UHD: Wait for `lo_locked` after frequency change (#635)

* UHD: clang-tidy rf_uhd_imp.c
* UHD: wait for LO_lock after frequency change
master
Merlin Chlosta 5 years ago committed by Ismael Gomez
parent c92c61d560
commit 2079c1324c

@ -19,17 +19,18 @@
* *
*/ */
#include <uhd.h> #include <pthread.h>
#include <sys/time.h>
#include <string.h> #include <string.h>
#include <sys/time.h>
#include <uhd.h>
#include <unistd.h> #include <unistd.h>
#include <pthread.h>
#include "srslte/srslte.h"
#include "rf_uhd_imp.h"
#include "rf_helper.h" #include "rf_helper.h"
#include "srslte/srslte.h"
#include "uhd_c_api.h" #include "uhd_c_api.h"
#include "rf_uhd_imp.h"
#define HAVE_ASYNC_THREAD 1 #define HAVE_ASYNC_THREAD 1
#if UHD_VERSION < 3130000 #if UHD_VERSION < 3130000
@ -37,7 +38,7 @@
#endif /* UHD_VERSION < 3140000 */ #endif /* UHD_VERSION < 3140000 */
typedef struct { typedef struct {
char *devname; char* devname;
uhd_usrp_handle usrp; uhd_usrp_handle usrp;
uhd_rx_streamer_handle rx_stream; uhd_rx_streamer_handle rx_stream;
uhd_tx_streamer_handle tx_stream; uhd_tx_streamer_handle tx_stream;
@ -64,14 +65,15 @@ typedef struct {
pthread_mutex_t tx_mutex; pthread_mutex_t tx_mutex;
} rf_uhd_handler_t; } rf_uhd_handler_t;
void suppress_handler(const char *x) void suppress_handler(const char* x)
{ {
// do nothing // do nothing
} }
cf_t zero_mem[64*1024]; cf_t zero_mem[64 * 1024];
static void log_overflow(rf_uhd_handler_t *h) { static void log_overflow(rf_uhd_handler_t* h)
{
if (h->uhd_error_handler) { if (h->uhd_error_handler) {
srslte_rf_error_t error; srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t)); bzero(&error, sizeof(srslte_rf_error_t));
@ -80,18 +82,20 @@ static void log_overflow(rf_uhd_handler_t *h) {
} }
} }
static void log_late(rf_uhd_handler_t *h, bool is_rx) { static void log_late(rf_uhd_handler_t* h, bool is_rx)
{
if (h->uhd_error_handler) { if (h->uhd_error_handler) {
srslte_rf_error_t error; srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t)); bzero(&error, sizeof(srslte_rf_error_t));
error.opt = is_rx?1:0; error.opt = is_rx ? 1 : 0;
error.type = SRSLTE_RF_ERROR_LATE; error.type = SRSLTE_RF_ERROR_LATE;
h->uhd_error_handler(error); h->uhd_error_handler(error);
} }
} }
#if HAVE_ASYNC_THREAD #if HAVE_ASYNC_THREAD
static void log_underflow(rf_uhd_handler_t *h) { static void log_underflow(rf_uhd_handler_t* h)
{
if (h->uhd_error_handler) { if (h->uhd_error_handler) {
srslte_rf_error_t error; srslte_rf_error_t error;
bzero(&error, sizeof(srslte_rf_error_t)); bzero(&error, sizeof(srslte_rf_error_t));
@ -101,7 +105,8 @@ static void log_underflow(rf_uhd_handler_t *h) {
} }
#endif #endif
static void log_rx_error(rf_uhd_handler_t *h) { static void log_rx_error(rf_uhd_handler_t* h)
{
if (h->uhd_error_handler) { if (h->uhd_error_handler) {
char error_string[512]; char error_string[512];
uhd_usrp_last_error(h->usrp, error_string, 512); uhd_usrp_last_error(h->usrp, error_string, 512);
@ -115,11 +120,12 @@ static void log_rx_error(rf_uhd_handler_t *h) {
} }
#if HAVE_ASYNC_THREAD #if HAVE_ASYNC_THREAD
static void* async_thread(void *h) { static void* async_thread(void* h)
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; {
rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
uhd_async_metadata_handle md; uhd_async_metadata_handle md;
uhd_async_metadata_make(&md); uhd_async_metadata_make(&md);
while(handler->async_thread_running) { while (handler->async_thread_running) {
bool valid; bool valid;
uhd_error err = uhd_tx_streamer_recv_async_msg(handler->tx_stream, &md, 0.5, &valid); uhd_error err = uhd_tx_streamer_recv_async_msg(handler->tx_stream, &md, 0.5, &valid);
if (err == UHD_ERROR_NONE) { if (err == UHD_ERROR_NONE) {
@ -143,22 +149,23 @@ static void* async_thread(void *h) {
} }
#endif #endif
void rf_uhd_suppress_stdout(void *h) { void rf_uhd_suppress_stdout(void* h)
{
rf_uhd_register_msg_handler_c(suppress_handler); rf_uhd_register_msg_handler_c(suppress_handler);
} }
void rf_uhd_register_error_handler(void *h, srslte_rf_error_handler_t new_handler) void rf_uhd_register_error_handler(void* h, srslte_rf_error_handler_t new_handler)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
handler->uhd_error_handler = new_handler; handler->uhd_error_handler = new_handler;
} }
static bool find_string(uhd_string_vector_handle h, char *str) static bool find_string(uhd_string_vector_handle h, char* str)
{ {
char buff[128]; char buff[128];
size_t n; size_t n;
uhd_string_vector_size(h, &n); uhd_string_vector_size(h, &n);
for (int i=0;i<n;i++) { for (int i = 0; i < n; i++) {
uhd_string_vector_at(h, i, buff, 128); uhd_string_vector_at(h, i, buff, 128);
if (strstr(buff, str)) { if (strstr(buff, str)) {
return true; return true;
@ -167,76 +174,91 @@ static bool find_string(uhd_string_vector_handle h, char *str)
return false; return false;
} }
static bool isLocked(rf_uhd_handler_t *handler, char *sensor_name, bool is_rx, uhd_sensor_value_handle *value_h) // timeout in ms
static uhd_error
wait_sensor_locked(rf_uhd_handler_t* handler, char* sensor_name, bool is_mboard, int timeout, bool* is_locked)
{ {
bool val_out = false; uhd_error error;
*is_locked = false;
if (sensor_name) { uhd_sensor_value_handle value_h;
if (is_rx) { uhd_string_vector_handle sensors;
uhd_usrp_get_rx_sensor(handler->usrp, sensor_name, 0, value_h);
uhd_string_vector_make(&sensors);
uhd_sensor_value_make_from_bool(&value_h, "", true, "True", "False");
if (is_mboard) {
// motherboard sensor
error = uhd_usrp_get_mboard_sensor_names(handler->usrp, 0, &sensors);
} else { } else {
uhd_usrp_get_mboard_sensor(handler->usrp, sensor_name, 0, value_h); // daughterboard sensor
error = uhd_usrp_get_rx_sensor_names(handler->usrp, 0, &sensors);
} }
uhd_sensor_value_to_bool(*value_h, &val_out);
if (error == UHD_ERROR_NONE && find_string(sensors, sensor_name)) {
do {
if (is_mboard) {
error = uhd_usrp_get_mboard_sensor(handler->usrp, sensor_name, 0, &value_h);
} else { } else {
usleep(500); error = uhd_usrp_get_rx_sensor(handler->usrp, sensor_name, 0, &value_h);
val_out = true; }
if (error != UHD_ERROR_NONE) {
break;
}
uhd_sensor_value_to_bool(value_h, is_locked);
usleep(1000); // 1ms
timeout -= 1; // 1ms
} while (*is_locked == false && timeout > 0);
}
if (error != UHD_ERROR_NONE) {
fprintf(stderr,
"%s has no sensor \"%s\", or reading failed. UHD error: %i\n",
is_mboard ? "Motherboard" : "Daugherboard",
sensor_name,
error);
// board doesn't have this sensor, sleep for timeout
*is_locked = true;
usleep(timeout * 1000);
} }
return val_out; uhd_string_vector_free(&sensors);
uhd_sensor_value_free(&value_h);
return error;
} }
char* rf_uhd_devname(void* h) char* rf_uhd_devname(void* h)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
return handler->devname; return handler->devname;
} }
bool rf_uhd_rx_wait_lo_locked(void *h) bool rf_uhd_rx_wait_lo_locked(void* h)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
uhd_string_vector_handle mb_sensors; // wait for clock source to lock
uhd_string_vector_handle rx_sensors; char* sensor_name = "lo_locked";
char *sensor_name; bool is_locked = false;
uhd_sensor_value_handle value_h;
uhd_string_vector_make(&mb_sensors);
uhd_string_vector_make(&rx_sensors);
uhd_sensor_value_make_from_bool(&value_h, "", true, "True", "False");
uhd_usrp_get_mboard_sensor_names(handler->usrp, 0, &mb_sensors);
uhd_usrp_get_rx_sensor_names(handler->usrp, 0, &rx_sensors);
/*if (find_string(rx_sensors, "lo_locked")) { // blocks until sensor is blocked
sensor_name = "lo_locked"; uhd_error error = wait_sensor_locked(handler, sensor_name, false, 300, &is_locked);
} else */if (find_string(mb_sensors, "ref_locked")) {
sensor_name = "ref_locked";
} else {
sensor_name = NULL;
}
double report = 0.0; if (!is_locked || error != UHD_ERROR_NONE) {
while (!isLocked(handler, sensor_name, false, &value_h) && report < 30.0) { fprintf(stderr,
report += 0.1; "Could not lock reference clock source. Sensor: %s=%s, UHD error: %i\n",
usleep(1000); sensor_name,
is_locked ? "true" : "false",
error);
} }
bool val = isLocked(handler, sensor_name, false, &value_h); return is_locked;
uhd_string_vector_free(&mb_sensors);
uhd_string_vector_free(&rx_sensors);
uhd_sensor_value_free(&value_h);
return val;
} }
int rf_uhd_start_rx_stream(void *h, bool now) int rf_uhd_start_rx_stream(void* h, bool now)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
uhd_stream_cmd_t stream_cmd = { uhd_stream_cmd_t stream_cmd = {.stream_mode = UHD_STREAM_MODE_START_CONTINUOUS, .stream_now = now};
.stream_mode = UHD_STREAM_MODE_START_CONTINUOUS,
.stream_now = now
};
if (!now) { if (!now) {
uhd_usrp_get_time_now(handler->usrp, 0, &stream_cmd.time_spec_full_secs, &stream_cmd.time_spec_frac_secs); uhd_usrp_get_time_now(handler->usrp, 0, &stream_cmd.time_spec_full_secs, &stream_cmd.time_spec_frac_secs);
stream_cmd.time_spec_frac_secs += 0.2; stream_cmd.time_spec_frac_secs += 0.2;
@ -249,35 +271,34 @@ int rf_uhd_start_rx_stream(void *h, bool now)
return 0; return 0;
} }
int rf_uhd_stop_rx_stream(void *h) int rf_uhd_stop_rx_stream(void* h)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
uhd_stream_cmd_t stream_cmd = { uhd_stream_cmd_t stream_cmd = {.stream_mode = UHD_STREAM_MODE_STOP_CONTINUOUS, .stream_now = true};
.stream_mode = UHD_STREAM_MODE_STOP_CONTINUOUS,
.stream_now = true
};
uhd_rx_streamer_issue_stream_cmd(handler->rx_stream, &stream_cmd); uhd_rx_streamer_issue_stream_cmd(handler->rx_stream, &stream_cmd);
return 0; return 0;
} }
void rf_uhd_flush_buffer(void *h) void rf_uhd_flush_buffer(void* h)
{ {
int n; int n;
cf_t tmp1[1024]; cf_t tmp1[1024];
cf_t tmp2[1024]; cf_t tmp2[1024];
void *data[2] = {tmp1, tmp2}; void* data[2] = {tmp1, tmp2};
do { do {
n = rf_uhd_recv_with_time_multi(h, data, 1024, 0, NULL, NULL); n = rf_uhd_recv_with_time_multi(h, data, 1024, 0, NULL, NULL);
} while (n > 0); } while (n > 0);
} }
bool rf_uhd_has_rssi(void *h) { bool rf_uhd_has_rssi(void* h)
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; {
rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
return handler->has_rssi; return handler->has_rssi;
} }
bool get_has_rssi(void *h) { bool get_has_rssi(void* h)
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; {
rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
uhd_string_vector_handle rx_sensors; uhd_string_vector_handle rx_sensors;
uhd_string_vector_make(&rx_sensors); uhd_string_vector_make(&rx_sensors);
uhd_usrp_get_rx_sensor_names(handler->usrp, 0, &rx_sensors); uhd_usrp_get_rx_sensor_names(handler->usrp, 0, &rx_sensors);
@ -286,8 +307,9 @@ bool get_has_rssi(void *h) {
return ret; return ret;
} }
float rf_uhd_get_rssi(void *h) { float rf_uhd_get_rssi(void* h)
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; {
rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
if (handler->has_rssi) { if (handler->has_rssi) {
double val_out; double val_out;
@ -303,17 +325,17 @@ float rf_uhd_get_rssi(void *h) {
} }
} }
int rf_uhd_open(char *args, void **h) int rf_uhd_open(char* args, void** h)
{ {
return rf_uhd_open_multi(args, h, 1); return rf_uhd_open_multi(args, h, 1);
} }
int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels) int rf_uhd_open_multi(char* args, void** h, uint32_t nof_channels)
{ {
if (h) { if (h) {
*h = NULL; *h = NULL;
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) malloc(sizeof(rf_uhd_handler_t)); rf_uhd_handler_t* handler = (rf_uhd_handler_t*)malloc(sizeof(rf_uhd_handler_t));
if (!handler) { if (!handler) {
perror("malloc"); perror("malloc");
return -1; return -1;
@ -347,10 +369,10 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
// Initialize handler // Initialize handler
handler->uhd_error_handler = NULL; handler->uhd_error_handler = NULL;
bzero(zero_mem, sizeof(cf_t)*64*1024); bzero(zero_mem, sizeof(cf_t) * 64 * 1024);
// Check external clock argument // Check external clock argument
enum {DEFAULT, EXTERNAL, GPSDO} clock_src; enum { DEFAULT, EXTERNAL, GPSDO } clock_src;
if (strstr(args, "clock=external")) { if (strstr(args, "clock=external")) {
REMOVE_SUBSTRING_WITHCOMAS(args, "clock=external"); REMOVE_SUBSTRING_WITHCOMAS(args, "clock=external");
clock_src = EXTERNAL; clock_src = EXTERNAL;
@ -371,7 +393,7 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
#endif #endif
// Set over the wire format // Set over the wire format
char *otw_format = "sc16"; char* otw_format = "sc16";
if (strstr(args, "otw_format=sc12")) { if (strstr(args, "otw_format=sc12")) {
REMOVE_SUBSTRING_WITHCOMAS(args, "otw_format=sc12"); REMOVE_SUBSTRING_WITHCOMAS(args, "otw_format=sc12");
otw_format = "sc12"; otw_format = "sc12";
@ -386,7 +408,7 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
// Set transmitter subdevice spec string // Set transmitter subdevice spec string
const char tx_subdev_arg[] = "tx_subdev_spec="; const char tx_subdev_arg[] = "tx_subdev_spec=";
char tx_subdev_str[64] = {0}; char tx_subdev_str[64] = {0};
char *tx_subdev_ptr = strstr(args, tx_subdev_arg); char* tx_subdev_ptr = strstr(args, tx_subdev_arg);
if (tx_subdev_ptr) { if (tx_subdev_ptr) {
copy_subdev_string(tx_subdev_str, tx_subdev_ptr + strlen(tx_subdev_arg)); copy_subdev_string(tx_subdev_str, tx_subdev_ptr + strlen(tx_subdev_arg));
} }
@ -394,7 +416,7 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
// Set receiver subdevice spec string // Set receiver subdevice spec string
const char rx_subdev_arg[] = "rx_subdev_spec="; const char rx_subdev_arg[] = "rx_subdev_spec=";
char rx_subdev_str[64] = {0}; char rx_subdev_str[64] = {0};
char *rx_subdev_ptr = strstr(args, rx_subdev_arg); char* rx_subdev_ptr = strstr(args, rx_subdev_arg);
if (rx_subdev_ptr) { if (rx_subdev_ptr) {
copy_subdev_string(rx_subdev_str, rx_subdev_ptr + strlen(rx_subdev_arg)); copy_subdev_string(rx_subdev_str, rx_subdev_ptr + strlen(rx_subdev_arg));
} }
@ -410,7 +432,7 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
} }
/* If device type or name not given in args, choose a B200 */ /* If device type or name not given in args, choose a B200 */
if (args[0]=='\0') { if (args[0] == '\0') {
if (find_string(devices_str, "type=b200") && !strstr(args, "recv_frame_size")) { if (find_string(devices_str, "type=b200") && !strstr(args, "recv_frame_size")) {
// If B200 is available, use it // If B200 is available, use it
args = "type=b200,master_clock_rate=23.04e6"; args = "type=b200,master_clock_rate=23.04e6";
@ -437,7 +459,7 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
} else { } else {
// If args is set and x300 type is specified, make sure master_clock_rate is defined // If args is set and x300 type is specified, make sure master_clock_rate is defined
if (strstr(args, "type=x300") && !strstr(args, "master_clock_rate")) { if (strstr(args, "type=x300") && !strstr(args, "master_clock_rate")) {
sprintf(args2, "%s,master_clock_rate=184.32e6",args); sprintf(args2, "%s,master_clock_rate=184.32e6", args);
args = args2; args = args2;
handler->current_master_clock = 184320000; handler->current_master_clock = 184320000;
handler->dynamic_rate = false; handler->dynamic_rate = false;
@ -509,13 +531,31 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
handler->devname = "uhd_unknown"; handler->devname = "uhd_unknown";
} }
bool is_locked = false;
char* sensor_name = "";
// Set external clock reference // Set external clock reference
if (clock_src == EXTERNAL) { if (clock_src == EXTERNAL) {
uhd_usrp_set_clock_source(handler->usrp, "external", 0); uhd_usrp_set_clock_source(handler->usrp, "external", 0);
uhd_usrp_set_time_source(handler->usrp, "external", 0); uhd_usrp_set_time_source(handler->usrp, "external", 0);
sensor_name = "ref_locked";
} else if (clock_src == GPSDO) { } else if (clock_src == GPSDO) {
uhd_usrp_set_clock_source(handler->usrp, "gpsdo", 0); uhd_usrp_set_clock_source(handler->usrp, "gpsdo", 0);
uhd_usrp_set_time_source(handler->usrp, "gpsdo", 0); uhd_usrp_set_time_source(handler->usrp, "gpsdo", 0);
sensor_name = "gps_locked";
}
// wait until external reference / GPS is locked
if (clock_src != DEFAULT) {
// blocks until clock source is locked
error = wait_sensor_locked(handler, sensor_name, true, 300, &is_locked);
if (!is_locked || error != UHD_ERROR_NONE) {
fprintf(stderr,
"Could not lock reference clock source. Sensor: %s=%s, UHD error: %i\n",
sensor_name,
is_locked ? "true" : "false",
error);
}
} }
handler->has_rssi = get_has_rssi(handler); handler->has_rssi = get_has_rssi(handler);
@ -533,7 +573,7 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
handler->nof_tx_channels = nof_channels; handler->nof_tx_channels = nof_channels;
/* Set default rate to avoid decimation warnings */ /* Set default rate to avoid decimation warnings */
for (int i=0;i<nof_channels;i++) { for (int i = 0; i < nof_channels; i++) {
uhd_usrp_set_rx_rate(handler->usrp, 1.92e6, i); uhd_usrp_set_rx_rate(handler->usrp, 1.92e6, i);
uhd_usrp_set_tx_rate(handler->usrp, 1.92e6, i); uhd_usrp_set_tx_rate(handler->usrp, 1.92e6, i);
} }
@ -578,7 +618,7 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
uhd_tx_metadata_make(&handler->tx_md, false, 0, 0, false, false); uhd_tx_metadata_make(&handler->tx_md, false, 0, 0, false, false);
// Set starting gain to half maximum in case of using AGC // Set starting gain to half maximum in case of using AGC
rf_uhd_set_rx_gain(handler, handler->info.max_rx_gain*0.7); rf_uhd_set_rx_gain(handler, handler->info.max_rx_gain * 0.7);
#if HAVE_ASYNC_THREAD #if HAVE_ASYNC_THREAD
if (start_async_thread) { if (start_async_thread) {
@ -600,12 +640,11 @@ int rf_uhd_open_multi(char *args, void **h, uint32_t nof_channels)
} }
} }
int rf_uhd_close(void* h)
int rf_uhd_close(void *h)
{ {
rf_uhd_stop_rx_stream(h); rf_uhd_stop_rx_stream(h);
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
uhd_tx_metadata_free(&handler->tx_md); uhd_tx_metadata_free(&handler->tx_md);
uhd_rx_metadata_free(&handler->rx_md_first); uhd_rx_metadata_free(&handler->rx_md_first);
@ -628,8 +667,9 @@ int rf_uhd_close(void *h)
return SRSLTE_SUCCESS; return SRSLTE_SUCCESS;
} }
void rf_uhd_set_master_clock_rate(void *h, double rate) { void rf_uhd_set_master_clock_rate(void* h, double rate)
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; {
rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
if (fmod(handler->current_master_clock, rate)) { if (fmod(handler->current_master_clock, rate)) {
if (handler->dynamic_rate) { if (handler->dynamic_rate) {
uhd_usrp_set_master_clock_rate(handler->usrp, rate, 0); uhd_usrp_set_master_clock_rate(handler->usrp, rate, 0);
@ -638,21 +678,25 @@ void rf_uhd_set_master_clock_rate(void *h, double rate) {
} }
} }
bool rf_uhd_is_master_clock_dynamic(void *h) { bool rf_uhd_is_master_clock_dynamic(void* h)
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; {
rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
return handler->dynamic_rate; return handler->dynamic_rate;
} }
double rf_uhd_set_rx_srate(void *h, double freq) double rf_uhd_set_rx_srate(void* h, double freq)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
if (handler->nof_rx_channels > 1) { if (handler->nof_rx_channels > 1) {
#ifdef UHD_SUPPORTS_COMMAND_TIME #ifdef UHD_SUPPORTS_COMMAND_TIME
time_t full; time_t full;
double frac; double frac;
uhd_usrp_get_time_now(handler->usrp, 0, &full, &frac); uhd_usrp_get_time_now(handler->usrp, 0, &full, &frac);
frac += 0.100; frac += 0.100;
if (frac >= 1.0) { full++; frac -= 1.0; }; if (frac >= 1.0) {
full++;
frac -= 1.0;
};
uhd_usrp_set_command_time(handler->usrp, full, frac, 0); uhd_usrp_set_command_time(handler->usrp, full, frac, 0);
#endif /* UHD_SUPPORTS_COMMAND_TIME */ #endif /* UHD_SUPPORTS_COMMAND_TIME */
for (int i = 0; i < handler->nof_rx_channels; i++) { for (int i = 0; i < handler->nof_rx_channels; i++) {
@ -667,16 +711,19 @@ double rf_uhd_set_rx_srate(void *h, double freq)
return freq; return freq;
} }
double rf_uhd_set_tx_srate(void *h, double freq) double rf_uhd_set_tx_srate(void* h, double freq)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
if (handler->nof_tx_channels > 1) { if (handler->nof_tx_channels > 1) {
#ifdef UHD_SUPPORTS_COMMAND_TIME #ifdef UHD_SUPPORTS_COMMAND_TIME
time_t full; time_t full;
double frac; double frac;
uhd_usrp_get_time_now(handler->usrp, 0, &full, &frac); uhd_usrp_get_time_now(handler->usrp, 0, &full, &frac);
frac += 0.100; frac += 0.100;
if (frac >= 1.0) { full++; frac -= 1.0; }; if (frac >= 1.0) {
full++;
frac -= 1.0;
};
uhd_usrp_set_command_time(handler->usrp, full, frac, 0); uhd_usrp_set_command_time(handler->usrp, full, frac, 0);
#endif /* UHD_SUPPORTS_COMMAND_TIME */ #endif /* UHD_SUPPORTS_COMMAND_TIME */
for (int i = 0; i < handler->nof_tx_channels; i++) { for (int i = 0; i < handler->nof_tx_channels; i++) {
@ -692,45 +739,45 @@ double rf_uhd_set_tx_srate(void *h, double freq)
return freq; return freq;
} }
double rf_uhd_set_rx_gain(void *h, double gain) double rf_uhd_set_rx_gain(void* h, double gain)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
for (int i=0;i<handler->nof_rx_channels;i++) { for (int i = 0; i < handler->nof_rx_channels; i++) {
uhd_usrp_set_rx_gain(handler->usrp, gain, i, ""); uhd_usrp_set_rx_gain(handler->usrp, gain, i, "");
} }
return gain; return gain;
} }
double rf_uhd_set_tx_gain(void *h, double gain) double rf_uhd_set_tx_gain(void* h, double gain)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
for (int i=0;i<handler->nof_tx_channels;i++) { for (int i = 0; i < handler->nof_tx_channels; i++) {
uhd_usrp_set_tx_gain(handler->usrp, gain, i, ""); uhd_usrp_set_tx_gain(handler->usrp, gain, i, "");
} }
return gain; return gain;
} }
double rf_uhd_get_rx_gain(void *h) double rf_uhd_get_rx_gain(void* h)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
double gain; double gain;
uhd_usrp_get_rx_gain(handler->usrp, 0, "", &gain); uhd_usrp_get_rx_gain(handler->usrp, 0, "", &gain);
return gain; return gain;
} }
double rf_uhd_get_tx_gain(void *h) double rf_uhd_get_tx_gain(void* h)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
double gain; double gain;
uhd_usrp_get_tx_gain(handler->usrp, 0, "", &gain); uhd_usrp_get_tx_gain(handler->usrp, 0, "", &gain);
return gain; return gain;
} }
srslte_rf_info_t *rf_uhd_get_info(void *h) srslte_rf_info_t* rf_uhd_get_info(void* h)
{ {
srslte_rf_info_t *info = NULL; srslte_rf_info_t* info = NULL;
if (h) { if (h) {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
info = &handler->info; info = &handler->info;
} }
return info; return info;
@ -744,7 +791,7 @@ double rf_uhd_set_rx_freq(void* h, uint32_t ch, double freq)
.dsp_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO, .dsp_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO,
}; };
uhd_tune_result_t tune_result; uhd_tune_result_t tune_result;
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
if (ch < handler->nof_rx_channels) { if (ch < handler->nof_rx_channels) {
uhd_usrp_set_rx_freq(handler->usrp, &tune_request, ch, &tune_result); uhd_usrp_set_rx_freq(handler->usrp, &tune_request, ch, &tune_result);
} else { } else {
@ -763,7 +810,7 @@ double rf_uhd_set_tx_freq(void* h, uint32_t ch, double freq)
.dsp_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO, .dsp_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO,
}; };
uhd_tune_result_t tune_result; uhd_tune_result_t tune_result;
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
if (ch < handler->nof_tx_channels) { if (ch < handler->nof_tx_channels) {
uhd_usrp_set_tx_freq(handler->usrp, &tune_request, ch, &tune_result); uhd_usrp_set_tx_freq(handler->usrp, &tune_request, ch, &tune_result);
} else { } else {
@ -774,9 +821,9 @@ double rf_uhd_set_tx_freq(void* h, uint32_t ch, double freq)
return freq; return freq;
} }
void rf_uhd_get_time(void* h, time_t* secs, double* frac_secs)
void rf_uhd_get_time(void *h, time_t *secs, double *frac_secs) { {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
uhd_usrp_get_time_now(handler->usrp, 0, secs, frac_secs); uhd_usrp_get_time_now(handler->usrp, 0, secs, frac_secs);
} }
@ -788,33 +835,24 @@ void rf_uhd_sync_pps(void* h)
} }
} }
int rf_uhd_recv_with_time(void *h, int rf_uhd_recv_with_time(void* h, void* data, uint32_t nsamples, bool blocking, time_t* secs, double* frac_secs)
void *data,
uint32_t nsamples,
bool blocking,
time_t *secs,
double *frac_secs)
{ {
return rf_uhd_recv_with_time_multi(h, &data, nsamples, blocking, secs, frac_secs); return rf_uhd_recv_with_time_multi(h, &data, nsamples, blocking, secs, frac_secs);
} }
int rf_uhd_recv_with_time_multi(void *h, int rf_uhd_recv_with_time_multi(
void *data[SRSLTE_MAX_PORTS], void* h, void* data[SRSLTE_MAX_PORTS], uint32_t nsamples, bool blocking, time_t* secs, double* frac_secs)
uint32_t nsamples,
bool blocking,
time_t *secs,
double *frac_secs)
{ {
rf_uhd_handler_t *handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
uhd_rx_metadata_handle *md = &handler->rx_md_first; uhd_rx_metadata_handle* md = &handler->rx_md_first;
size_t rxd_samples = 0; size_t rxd_samples = 0;
size_t rxd_samples_total = 0; size_t rxd_samples_total = 0;
int trials = 0; int trials = 0;
if (blocking) { if (blocking) {
while (rxd_samples_total < nsamples && trials < 100) { while (rxd_samples_total < nsamples && trials < 100) {
void *buffs_ptr[4]; void* buffs_ptr[4];
for (int i=0;i<handler->nof_rx_channels;i++) { for (int i = 0; i < handler->nof_rx_channels; i++) {
cf_t *data_c = (cf_t*) data[i]; cf_t* data_c = (cf_t*)data[i];
buffs_ptr[i] = &data_c[rxd_samples_total]; buffs_ptr[i] = &data_c[rxd_samples_total];
} }
@ -822,8 +860,8 @@ int rf_uhd_recv_with_time_multi(void *h,
size_t num_rx_samples = (num_samps_left > handler->rx_nof_samples) ? handler->rx_nof_samples : num_samps_left; size_t num_rx_samples = (num_samps_left > handler->rx_nof_samples) ? handler->rx_nof_samples : num_samps_left;
rxd_samples = 0; rxd_samples = 0;
uhd_error error = uhd_rx_streamer_recv(handler->rx_stream, buffs_ptr, uhd_error error =
num_rx_samples, md, 1.0, false, &rxd_samples); uhd_rx_streamer_recv(handler->rx_stream, buffs_ptr, num_rx_samples, md, 1.0, false, &rxd_samples);
if (error) { if (error) {
ERROR("Error receiving from UHD: %d\n", error); ERROR("Error receiving from UHD: %d\n", error);
log_rx_error(handler); log_rx_error(handler);
@ -864,8 +902,8 @@ int rf_uhd_recv_with_time_multi(void *h,
return rxd_samples_total; return rxd_samples_total;
} }
int rf_uhd_send_timed(void *h, int rf_uhd_send_timed(void* h,
void *data, void* data,
int nsamples, int nsamples,
time_t secs, time_t secs,
double frac_secs, double frac_secs,
@ -874,13 +912,14 @@ int rf_uhd_send_timed(void *h,
bool is_start_of_burst, bool is_start_of_burst,
bool is_end_of_burst) bool is_end_of_burst)
{ {
void *_data[SRSLTE_MAX_PORTS]= {data, zero_mem, zero_mem, zero_mem}; void* _data[SRSLTE_MAX_PORTS] = {data, zero_mem, zero_mem, zero_mem};
return rf_uhd_send_timed_multi(h, _data, nsamples, secs, frac_secs, has_time_spec, blocking, is_start_of_burst, is_end_of_burst); return rf_uhd_send_timed_multi(
h, _data, nsamples, secs, frac_secs, has_time_spec, blocking, is_start_of_burst, is_end_of_burst);
} }
int rf_uhd_send_timed_multi(void *h, int rf_uhd_send_timed_multi(void* h,
void *data[4], void* data[4],
int nsamples, int nsamples,
time_t secs, time_t secs,
double frac_secs, double frac_secs,
@ -889,7 +928,7 @@ int rf_uhd_send_timed_multi(void *h,
bool is_start_of_burst, bool is_start_of_burst,
bool is_end_of_burst) bool is_end_of_burst)
{ {
rf_uhd_handler_t* handler = (rf_uhd_handler_t*) h; rf_uhd_handler_t* handler = (rf_uhd_handler_t*)h;
pthread_mutex_lock(&handler->tx_mutex); pthread_mutex_lock(&handler->tx_mutex);
int ret = -1; int ret = -1;
@ -907,7 +946,7 @@ int rf_uhd_send_timed_multi(void *h,
uhd_tx_metadata_set_time_spec(&handler->tx_md, secs, frac_secs); uhd_tx_metadata_set_time_spec(&handler->tx_md, secs, frac_secs);
} }
int n = 0; int n = 0;
cf_t *data_c[4]; cf_t* data_c[4];
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
data_c[i] = data[i] ? data[i] : zero_mem; data_c[i] = data[i] ? data[i] : zero_mem;
} }
@ -929,19 +968,19 @@ int rf_uhd_send_timed_multi(void *h,
uhd_tx_metadata_set_end(&handler->tx_md, is_end_of_burst); uhd_tx_metadata_set_end(&handler->tx_md, is_end_of_burst);
} }
const void *buffs_ptr[4]; const void* buffs_ptr[4];
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
void *buff = (void*) &data_c[i][n]; void* buff = (void*)&data_c[i][n];
buffs_ptr[i] = buff; buffs_ptr[i] = buff;
} }
uhd_error error = uhd_tx_streamer_send(handler->tx_stream, buffs_ptr, uhd_error error =
tx_samples, &handler->tx_md, 1.0, &txd_samples); uhd_tx_streamer_send(handler->tx_stream, buffs_ptr, tx_samples, &handler->tx_md, 1.0, &txd_samples);
if (error) { if (error) {
ERROR("Error sending to UHD: %d\n", error); ERROR("Error sending to UHD: %d\n", error);
goto unlock; goto unlock;
} }
// Increase time spec // Increase time spec
uhd_tx_metadata_add_time_spec(&handler->tx_md, txd_samples/handler->tx_rate); uhd_tx_metadata_add_time_spec(&handler->tx_md, txd_samples / handler->tx_rate);
n += txd_samples; n += txd_samples;
trials++; trials++;
} while (n < nsamples && trials < 100); } while (n < nsamples && trials < 100);
@ -950,7 +989,7 @@ int rf_uhd_send_timed_multi(void *h,
} else { } else {
const void *buffs_ptr[4]; const void* buffs_ptr[4];
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
buffs_ptr[i] = data[i]; buffs_ptr[i] = data[i];
} }
@ -964,10 +1003,8 @@ int rf_uhd_send_timed_multi(void *h,
} }
ret = txd_samples; ret = txd_samples;
} }
unlock: unlock:
pthread_mutex_unlock(&handler->tx_mutex); pthread_mutex_unlock(&handler->tx_mutex);
return ret; return ret;
} }

Loading…
Cancel
Save