|
|
|
|
|
int predecoding_single_zf(cf_t *y, cf_t *ce, cf_t *x, int nof_symbols) {
|
|
|
|
|
|
|
|
for (int i=0;i<nof_symbols;i++) {
|
|
|
|
|
|
|
|
if (ce[i] == 0) {
|
|
|
|
/************************************************
|
|
|
|
ce[i] = 0.01;
|
|
|
|
*
|
|
|
|
}
|
|
|
|
* TRANSMITTER SIDE FUNCTIONS
|
|
|
|
}
|
|
|
|
*
|
|
|
|
vec_div_ccc(y, ce, y_mod, x, nof_symbols);
|
|
|
|
**************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int precoding_single(precoding_t *q, cf_t *x, cf_t *y, int nof_symbols) {
|
|
|
|
|
|
|
|
memcpy(y, x, nof_symbols * sizeof(cf_t));
|
|
|
|
return nof_symbols;
|
|
|
|
return nof_symbols;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int precoding_diversity(precoding_t *q, cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_ports,
|
|
|
|
/* ZF detector */
|
|
|
|
int nof_symbols) {
|
|
|
|
int predecoding_diversity_zf(cf_t *y, cf_t *ce[MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
|
|
|
|
|
|
int nof_ports, int nof_symbols) {
|
|
|
|
|
|
|
|
int i;
|
|
|
|
int i;
|
|
|
|
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
|
|
|
|
|
|
|
|
float hh, hh02, hh13;
|
|
|
|
|
|
|
|
if (nof_ports == 2) {
|
|
|
|
if (nof_ports == 2) {
|
|
|
|
/* TODO: Use VOLK here */
|
|
|
|
/* FIXME: Use VOLK here */
|
|
|
|
for (i = 0; i < nof_symbols / 2; i++) {
|
|
|
|
for (i = 0; i < nof_symbols; i++) {
|
|
|
|
h0 = ce[0][2 * i];
|
|
|
|
y[0][2 * i] = x[0][i] / sqrtf(2);
|
|
|
|
h1 = ce[1][2 * i];
|
|
|
|
y[1][2 * i] = -conjf(x[1][i]) / sqrtf(2);
|
|
|
|
hh = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
|
|
y[0][2 * i + 1] = x[1][i] / sqrtf(2);
|
|
|
|
+ crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1);
|
|
|
|
y[1][2 * i + 1] = conjf(x[0][i]) / sqrtf(2);
|
|
|
|
r0 = y[2 * i];
|
|
|
|
|
|
|
|
r1 = y[2 * i + 1];
|
|
|
|
|
|
|
|
if (hh == 0) {
|
|
|
|
|
|
|
|
hh = 1e-2;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
x[0][i] = (conjf(h0) * r0 + h1 * conjf(r1)) / hh * sqrt(2);
|
|
|
|
|
|
|
|
x[1][i] = (-h1 * conj(r0) + conj(h0) * r1) / hh * sqrt(2);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
return 2 * i;
|
|
|
|
} else if (nof_ports == 4) {
|
|
|
|
} else if (nof_ports == 4) {
|
|
|
|
|
|
|
|
//int m_ap = (nof_symbols%4)?(nof_symbols*4-2):nof_symbols*4;
|
|
|
|
|
|
|
|
int m_ap = 4 * nof_symbols;
|
|
|
|
|
|
|
|
for (i = 0; i < m_ap / 4; i++) {
|
|
|
|
|
|
|
|
y[0][4 * i] = x[0][i] / sqrtf(2);
|
|
|
|
|
|
|
|
y[1][4 * i] = 0;
|
|
|
|
|
|
|
|
y[2][4 * i] = -conjf(x[1][i]) / sqrtf(2);
|
|
|
|
|
|
|
|
y[3][4 * i] = 0;
|
|
|
|
|
|
|
|
|
|
|
|
int m_ap = (nof_symbols % 4) ? ((nof_symbols - 2) / 4) : nof_symbols / 4;
|
|
|
|
y[0][4 * i + 1] = x[1][i] / sqrtf(2);
|
|
|
|
for (i = 0; i < m_ap; i++) {
|
|
|
|
y[1][4 * i + 1] = 0;
|
|
|
|
h0 = ce[0][4 * i];
|
|
|
|
y[2][4 * i + 1] = conjf(x[0][i]) / sqrtf(2);
|
|
|
|
h1 = ce[1][4 * i + 2];
|
|
|
|
y[3][4 * i + 1] = 0;
|
|
|
|
h2 = ce[2][4 * i];
|
|
|
|
|
|
|
|
h3 = ce[3][4 * i + 2];
|
|
|
|
|
|
|
|
hh02 = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0)
|
|
|
|
|
|
|
|
+ crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2);
|
|
|
|
|
|
|
|
hh13 = crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1)
|
|
|
|
|
|
|
|
+ crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3);
|
|
|
|
|
|
|
|
r0 = y[4 * i];
|
|
|
|
|
|
|
|
r1 = y[4 * i + 1];
|
|
|
|
|
|
|
|
r2 = y[4 * i + 2];
|
|
|
|
|
|
|
|
r3 = y[4 * i + 3];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x[0][i] = (conjf(h0) * r0 + h2 * conjf(r1)) / hh02 * sqrt(2);
|
|
|
|
y[0][4 * i + 2] = 0;
|
|
|
|
x[1][i] = (-h2 * conjf(r0) + conjf(h0) * r1) / hh02 * sqrt(2);
|
|
|
|
y[1][4 * i + 2] = x[2][i] / sqrtf(2);
|
|
|
|
x[2][i] = (conjf(h1) * r2 + h3 * conjf(r3)) / hh13 * sqrt(2);
|
|
|
|
y[2][4 * i + 2] = 0;
|
|
|
|
x[3][i] = (-h3 * conjf(r2) + conjf(h1) * r3) / hh13 * sqrt(2);
|
|
|
|
y[3][4 * i + 2] = -conjf(x[3][i]) / sqrtf(2);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y[0][4 * i + 3] = 0;
|
|
|
|
|
|
|
|
y[1][4 * i + 3] = x[3][i] / sqrtf(2);
|
|
|
|
|
|
|
|
y[2][4 * i + 3] = 0;
|
|
|
|
|
|
|
|
y[3][4 * i + 3] = conjf(x[2][i]) / sqrtf(2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
return 4 * i;
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
|
|
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports);
|
|
|
|
return -1;
|
|
|
|
return -1;
|
|
|
@ -189,8 +279,8 @@ int predecoding_diversity_zf(cf_t *y, cf_t *ce[MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
|
|
/* 36.211 v10.3.0 Section 6.3.4 */
|
|
|
|
int predecoding_type(cf_t *y, cf_t *ce[MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
|
|
int precoding_type(precoding_t *q, cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_layers,
|
|
|
|
int nof_ports, int nof_layers, int nof_symbols, lte_mimo_type_t type) {
|
|
|
|
int nof_ports, int nof_symbols, lte_mimo_type_t type) {
|
|
|
|
|
|
|
|
|
|
|
|
if (nof_ports > MAX_PORTS) {
|
|
|
|
if (nof_ports > MAX_PORTS) {
|
|
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", MAX_PORTS,
|
|
|
|
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", MAX_PORTS,
|
|
|
@ -206,7 +296,7 @@ int predecoding_type(cf_t *y, cf_t *ce[MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
|
|
switch (type) {
|
|
|
|
switch (type) {
|
|
|
|
case SINGLE_ANTENNA:
|
|
|
|
case SINGLE_ANTENNA:
|
|
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
|
|
if (nof_ports == 1 && nof_layers == 1) {
|
|
|
|
return predecoding_single_zf(y, ce[0], x[0], nof_symbols);
|
|
|
|
return precoding_single(q, x[0], y[0], nof_symbols);
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
fprintf(stderr,
|
|
|
|
fprintf(stderr,
|
|
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
|
|
"Number of ports and layers must be 1 for transmission on single antenna ports\n");
|
|
|
@ -215,13 +305,12 @@ int predecoding_type(cf_t *y, cf_t *ce[MAX_PORTS], cf_t *x[MAX_LAYERS],
|
|
|
|
break;
|
|
|
|
break;
|
|
|
|
case TX_DIVERSITY:
|
|
|
|
case TX_DIVERSITY:
|
|
|
|
if (nof_ports == nof_layers) {
|
|
|
|
if (nof_ports == nof_layers) {
|
|
|
|
return predecoding_diversity_zf(y, ce, x, nof_ports, nof_symbols);
|
|
|
|
return precoding_diversity(q, x, y, nof_ports, nof_symbols);
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
fprintf(stderr,
|
|
|
|
fprintf(stderr,
|
|
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
|
|
"Error number of layers must equal number of ports in transmit diversity\n");
|
|
|
|
return -1;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SPATIAL_MULTIPLEX:
|
|
|
|
case SPATIAL_MULTIPLEX:
|
|
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
|
|
fprintf(stderr, "Spatial multiplexing not supported\n");
|
|
|
|
return -1;
|
|
|
|
return -1;
|
|
|
|