Initial Wiener channel estimator

master
Xavier Arteaga 5 years ago committed by Xavier Arteaga
parent fe141dc002
commit 3f6eca1aea

@ -22,52 +22,52 @@
#ifndef SRSLTE_SRSLTE_WIENER_DL_H_
#define SRSLTE_SRSLTE_WIENER_DL_H_
#include <srslte/srslte.h>
#include <srslte/phy/utils/random.h>
#include <srslte/srslte.h>
// Constant static parameters
#define SRSLTE_WIENER_DL_HLS_FIFO_SIZE (8U)
#define SRSLTE_WIENER_DL_MIN_PRB (4U)
#define SRSLTE_WIENER_DL_MIN_RE (SRSLTE_WIENER_DL_MIN_PRB * SRSLTE_NRE)
#define SRSLTE_WIENER_DL_MIN_REF (SRSLTE_WIENER_DL_MIN_PRB * 2U)
#define SRSLTE_WIENER_DL_TFIFO_SIZE (2U)
#define SRSLTE_WIENER_DL_XFIFO_SIZE (400U)
#define SRSLTE_WIENER_DL_MIN_PRB (4U)
#define SRSLTE_WIENER_DL_MIN_RE (SRSLTE_WIENER_DL_MIN_PRB * SRSLTE_NRE)
#define SRSLTE_WIENER_DL_MIN_REF (SRSLTE_WIENER_DL_MIN_PRB * 2U)
#define SRSLTE_WIENER_DL_TFIFO_SIZE (2U)
#define SRSLTE_WIENER_DL_XFIFO_SIZE (400U)
#define SRSLTE_WIENER_DL_TIMEFIFO_SIZE (32U)
#define SRSLTE_WIENER_DL_CXFIFO_SIZE (400U)
#define SRSLTE_WIENER_DL_CXFIFO_SIZE (400U)
typedef struct {
cf_t *hls_fifo_1[SRSLTE_WIENER_DL_HLS_FIFO_SIZE]; // Least square channel estimates on odd pilots
cf_t *hls_fifo_2[SRSLTE_WIENER_DL_HLS_FIFO_SIZE]; // Least square channel estimates on even pilots
cf_t *tfifo[SRSLTE_WIENER_DL_TFIFO_SIZE]; // memory for time domain channel linear interpolation
cf_t *xfifo; // fifo for averaging the frequency correlation vectors
cf_t *cV; // frequency correlation vector among all subcarriers
float deltan; // step within time domain linear interpolation
uint32_t nfifosamps; // number of samples inside the fifo for averaging the correlation vectors
float invtpilotoff; // step for time domain linear interpolation
cf_t *timefifo; // fifo for storing single frequency channel time domain evolution
cf_t *cxfifo[SRSLTE_WIENER_DL_CXFIFO_SIZE]; // fifo for averaging time domain channel correlation vector
cf_t* hls_fifo_1[SRSLTE_WIENER_DL_HLS_FIFO_SIZE]; // Least square channel estimates on odd pilots
cf_t* hls_fifo_2[SRSLTE_WIENER_DL_HLS_FIFO_SIZE]; // Least square channel estimates on even pilots
cf_t* tfifo[SRSLTE_WIENER_DL_TFIFO_SIZE]; // memory for time domain channel linear interpolation
cf_t* xfifo; // fifo for averaging the frequency correlation vectors
cf_t* cV; // frequency correlation vector among all subcarriers
float deltan; // step within time domain linear interpolation
uint32_t nfifosamps; // number of samples inside the fifo for averaging the correlation vectors
float invtpilotoff; // step for time domain linear interpolation
cf_t* timefifo; // fifo for storing single frequency channel time domain evolution
cf_t* cxfifo[SRSLTE_WIENER_DL_CXFIFO_SIZE]; // fifo for averaging time domain channel correlation vector
uint32_t sumlen; // length of dynamic average window for time domain channel correlation vector
uint32_t skip;// pilot OFDM symbols to skip when training Wiener matrices (skip = 1,..,4)
uint32_t cnt; // counter for skipping pilot OFDM symbols
uint32_t skip; // pilot OFDM symbols to skip when training Wiener matrices (skip = 1,..,4)
uint32_t cnt; // counter for skipping pilot OFDM symbols
} srslte_wiener_dl_state_t;
typedef struct {
// Maximum allocated number of...
uint32_t max_prb; // Resource Blocks
uint32_t max_ref; // Reference signals
uint32_t max_re; // Resource Elements (equivalent to sub-carriers)
uint32_t max_tx_ports; // Tx Ports
uint32_t max_rx_ant; // Rx Antennas
uint32_t max_prb; // Resource Blocks
uint32_t max_ref; // Reference signals
uint32_t max_re; // Resource Elements (equivalent to sub-carriers)
uint32_t max_tx_ports; // Tx Ports
uint32_t max_rx_ant; // Rx Antennas
// Configured number of...
uint32_t nof_prb; // Resource Blocks
uint32_t nof_ref; // Reference signals
uint32_t nof_re; // Resource Elements (equivalent to sub-carriers)
uint32_t nof_tx_ports; // Tx Ports
uint32_t nof_rx_ant; // Rx Antennas
uint32_t nof_prb; // Resource Blocks
uint32_t nof_ref; // Reference signals
uint32_t nof_re; // Resource Elements (equivalent to sub-carriers)
uint32_t nof_tx_ports; // Tx Ports
uint32_t nof_rx_ant; // Rx Antennas
// One state per possible channel (allocated in init)
srslte_wiener_dl_state_t *state[SRSLTE_MAX_PORTS][SRSLTE_MAX_PORTS];
srslte_wiener_dl_state_t* state[SRSLTE_MAX_PORTS][SRSLTE_MAX_PORTS];
// Wiener matrices
cf_t wm1[SRSLTE_WIENER_DL_MIN_RE][SRSLTE_WIENER_DL_MIN_REF];
@ -76,30 +76,28 @@ typedef struct {
cf_t hlsv_sum[SRSLTE_WIENER_DL_MIN_RE];
// Temporal vector
cf_t *tmp;
cf_t* tmp;
// Random generator
srslte_random_t random;
} srslte_wiener_dl_t;
SRSLTE_API int srslte_wiener_dl_init(srslte_wiener_dl_t *q,
uint32_t max_prb,
uint32_t max_tx_ports,
uint32_t max_rx_ant);
SRSLTE_API int
srslte_wiener_dl_init(srslte_wiener_dl_t* q, uint32_t max_prb, uint32_t max_tx_ports, uint32_t max_rx_ant);
SRSLTE_API int srslte_wiener_dl_set_cell(srslte_wiener_dl_t *q, const srslte_cell_t *cell);
SRSLTE_API int srslte_wiener_dl_set_cell(srslte_wiener_dl_t* q, const srslte_cell_t* cell);
SRSLTE_API void srslte_wiener_dl_reset(srslte_wiener_dl_t *q);
SRSLTE_API void srslte_wiener_dl_reset(srslte_wiener_dl_t* q);
SRSLTE_API int srslte_wiener_dl_run(srslte_wiener_dl_t *q,
uint32_t tx,
uint32_t rx,
uint32_t m,
uint32_t shift,
cf_t *pilots,
cf_t *estimated,
float snr_lin);
SRSLTE_API int srslte_wiener_dl_run(srslte_wiener_dl_t* q,
uint32_t tx,
uint32_t rx,
uint32_t m,
uint32_t shift,
cf_t* pilots,
cf_t* estimated,
float snr_lin);
SRSLTE_API void srslte_wiener_dl_free(srslte_wiener_dl_t *q);
SRSLTE_API void srslte_wiener_dl_free(srslte_wiener_dl_t* q);
#endif //SRSLTE_SRSLTE_WIENER_DL_H_
#endif // SRSLTE_SRSLTE_WIENER_DL_H_

@ -48,9 +48,9 @@ extern "C" {
#include "srslte/phy/ch_estimation/chest_dl.h"
#include "srslte/phy/ch_estimation/chest_ul.h"
#include "srslte/phy/ch_estimation/wiener_dl.h"
#include "srslte/phy/ch_estimation/refsignal_dl.h"
#include "srslte/phy/ch_estimation/refsignal_ul.h"
#include "srslte/phy/ch_estimation/wiener_dl.h"
#include "srslte/phy/resampling/decim.h"
#include "srslte/phy/resampling/interp.h"

@ -19,34 +19,30 @@
*
*/
#include <srslte/srslte.h>
#include <assert.h>
#include <srslte/srslte.h>
// Useful macros
#define NSAMPLES2NBYTES(N) (sizeof(cf_t) * (N))
#define M_1_3 0.33333333333333333333f /* 1 / 3 */
#define M_1_4 0.25f /* 1 / 4 */
#define M_4_7 0.571428571f /* 4 / 7*/
#define M_1_4 0.25f /* 1 / 4 */
#define M_4_7 0.571428571f /* 4 / 7*/
// Local state function prototypes
static srslte_wiener_dl_state_t* srslte_wiener_dl_state_malloc(srslte_wiener_dl_t *q);
static void srslte_wiener_dl_state_free(srslte_wiener_dl_state_t *q);
static void srslte_wiener_dl_state_reset(srslte_wiener_dl_t *q, srslte_wiener_dl_state_t *state);
static srslte_wiener_dl_state_t* srslte_wiener_dl_state_malloc(srslte_wiener_dl_t* q);
static void srslte_wiener_dl_state_free(srslte_wiener_dl_state_t* q);
static void srslte_wiener_dl_state_reset(srslte_wiener_dl_t* q, srslte_wiener_dl_state_t* state);
// Local run function prototypes
static void srslte_wiener_dl_run_symbol_1_8(srslte_wiener_dl_t *q,
srslte_wiener_dl_state_t *state,
cf_t *pilots,
float snr_lin);
static void srslte_wiener_dl_run_symbol_2_9(srslte_wiener_dl_t *q,
srslte_wiener_dl_state_t *state);
static void srslte_wiener_dl_run_symbol_5_12(srslte_wiener_dl_t *q,
srslte_wiener_dl_state_t *state,
cf_t *pilots,
uint32_t shift);
static void
srslte_wiener_dl_run_symbol_1_8(srslte_wiener_dl_t* q, srslte_wiener_dl_state_t* state, cf_t* pilots, float snr_lin);
static void srslte_wiener_dl_run_symbol_2_9(srslte_wiener_dl_t* q, srslte_wiener_dl_state_t* state);
static void
srslte_wiener_dl_run_symbol_5_12(srslte_wiener_dl_t* q, srslte_wiener_dl_state_t* state, cf_t* pilots, uint32_t shift);
// Local state related functions
static srslte_wiener_dl_state_t* srslte_wiener_dl_state_malloc(srslte_wiener_dl_t *q) {
static srslte_wiener_dl_state_t* srslte_wiener_dl_state_malloc(srslte_wiener_dl_t* q)
{
// Allocate Channel state
srslte_wiener_dl_state_t* state = calloc(sizeof(srslte_wiener_dl_state_t), 1);
@ -73,7 +69,7 @@ static srslte_wiener_dl_state_t* srslte_wiener_dl_state_malloc(srslte_wiener_dl_
}
}
for(uint32_t i = 0; i < SRSLTE_WIENER_DL_TFIFO_SIZE && !ret; i++) {
for (uint32_t i = 0; i < SRSLTE_WIENER_DL_TFIFO_SIZE && !ret; i++) {
state->tfifo[i] = srslte_vec_malloc(NSAMPLES2NBYTES(q->max_re));
if (!state->tfifo[i]) {
perror("malloc");
@ -114,12 +110,12 @@ static srslte_wiener_dl_state_t* srslte_wiener_dl_state_malloc(srslte_wiener_dl_
}
// Initialise the rest
state->deltan = 0.0f;
state->nfifosamps = 0;
state->deltan = 0.0f;
state->nfifosamps = 0;
state->invtpilotoff = 0;
state->sumlen = 0;
state->skip = 0;
state->cnt = 0;
state->sumlen = 0;
state->skip = 0;
state->cnt = 0;
if (ret) {
// Free all allocated memory
@ -133,7 +129,8 @@ static srslte_wiener_dl_state_t* srslte_wiener_dl_state_malloc(srslte_wiener_dl_
return state;
}
static void srslte_wiener_dl_state_reset(srslte_wiener_dl_t *q, srslte_wiener_dl_state_t *state) {
static void srslte_wiener_dl_state_reset(srslte_wiener_dl_t* q, srslte_wiener_dl_state_t* state)
{
if (q && state) {
// Initialise memory
for (uint32_t i = 0; i < SRSLTE_WIENER_DL_HLS_FIFO_SIZE; i++) {
@ -151,19 +148,18 @@ static void srslte_wiener_dl_state_reset(srslte_wiener_dl_t *q, srslte_wiener_dl
bzero(state->cxfifo[i], NSAMPLES2NBYTES(SRSLTE_WIENER_DL_TFIFO_SIZE));
}
// Initialise counters and variables
state->deltan = 0.0f;
state->nfifosamps = 0;
state->deltan = 0.0f;
state->nfifosamps = 0;
state->invtpilotoff = 0;
state->sumlen = 0;
state->skip = 0;
state->cnt = 0;
state->sumlen = 0;
state->skip = 0;
state->cnt = 0;
}
}
static void srslte_wiener_dl_state_free(srslte_wiener_dl_state_t *q) {
static void srslte_wiener_dl_state_free(srslte_wiener_dl_state_t* q)
{
if (q) {
for (int i = 0; i < SRSLTE_WIENER_DL_HLS_FIFO_SIZE; i++) {
@ -182,7 +178,7 @@ static void srslte_wiener_dl_state_free(srslte_wiener_dl_state_t *q) {
if (q->xfifo) {
free(q->xfifo);
}
for(uint32_t i = 0; i < SRSLTE_WIENER_DL_CXFIFO_SIZE; i++) {
for (uint32_t i = 0; i < SRSLTE_WIENER_DL_CXFIFO_SIZE; i++) {
if (q->cxfifo[i]) {
free(q->cxfifo[i]);
}
@ -199,8 +195,8 @@ static void srslte_wiener_dl_state_free(srslte_wiener_dl_state_t *q) {
}
}
int srslte_wiener_dl_init(srslte_wiener_dl_t *q, uint32_t max_prb, uint32_t max_tx_ports, uint32_t max_rx_ant) {
int srslte_wiener_dl_init(srslte_wiener_dl_t* q, uint32_t max_prb, uint32_t max_tx_ports, uint32_t max_rx_ant)
{
int ret = SRSLTE_SUCCESS;
if (q && max_prb > SRSLTE_MAX_PRB && max_tx_ports > SRSLTE_MAX_PORTS && max_rx_ant > SRSLTE_MAX_PORTS) {
@ -208,15 +204,15 @@ int srslte_wiener_dl_init(srslte_wiener_dl_t *q, uint32_t max_prb, uint32_t max_
bzero(q, sizeof(srslte_wiener_dl_t));
// Set maximum parameters
q->max_prb = max_prb;
q->max_ref = max_prb * 2;
q->max_re = max_prb * SRSLTE_NRE;
q->max_prb = max_prb;
q->max_ref = max_prb * 2;
q->max_re = max_prb * SRSLTE_NRE;
q->max_tx_ports = max_tx_ports;
q->max_rx_ant= max_rx_ant;
q->max_rx_ant = max_rx_ant;
// Allocate state
for(uint32_t tx = 0; tx < q->max_tx_ports && !ret; tx++) {
for(uint32_t rx = 0; rx < q->max_tx_ports && !ret; rx++) {
for (uint32_t tx = 0; tx < q->max_tx_ports && !ret; tx++) {
for (uint32_t rx = 0; rx < q->max_tx_ports && !ret; rx++) {
srslte_wiener_dl_state_t* state = srslte_wiener_dl_state_malloc(q);
if (!state) {
perror("srslte_wiener_dl_state_malloc");
@ -248,7 +244,8 @@ int srslte_wiener_dl_init(srslte_wiener_dl_t *q, uint32_t max_prb, uint32_t max_
return ret;
}
int srslte_wiener_dl_set_cell(srslte_wiener_dl_t *q, const srslte_cell_t *cell) {
int srslte_wiener_dl_set_cell(srslte_wiener_dl_t* q, const srslte_cell_t* cell)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q && cell) {
@ -256,9 +253,9 @@ int srslte_wiener_dl_set_cell(srslte_wiener_dl_t *q, const srslte_cell_t *cell)
ret = SRSLTE_SUCCESS;
// Set new values
q->nof_prb = cell->nof_prb;
q->nof_ref = cell->nof_prb * 2;
q->nof_re = cell->nof_prb * SRSLTE_NRE;
q->nof_prb = cell->nof_prb;
q->nof_ref = cell->nof_prb * 2;
q->nof_re = cell->nof_prb * SRSLTE_NRE;
q->nof_tx_ports = cell->nof_ports;
// Reset states
@ -268,7 +265,8 @@ int srslte_wiener_dl_set_cell(srslte_wiener_dl_t *q, const srslte_cell_t *cell)
return ret;
}
void srslte_wiener_dl_reset(srslte_wiener_dl_t *q) {
void srslte_wiener_dl_reset(srslte_wiener_dl_t* q)
{
if (q) {
// Reset states
for (uint32_t tx = 0; tx < SRSLTE_MAX_PORTS; tx++) {
@ -285,14 +283,15 @@ void srslte_wiener_dl_reset(srslte_wiener_dl_t *q) {
}
}
static void circshift_dim1(cf_t **matrix, uint32_t ndim1, int32_t k) {
static void circshift_dim1(cf_t** matrix, uint32_t ndim1, int32_t k)
{
// Wrap k
k = (k + ndim1) % ndim1;
// Run k times
while(k--) {
while (k--) {
// Save first pointer
cf_t *tmp_ptr = matrix[0];
cf_t* tmp_ptr = matrix[0];
// Shift pointers one position
for (int i = 0; i < ndim1 - 1; i++) {
@ -304,13 +303,14 @@ static void circshift_dim1(cf_t **matrix, uint32_t ndim1, int32_t k) {
}
}
static void circshift_dim2(cf_t **matrix, uint32_t ndim1, uint32_t ndim2, int32_t k) {
static void circshift_dim2(cf_t** matrix, uint32_t ndim1, uint32_t ndim2, int32_t k)
{
// Wrap k
k = (k + ndim1) % ndim1;
for(uint32_t dim1 = 0; dim1 < ndim1; dim1++) {
for (uint32_t dim1 = 0; dim1 < ndim1; dim1++) {
// Run k times
for(int i = 0; i < k; i++) {
for (int i = 0; i < k; i++) {
// Save first value
cf_t tmp = matrix[dim1][0];
@ -325,7 +325,8 @@ static void circshift_dim2(cf_t **matrix, uint32_t ndim1, uint32_t ndim2, int32_
}
}
static void matrix_acc_dim1_cc(cf_t **matrix, cf_t *res, uint32_t ndim1, uint32_t ndim2) {
static void matrix_acc_dim1_cc(cf_t** matrix, cf_t* res, uint32_t ndim1, uint32_t ndim2)
{
// Accumulate each column
for (uint32_t dim2 = 0; dim2 < ndim2; dim2++) {
cf_t acc = 0.0f;
@ -336,17 +337,19 @@ static void matrix_acc_dim1_cc(cf_t **matrix, cf_t *res, uint32_t ndim1, uint32_
}
}
static uint32_t matrix_acc_dim2_cc(cf_t **matrix, cf_t *res, uint32_t ndim1, uint32_t ndim2) {
static uint32_t matrix_acc_dim2_cc(cf_t** matrix, cf_t* res, uint32_t ndim1, uint32_t ndim2)
{
// Accumulate each row
for (uint32_t dim1 = 0; dim1 < ndim1; dim1++) {
res[dim1] = srslte_vec_acc_cc(matrix[dim1], ndim2);
}
}
static uint32_t vec_find_first_smaller_than_cf(cf_t *x, float y, uint32_t n, uint32_t pos) {
static uint32_t vec_find_first_smaller_than_cf(cf_t* x, float y, uint32_t n, uint32_t pos)
{
uint32_t ret = n;
for(uint32_t i = pos; i < n && ret == n; i++) {
for (uint32_t i = pos; i < n && ret == n; i++) {
if (cabsf(x[i]) > y) {
ret = i;
}
@ -355,27 +358,32 @@ static uint32_t vec_find_first_smaller_than_cf(cf_t *x, float y, uint32_t n, uin
return ret;
}
static void estimate_wiener(srslte_wiener_dl_t *q, const cf_t wm[SRSLTE_WIENER_DL_MIN_RE][SRSLTE_WIENER_DL_MIN_REF], cf_t *ref, cf_t *h) {
static void estimate_wiener(srslte_wiener_dl_t* q,
const cf_t wm[SRSLTE_WIENER_DL_MIN_RE][SRSLTE_WIENER_DL_MIN_REF],
cf_t* ref,
cf_t* h)
{
uint32_t r_offset = 0; // Resource Element indexing offset
uint32_t p_offset = 0; // Pilot indexing offset
// Estimate lower band
for(uint32_t i = 0; i < SRSLTE_WIENER_DL_MIN_RE; i++) {
for (uint32_t i = 0; i < SRSLTE_WIENER_DL_MIN_RE; i++) {
h[r_offset + i] = srslte_vec_dot_prod_ccc(&ref[p_offset], wm[i], SRSLTE_WIENER_DL_MIN_REF);
}
// Estimate Upper band (it might overlap in 6PRB cells with the lower band)
r_offset = q->nof_re - SRSLTE_WIENER_DL_MIN_RE;
p_offset = q->nof_ref - SRSLTE_WIENER_DL_MIN_REF;
for(uint32_t i = 0; i < SRSLTE_WIENER_DL_MIN_RE; i++) {
for (uint32_t i = 0; i < SRSLTE_WIENER_DL_MIN_RE; i++) {
h[r_offset + i] = srslte_vec_dot_prod_ccc(&ref[p_offset], wm[i], SRSLTE_WIENER_DL_MIN_REF);
}
// Estimate center Resource elements
if (q->nof_re > 2 * SRSLTE_WIENER_DL_MIN_RE) {
for (uint32_t prb = SRSLTE_WIENER_DL_MIN_PRB / 2; prb < q->nof_prb - SRSLTE_WIENER_DL_MIN_REF/2; prb += SRSLTE_WIENER_DL_MIN_PRB / 2) {
for (uint32_t prb = SRSLTE_WIENER_DL_MIN_PRB / 2; prb < q->nof_prb - SRSLTE_WIENER_DL_MIN_REF / 2;
prb += SRSLTE_WIENER_DL_MIN_PRB / 2) {
uint32_t ref_idx = prb * 2 - SRSLTE_WIENER_DL_MIN_REF / 2;
uint32_t re_idx = prb * SRSLTE_NRE;
uint32_t re_idx = prb * SRSLTE_NRE;
for (uint32_t i = SRSLTE_WIENER_DL_MIN_RE / 4; i < (3 * SRSLTE_WIENER_DL_MIN_RE) / 4; i++) {
h[re_idx + i] = srslte_vec_dot_prod_ccc(&ref[ref_idx], wm[i], SRSLTE_WIENER_DL_MIN_REF);
}
@ -383,18 +391,17 @@ static void estimate_wiener(srslte_wiener_dl_t *q, const cf_t wm[SRSLTE_WIENER_D
}
}
static void srslte_wiener_dl_run_symbol_1_8(srslte_wiener_dl_t *q,
srslte_wiener_dl_state_t *state,
cf_t *pilots,
float snr_lin) {
static void
srslte_wiener_dl_run_symbol_1_8(srslte_wiener_dl_t* q, srslte_wiener_dl_state_t* state, cf_t* pilots, float snr_lin)
{
// there are pilot symbols (even) in this OFDM period (first symbol of the slot)
circshift_dim1(state->hls_fifo_2, SRSLTE_WIENER_DL_HLS_FIFO_SIZE, 1); // shift matrix rows down one position
circshift_dim1(state->hls_fifo_2, SRSLTE_WIENER_DL_HLS_FIFO_SIZE, 1); // shift matrix rows down one position
memcpy(state->hls_fifo_2[0], pilots, NSAMPLES2NBYTES(q->nof_ref));
// Online training for pilot filtering
circshift_dim2(&state->timefifo, 1, SRSLTE_WIENER_DL_TIMEFIFO_SIZE, 1); // shift columns right one position
state->timefifo[0] = conjf(pilots[q->nof_ref / 2]); // train with center of subband frequency
state->timefifo[0] = conjf(pilots[q->nof_ref / 2]); // train with center of subband frequency
circshift_dim1(state->cxfifo, SRSLTE_WIENER_DL_CXFIFO_SIZE, 1); // shift rows down one position
srslte_vec_sc_prod_ccc(state->timefifo, pilots[q->nof_ref / 2], state->cxfifo[0], SRSLTE_WIENER_DL_TIMEFIFO_SIZE);
@ -407,33 +414,33 @@ static void srslte_wiener_dl_run_symbol_1_8(srslte_wiener_dl_t *q,
uint32_t halfcx = vec_find_first_smaller_than_cf(q->tmp, cabsf(q->tmp[1]) * 0.5f, SRSLTE_WIENER_DL_TFIFO_SIZE, 2);
// Update internal states
state->sumlen = SRSLTE_MAX(1, floorf(halfcx / 8.0f * SRSLTE_MIN(2.0f, 1.0f + 1.0f / snr_lin)));
state->skip = SRSLTE_MAX(1, floorf(halfcx / 4.0f * SRSLTE_MIN(1, snr_lin / 16.0f)));
state->deltan = 0;
state->sumlen = SRSLTE_MAX(1, floorf(halfcx / 8.0f * SRSLTE_MIN(2.0f, 1.0f + 1.0f / snr_lin)));
state->skip = SRSLTE_MAX(1, floorf(halfcx / 4.0f * SRSLTE_MIN(1, snr_lin / 16.0f)));
state->deltan = 0;
state->invtpilotoff = M_1_3;
}
static void srslte_wiener_dl_run_symbol_2_9(srslte_wiener_dl_t *q, srslte_wiener_dl_state_t *state) {
static void srslte_wiener_dl_run_symbol_2_9(srslte_wiener_dl_t* q, srslte_wiener_dl_state_t* state)
{
// here we only shift and feed TD interpolation fifo
circshift_dim1(state->tfifo, SRSLTE_WIENER_DL_TFIFO_SIZE, 1); // shift matrix columns right by one position
// Average Reference Signals
matrix_acc_dim1_cc(state->hls_fifo_2, q->tmp, SRSLTE_WIENER_DL_HLS_FIFO_SIZE, q->nof_ref); // Sum values
srslte_vec_sc_prod_cfc(q->tmp, 1.0f / state->sumlen, q->tmp, q->nof_ref); // Sacle sum
srslte_vec_sc_prod_cfc(q->tmp, 1.0f / state->sumlen, q->tmp, q->nof_ref); // Sacle sum
// Estimate channel based on the wiener matrix 2
estimate_wiener(q, q->wm2, q->tmp, state->tfifo[0]);
// Update internal states
state->deltan = 0.0f;
state->deltan = 0.0f;
state->invtpilotoff = M_1_3;
}
static void srslte_wiener_dl_run_symbol_5_12(srslte_wiener_dl_t *q,
srslte_wiener_dl_state_t *state,
cf_t *pilots,
uint32_t shift) {
static void
srslte_wiener_dl_run_symbol_5_12(srslte_wiener_dl_t* q, srslte_wiener_dl_state_t* state, cf_t* pilots, uint32_t shift)
{
// there are pilot symbols (odd) in this OFDM period (fifth symbol of the slot)
circshift_dim1(state->hls_fifo_1, SRSLTE_WIENER_DL_HLS_FIFO_SIZE, 1); // shift matrix rows down one position
memcpy(state->hls_fifo_1[0], pilots, NSAMPLES2NBYTES(q->nof_ref));
@ -442,13 +449,13 @@ static void srslte_wiener_dl_run_symbol_5_12(srslte_wiener_dl_t *q,
// Average Reference Signals
matrix_acc_dim1_cc(state->hls_fifo_1, q->tmp, SRSLTE_WIENER_DL_HLS_FIFO_SIZE, q->nof_ref); // Sum values
srslte_vec_sc_prod_cfc(q->tmp, 1.0f / state->sumlen, q->tmp, q->nof_ref); // Sacle sum
srslte_vec_sc_prod_cfc(q->tmp, 1.0f / state->sumlen, q->tmp, q->nof_ref); // Sacle sum
// Estimate channel based on the wiener matrix 1
estimate_wiener(q, q->wm1, q->tmp, state->tfifo[0]);
// Update internal states
state->deltan = 0.0f;
state->deltan = 0.0f;
state->invtpilotoff = M_1_4;
state->cnt++;
@ -472,22 +479,29 @@ static void srslte_wiener_dl_run_symbol_5_12(srslte_wiener_dl_t *q,
bzero(q->hlsv, NSAMPLES2NBYTES(SRSLTE_WIENER_DL_MIN_RE));
bzero(q->hlsv_sum, NSAMPLES2NBYTES(SRSLTE_WIENER_DL_MIN_RE));
for(uint32_t i = pos2, k = pstart; i < SRSLTE_WIENER_DL_MIN_RE; i += 6, k++) {
q->hlsv[i] = conjf(state->hls_fifo_2[1][k] + (state->hls_fifo_2[0][k] - state->hls_fifo_2[1][k]) * M_4_7);
for (uint32_t i = pos2, k = pstart; i < SRSLTE_WIENER_DL_MIN_RE; i += 6, k++) {
q->hlsv[i] = conjf(state->hls_fifo_2[1][k] + (state->hls_fifo_2[0][k] - state->hls_fifo_2[1][k]) * M_4_7);
}
for(uint32_t i = pos1, k = pstart; i < SRSLTE_WIENER_DL_MIN_RE; i += 6, k++) {
for (uint32_t i = pos1, k = pstart; i < SRSLTE_WIENER_DL_MIN_RE; i += 6, k++) {
q->hlsv[i] = conjf(state->hls_fifo_1[1][k]);
}
for(uint32_t i = 0; i < SRSLTE_WIENER_DL_MIN_REF * 2; i++) {
for (uint32_t i = 0; i < SRSLTE_WIENER_DL_MIN_REF * 2; i++) {
srslte_vec_sc_prod_ccc(q->hlsv, conjf(q->hlsv[0]), q->tmp, SRSLTE_WIENER_DL_MIN_RE);
srslte_vec_sum_ccc(q->tmp, q->hlsv_sum, q->hlsv_sum, SRSLTE_WIENER_DL_MIN_RE);
}
}
}
int srslte_wiener_dl_run(srslte_wiener_dl_t *q, uint32_t tx, uint32_t rx, uint32_t m, uint32_t shift, cf_t *pilots, cf_t *estimated, float snr_lin) {
int srslte_wiener_dl_run(srslte_wiener_dl_t* q,
uint32_t tx,
uint32_t rx,
uint32_t m,
uint32_t shift,
cf_t* pilots,
cf_t* estimated,
float snr_lin)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q) {
@ -520,10 +534,11 @@ int srslte_wiener_dl_run(srslte_wiener_dl_t *q, uint32_t tx, uint32_t rx, uint32
return ret;
}
void srslte_wiener_dl_free(srslte_wiener_dl_t *q) {
void srslte_wiener_dl_free(srslte_wiener_dl_t* q)
{
if (q) {
for(uint32_t tx = 0; tx < SRSLTE_MAX_PORTS; tx++) {
for(uint32_t rx = 0; rx < SRSLTE_MAX_PORTS; rx++) {
for (uint32_t tx = 0; tx < SRSLTE_MAX_PORTS; tx++) {
for (uint32_t rx = 0; rx < SRSLTE_MAX_PORTS; rx++) {
if (q->state[tx][rx]) {
srslte_wiener_dl_state_free(q->state[tx][rx]);
q->state[tx][rx] = NULL;
@ -538,6 +553,5 @@ void srslte_wiener_dl_free(srslte_wiener_dl_t *q) {
if (q->random) {
srslte_random_free(q->random);
}
}
}
Loading…
Cancel
Save