UHD: RFNOC Dynamic re-configuration

master
Xavier Arteaga 4 years ago committed by Xavier Arteaga
parent d9cb51d261
commit 0e360b3953

@ -79,18 +79,16 @@ private:
const double SETUP_TIME_S = 1.0; const double SETUP_TIME_S = 1.0;
const uhd::fs_path TREE_MBOARD_SENSORS = "/mboards/0/sensors"; const uhd::fs_path TREE_MBOARD_SENSORS = "/mboards/0/sensors";
const uhd::fs_path TREE_RX_SENSORS = "/mboards/0/dboards/A/rx_frontends/0/sensors"; const uhd::fs_path TREE_RX_SENSORS = "/mboards/0/dboards/A/rx_frontends/0/sensors";
const std::string TX_ANTENNA_PORT = "TX/RX";
const std::string RX_ANTENNA_PORT = "RX2";
// Primary parameters // Primary parameters
double master_clock_rate = 184.32e6; double master_clock_rate = 184.32e6;
double srate_hz = 0.0; double bw_hz = 100.0;
double bw_hz = 0.0; size_t nof_radios = 1; ///< Number of RF devices in the device
size_t nof_radios = 1; size_t nof_channels = 1; ///< Number of Channels per Radio
size_t nof_channels = 1;
double rx_gain_db = 10.0;
double tx_gain_db = 5.0;
std::vector<double> rx_freq_hz; std::vector<double> rx_freq_hz;
std::vector<double> tx_freq_hz; std::vector<double> tx_freq_hz;
std::string sync_source = "internal";
size_t nof_samples_per_packet = 0; size_t nof_samples_per_packet = 0;
size_t dma_fifo_depth = 8192UL * 4096UL; size_t dma_fifo_depth = 8192UL * 4096UL;
@ -119,7 +117,7 @@ private:
} }
template <class T> template <class T>
uhd_error parse_param(uhd::device_addr_t& args, const std::string& param, T& value) uhd_error parse_param(uhd::device_addr_t& args, const std::string& param, T& value, bool pop = true)
{ {
UHD_SAFE_C_SAVE_ERROR(this, UHD_SAFE_C_SAVE_ERROR(this,
// Check if parameter exists // Check if parameter exists
@ -132,62 +130,32 @@ private:
value = args.cast(param, value); value = args.cast(param, value);
// Remove parameter from list // Remove parameter from list
args.pop(param);) if (pop) args.pop(param);)
} }
uhd_error parse_args(uhd::device_addr_t& args) uhd_error parse_args(uhd::device_addr_t& args)
{ {
uhd_error err; // Parse master clock rate
parse_param(args, "master_clock_rate", master_clock_rate, false);
err = parse_param(args, "rfnoc_srate", srate_hz);
if (err != UHD_ERROR_NONE) {
return err;
}
// Parse number of radios
parse_param(args, "rfnoc_nof_radios", nof_radios); parse_param(args, "rfnoc_nof_radios", nof_radios);
if (nof_radios == 0) { if (nof_radios == 0) {
last_error = "RF-NOC Number of radios cannot be zero"; last_error = "RF-NOC Number of radios cannot be zero";
return UHD_ERROR_KEY; return UHD_ERROR_KEY;
} }
// Parse number of channels per radio
parse_param(args, "rfnoc_nof_channels", nof_channels); parse_param(args, "rfnoc_nof_channels", nof_channels);
if (nof_channels == 0) { if (nof_channels == 0) {
last_error = "RF-NOC Number of channels cannot be zero"; last_error = "RF-NOC Number of channels cannot be zero";
return UHD_ERROR_KEY; return UHD_ERROR_KEY;
} }
// Optional parameters, ignore error return // Set secondary parameters
parse_param(args, "rfnoc_tx_gain", tx_gain_db); bw_hz = master_clock_rate / 2.0;
parse_param(args, "rfnoc_rx_gain", tx_gain_db);
// Parse Rx frequencies
rx_freq_hz.resize(nof_radios * nof_channels);
for (size_t radio_idx = 0; radio_idx < nof_radios; radio_idx++) {
for (size_t channel_idx = 0; channel_idx < nof_channels; channel_idx++) {
std::stringstream ss;
ss << "rfnoc_rx_" << radio_idx << "_" << channel_idx << "_freq";
err = parse_param(args, ss.str(), rx_freq_hz[radio_idx * nof_channels + channel_idx]);
if (err != UHD_ERROR_NONE) {
return err;
}
}
}
// Parse Rx frequencies
tx_freq_hz.resize(nof_radios * nof_channels); tx_freq_hz.resize(nof_radios * nof_channels);
for (size_t radio_idx = 0; radio_idx < nof_radios; radio_idx++) { rx_freq_hz.resize(nof_radios * nof_channels);
for (size_t channel_idx = 0; channel_idx < nof_channels; channel_idx++) {
std::stringstream ss;
ss << "rfnoc_tx_" << radio_idx << "_" << channel_idx << "_freq";
err = parse_param(args, ss.str(), tx_freq_hz[radio_idx * nof_channels + channel_idx]);
if (err != UHD_ERROR_NONE) {
return err;
}
}
}
// Secondary parameters
bw_hz = srate_hz * (1200.0 / 1536.0);
return UHD_ERROR_NONE; return UHD_ERROR_NONE;
} }
@ -204,15 +172,46 @@ private:
radio_id[i] = uhd::rfnoc::block_id_t(0, RADIO_BLOCK_NAME, i); radio_id[i] = uhd::rfnoc::block_id_t(0, RADIO_BLOCK_NAME, i);
// This next line will fail if the radio is not actually available // This next line will fail if the radio is not actually available
radio_ctrl[i] = device3->get_block_ctrl<uhd::rfnoc::radio_ctrl>(radio_id[i]); radio_ctrl[i] = device3->get_block_ctrl<uhd::rfnoc::radio_ctrl>(radio_id[i]);
Debug("Using radio " << i);
// Set sample rate
UHD_LOG_DEBUG(radio_id[i], "Setting TX/RX Rate: " << master_clock_rate / 1e6 << " Msps...");
radio_ctrl[i]->set_rate(master_clock_rate);
UHD_LOG_DEBUG(radio_id[i], "Actual TX/RX Rate:" << radio_ctrl[i]->get_rate() / 1e6 << " Msps...");
// set the IF filter bandwidth
UHD_LOG_DEBUG(radio_id[i], "Setting RX Bandwidth: " << bw_hz / 1e6 << " MHz...");
radio_ctrl[i]->set_rx_bandwidth(bw_hz, 0);
UHD_LOG_DEBUG(radio_id[i], "Actual RX Bandwidth: " << radio_ctrl[i]->get_rx_bandwidth(0) / 1e6 << " MHz...");
// set Rx antenna
UHD_LOG_DEBUG(radio_id[i], "Setting RX antenna: " << RX_ANTENNA_PORT);
radio_ctrl[i]->set_rx_antenna(RX_ANTENNA_PORT, 0);
// set Tx antenna
UHD_LOG_DEBUG(radio_id[i], "Setting TX antenna: " << TX_ANTENNA_PORT);
radio_ctrl[i]->set_tx_antenna(TX_ANTENNA_PORT, 0);
} }
// Sleep for some time
std::this_thread::sleep_for(std::chrono::milliseconds(int64_t(1000 * SETUP_TIME_S)));
// Create DDC control // Create DDC control
ddc_ctrl.resize(nof_radios); ddc_ctrl.resize(nof_radios);
ddc_id.resize(nof_radios); ddc_id.resize(nof_radios);
for (size_t i = 0; i < nof_radios; i++) { for (size_t i = 0; i < nof_radios; i++) {
ddc_id[i] = uhd::rfnoc::block_id_t(0, DDC_BLOCK_NAME, i); ddc_id[i] = uhd::rfnoc::block_id_t(0, DDC_BLOCK_NAME, i);
ddc_ctrl[i] = device3->get_block_ctrl<ddc_ctrl_t>(ddc_id[i]); ddc_ctrl[i] = device3->get_block_ctrl<ddc_ctrl_t>(ddc_id[i]);
for (size_t j = 0; j < nof_channels; j++) {
uhd::device_addr_t args;
args.set("input_rate", std::to_string(master_clock_rate));
args.set("fullscale", "1.0");
UHD_LOG_DEBUG(ddc_id[i], "Configure channel " << j << " with args " << args.to_string());
ddc_ctrl[i]->set_args(args, j);
}
} }
// Create DUC control // Create DUC control
@ -221,134 +220,61 @@ private:
for (size_t i = 0; i < nof_radios; i++) { for (size_t i = 0; i < nof_radios; i++) {
duc_id[i] = uhd::rfnoc::block_id_t(0, DUC_BLOCK_NAME, i); duc_id[i] = uhd::rfnoc::block_id_t(0, DUC_BLOCK_NAME, i);
duc_ctrl[i] = device3->get_block_ctrl<duc_ctrl_t>(duc_id[i]); duc_ctrl[i] = device3->get_block_ctrl<duc_ctrl_t>(duc_id[i]);
}
// Create DMA FIFO control for (size_t j = 0; j < nof_channels; j++) {
dma_id = uhd::rfnoc::block_id_t(0, DMA_FIFO_BLOCK_NAME);
dma_ctrl = device3->get_block_ctrl<uhd::rfnoc::dma_fifo_block_ctrl>(dma_id);)
}
uhd_error configure() uhd::device_addr_t args;
{ args.set("output_rate", std::to_string(master_clock_rate));
UHD_SAFE_C_SAVE_ERROR( args.set("fullscale", "1.0");
this, std::vector<double> rx_center_freq_hz(nof_radios); std::vector<double> tx_center_freq_hz(nof_radios);
// Calculate center frequencies from averages UHD_LOG_DEBUG(duc_id[i], "Configure channel " << j << " with args " << args.to_string());
for (size_t radio_idx = 0; radio_idx < nof_radios; radio_idx++) {
double sum_tx = 0.0;
double sum_rx = 0.0;
for (size_t channel_idx = 0; channel_idx < nof_channels; channel_idx++) { duc_ctrl[i]->set_args(args, j);
sum_tx += tx_freq_hz[radio_idx * nof_channels + channel_idx];
sum_rx += rx_freq_hz[radio_idx * nof_channels + channel_idx];
} }
tx_center_freq_hz[radio_idx] = sum_tx / nof_channels;
rx_center_freq_hz[radio_idx] = sum_rx / nof_channels;
} }
// Configure radios // Create DMA FIFO control
for (size_t i = 0; i < nof_radios; ++i) { dma_id = uhd::rfnoc::block_id_t(0, DMA_FIFO_BLOCK_NAME);
Debug("Setting radio " << i << "..."); dma_ctrl = device3->get_block_ctrl<uhd::rfnoc::dma_fifo_block_ctrl>(dma_id);
// Lock mboard clocks
Debug("Setting sync source to " << sync_source) radio_ctrl[i]->set_clock_source(sync_source);
radio_ctrl[i]->set_time_source(sync_source);
// Set sample rate
Debug("Setting TX/RX Rate: " << master_clock_rate / 1e6 << " Msps...");
radio_ctrl[i]->set_rate(master_clock_rate);
Debug("Actual TX/RX Rate:" << radio_ctrl[i]->get_rate() / 1e6 << " Msps...");
// Set tx freq
Debug("Setting TX Freq: " << tx_center_freq_hz[i] / 1e6 << " MHz...");
radio_ctrl[i]->set_tx_frequency(tx_center_freq_hz[i], 0);
tx_center_freq_hz[i] = radio_ctrl[i]->get_tx_frequency(0);
Debug("Actual TX Freq: " << tx_center_freq_hz[i] / 1e6 << " MHz...");
// Set rx freq
Debug("Setting RX Freq: " << rx_center_freq_hz[i] / 1e6 << " MHz...");
radio_ctrl[i]->set_rx_frequency(rx_center_freq_hz[i], 0);
rx_center_freq_hz[i] = radio_ctrl[i]->get_rx_frequency(0);
Debug("Actual RX Freq: " << rx_center_freq_hz[i] / 1e6 << " MHz...");
// set the IF filter bandwidth
Debug("Setting RX Bandwidth: " << bw_hz / 1e6 << " MHz...");
radio_ctrl[i]->set_rx_bandwidth(bw_hz, 0);
Debug("Actual RX Bandwidth: " << radio_ctrl[i]->get_rx_bandwidth(0) / 1e6 << " MHz...");
// set the rf gain
Debug("Setting RX Gain: " << rx_gain_db << " dB...");
radio_ctrl[i]->set_rx_gain(rx_gain_db, 0);
Debug("Actual RX Gain: " << radio_ctrl[i]->get_rx_gain(0) << " dB...");
// set the antenna
radio_ctrl[i]->set_rx_antenna("TX/RX", 0);
}
// Sleep for some time
std::this_thread::sleep_for(std::chrono::milliseconds(int64_t(1000 * SETUP_TIME_S)));
// Setup DDCs and DUCs
for (size_t radio_idx = 0; radio_idx < nof_radios; radio_idx++) {
for (size_t channel_idx = 0; channel_idx < nof_channels; channel_idx++) {
size_t rf_channel_idx = nof_channels * radio_idx + channel_idx;
{ // Setup DDC
uhd::device_addr_t ddc_args;
ddc_args.set("output_rate", std::to_string(srate_hz));
ddc_args.set("input_rate", std::to_string(master_clock_rate));
ddc_args.set("freq", std::to_string(rx_freq_hz[rf_channel_idx] - rx_center_freq_hz[radio_idx]));
ddc_args.set("fullscale", "1.0");
Debug("Configure " << ddc_id[radio_idx] << ":" << channel_idx << " with args " << ddc_args.to_string());
ddc_ctrl[radio_idx]->set_args(ddc_args, channel_idx);
}
{ // Setup DUC
uhd::device_addr_t duc_args;
duc_args.set("output_rate", std::to_string(master_clock_rate));
duc_args.set("input_rate", std::to_string(srate_hz));
duc_args.set("freq", std::to_string(tx_freq_hz[rf_channel_idx] - tx_center_freq_hz[radio_idx]));
duc_args.set("fullscale", "1.0");
Debug("Configure " << duc_id[radio_idx] << ":" << channel_idx << " with args " << duc_args.to_string());
duc_ctrl[radio_idx]->set_args(duc_args, channel_idx);
}
{ // Setup DMA FIFO // Configure DMA Channels
uhd::device_addr_t dma_fifo_args; for (size_t i = 0; i < nof_radios * nof_channels; i++) {
dma_fifo_args.set("base_addr", std::to_string(dma_fifo_depth * rf_channel_idx)); uhd::device_addr_t dma_fifo_args;
dma_fifo_args.set("depth", std::to_string(dma_fifo_depth)); dma_fifo_args.set("base_addr", std::to_string(dma_fifo_depth * i));
dma_fifo_args.set("depth", std::to_string(dma_fifo_depth));
Debug("Configure " << dma_id << ":" << rf_channel_idx << " with args " << dma_fifo_args.to_string()); UHD_LOG_DEBUG(dma_id, "Setting channel " << i << " args: " << dma_fifo_args.to_string());
dma_ctrl->set_args(dma_fifo_args, rf_channel_idx); dma_ctrl->set_args(dma_fifo_args, i);
}
}
Debug("Configuration done!")
}) })
} }
uhd_error connect() uhd_error connect()
{ {
UHD_SAFE_C_SAVE_ERROR(this, for (size_t radio_idx = 0; radio_idx < nof_radios; radio_idx++) { UHD_SAFE_C_SAVE_ERROR(this,
// Radio -> DDC
Debug("Connecting " << radio_id[radio_idx] << ":0 -> " << ddc_id[radio_idx] << ":0"); // Get Tx and Rx Graph
rx_graph->connect(radio_id[radio_idx], 0, ddc_id[radio_idx], 0, nof_samples_per_packet); rx_graph = device3->create_graph("rx_graph");
tx_graph = device3->create_graph("tx_graph");
// DUC -> Radio
Debug("Connecting " << duc_id[radio_idx] << ":0 -> " << radio_id[radio_idx] << ":0"); for (size_t i = 0; i < nof_radios; i++) {
tx_graph->connect(duc_id[radio_idx], 0, radio_id[radio_idx], 0, nof_samples_per_packet); // Radio -> DDC
UHD_LOG_DEBUG(rx_graph->get_name(), "Connecting " << radio_id[i] << " -> " << ddc_id[i]);
// DMA FIFO -> DUC rx_graph->connect(radio_id[i], 0, ddc_id[i], 0, nof_samples_per_packet);
for (size_t channel_idx = 0; channel_idx < nof_channels; channel_idx++) {
size_t dma_port = radio_idx * nof_channels + channel_idx; // DUC -> Radio
Debug("Connecting " << dma_id << ":" << dma_port << " -> " << duc_id[radio_idx] << ":" << channel_idx); UHD_LOG_DEBUG(tx_graph->get_name(), "Connecting " << duc_id[i] << " -> " << radio_id[i]);
tx_graph->connect(dma_id, dma_port, duc_id[radio_idx], channel_idx, nof_samples_per_packet); tx_graph->connect(duc_id[i], 0, radio_id[i], 0, nof_samples_per_packet);
}
}) // DMA FIFO -> DUC
for (size_t j = 0; j < nof_channels; j++) {
size_t dma_port = i * nof_channels + j;
UHD_LOG_DEBUG(tx_graph->get_name(),
"Connecting " << dma_id << ":" << dma_port << " -> " << duc_id[i] << ":"
<< j);
tx_graph->connect(dma_id, dma_port, duc_id[i], j, nof_samples_per_packet);
}
})
} }
uhd_error get_streams() uhd_error get_streams()
@ -425,6 +351,12 @@ public:
return err; return err;
} }
// Connect components
err = connect();
if (err != UHD_ERROR_NONE) {
return err;
}
return UHD_ERROR_NONE; return UHD_ERROR_NONE;
} }
@ -468,7 +400,11 @@ public:
} }
uhd_error set_sync_source(const std::string& source) override uhd_error set_sync_source(const std::string& source) override
{ {
sync_source = source; Debug("Setting sync source to " << source);
for (size_t radio_idx = 0; radio_idx < nof_radios; radio_idx++) {
radio_ctrl[radio_idx]->set_clock_source(source);
radio_ctrl[radio_idx]->set_time_source(source);
}
return UHD_ERROR_NONE; return UHD_ERROR_NONE;
} }
uhd_error get_gain_range(uhd::gain_range_t& tx_gain_range, uhd::gain_range_t& rx_gain_range) override uhd_error get_gain_range(uhd::gain_range_t& tx_gain_range, uhd::gain_range_t& rx_gain_range) override
@ -479,64 +415,212 @@ public:
return UHD_ERROR_NONE; return UHD_ERROR_NONE;
} }
uhd_error set_master_clock_rate(double rate) override { return UHD_ERROR_NONE; } uhd_error set_master_clock_rate(double rate) override { return UHD_ERROR_NONE; }
uhd_error set_rx_rate(double rate) override { return UHD_ERROR_NONE; } uhd_error set_rx_rate(double rate) override
uhd_error set_tx_rate(double rate) override { return UHD_ERROR_NONE; } {
UHD_SAFE_C_SAVE_ERROR(this, for (size_t i = 0; i < nof_radios; i++) {
for (size_t j = 0; j < nof_channels; j++) {
UHD_LOG_DEBUG(ddc_id[i], "Setting channel " << j << " output rate to " << rate / 1e6 << " MHz");
ddc_ctrl[i]->set_arg("output_rate", std::to_string(rate), j);
}
})
}
uhd_error set_tx_rate(double rate) override
{
UHD_SAFE_C_SAVE_ERROR(this, for (size_t i = 0; i < nof_radios; i++) {
for (size_t j = 0; j < nof_channels; j++) {
UHD_LOG_DEBUG(duc_id[i], "Setting channel " << j << " input rate to " << rate / 1e6 << " MHz");
duc_ctrl[i]->set_arg("input_rate", std::to_string(rate), j);
}
})
}
uhd_error set_command_time(const uhd::time_spec_t& timespec) override { return UHD_ERROR_NONE; } uhd_error set_command_time(const uhd::time_spec_t& timespec) override { return UHD_ERROR_NONE; }
uhd_error get_rx_stream(const uhd::stream_args_t& args, size_t& max_num_samps) override uhd_error get_rx_stream(const uhd::stream_args_t& args, size_t& max_num_samps) override
{ {
uhd_error err; UHD_SAFE_C_SAVE_ERROR(
this, uhd::stream_args_t stream_args("fc32", "sc16");
// Get Tx and Rx Graph stream_args.channels.resize(nof_radios * nof_channels);
tx_graph = device3->create_graph("tx_graph");
rx_graph = device3->create_graph("rx_graph");
// Configure components // Populate stream arguments with RF-NOC blocks interfaces
err = configure(); size_t channel_count = 0;
if (err != UHD_ERROR_NONE) { for (size_t i = 0; i < nof_radios; i++) {
return err; for (size_t j = 0; j < nof_channels; j++, channel_count++) {
} std::string channel_str = std::to_string(channel_count);
// Connect components stream_args.args["block_id" + channel_str] = DDC_BLOCK_NAME + "_" + std::to_string(i);
err = connect(); stream_args.args["block_port" + channel_str] = std::to_string(j);
if (err != UHD_ERROR_NONE) { stream_args.channels[channel_count] = channel_count;
return err; }
}
Debug("Getting Rx Stream with arguments " << stream_args.args.to_pp_string());
rx_stream = device3->get_rx_stream(stream_args);
max_num_samps = rx_stream->get_max_num_samps();)
}
uhd_error get_tx_stream(const uhd::stream_args_t& args, size_t& max_num_samps) override
{
UHD_SAFE_C_SAVE_ERROR(
this, uhd::stream_args_t stream_args("fc32", "sc16");
stream_args.channels.resize(nof_radios * nof_channels);
// Populate stream arguments with RF-NOC blocks interfaces
size_t channel_count = 0;
for (size_t i = 0; i < nof_radios; i++) {
for (size_t j = 0; j < nof_channels; j++, channel_count++) {
std::string channel_str = std::to_string(channel_count);
stream_args.args["block_id" + channel_str] = DMA_FIFO_BLOCK_NAME + "_0";
stream_args.args["block_port" + channel_str] = channel_str;
stream_args.channels[channel_count] = channel_count;
}
}
Debug("Getting Tx Stream with arguments " << stream_args.args.to_pp_string());
tx_stream = device3->get_tx_stream(stream_args);
max_num_samps = tx_stream->get_max_num_samps();)
}
uhd_error set_tx_gain(size_t ch, double gain) override
{
if (ch >= nof_channels * nof_radios) {
last_error = "Invalid channel index " + std::to_string(ch);
return UHD_ERROR_INDEX;
} }
// Get streams size_t radio_idx = ch / nof_channels;
err = get_streams(); size_t channel_idx = ch % nof_channels;
if (err != UHD_ERROR_NONE) {
return err; // Set the gain for the channel zero only
if (channel_idx != 0) {
last_error = "None";
return UHD_ERROR_NONE;
} }
max_num_samps = rx_stream->get_max_num_samps(); UHD_SAFE_C_SAVE_ERROR(
return UHD_ERROR_NONE; this, UHD_LOG_DEBUG(radio_id[radio_idx], "Setting TX Gain: " << gain << " dB...");
radio_ctrl[radio_idx]->set_tx_gain(gain, 0);
UHD_LOG_DEBUG(radio_id[radio_idx], "Actual TX Gain: " << radio_ctrl[radio_idx]->get_rx_gain(0) << " dB...");)
} }
uhd_error get_tx_stream(const uhd::stream_args_t& args, size_t& max_num_samps) override
uhd_error set_rx_gain(size_t ch, double gain) override
{ {
max_num_samps = tx_stream->get_max_num_samps(); if (ch >= nof_channels * nof_radios) {
return UHD_ERROR_NONE; last_error = "Invalid channel index " + std::to_string(ch);
return UHD_ERROR_INDEX;
}
size_t radio_idx = ch / nof_channels;
size_t channel_idx = ch % nof_channels;
// Set the gain for the channel zero only
if (channel_idx != 0) {
last_error = "None";
return UHD_ERROR_NONE;
}
UHD_SAFE_C_SAVE_ERROR(
this, UHD_LOG_DEBUG(radio_id[radio_idx], "Setting RX Gain: " << gain << " dB...");
radio_ctrl[radio_idx]->set_rx_gain(gain, 0);
UHD_LOG_DEBUG(radio_id[radio_idx], "Actual RX Gain: " << radio_ctrl[radio_idx]->get_rx_gain(0) << " dB...");)
} }
uhd_error set_tx_gain(size_t ch, double gain) override { return UHD_ERROR_NONE; } uhd_error get_tx_gain(double& gain) override { UHD_SAFE_C_SAVE_ERROR(this, gain = radio_ctrl[0]->get_tx_gain(0);) }
uhd_error set_rx_gain(size_t ch, double gain) override { return UHD_ERROR_NONE; } uhd_error get_rx_gain(double& gain) override { UHD_SAFE_C_SAVE_ERROR(this, gain = radio_ctrl[0]->get_rx_gain(0);) }
uhd_error get_rx_gain(double& gain) override { return UHD_ERROR_NONE; }
uhd_error get_tx_gain(double& gain) override { return UHD_ERROR_NONE; }
uhd_error set_tx_freq(uint32_t ch, double target_freq, double& actual_freq) override uhd_error set_tx_freq(uint32_t ch, double target_freq, double& actual_freq) override
{ {
if (ch < tx_freq_hz.size()) { if (ch >= tx_freq_hz.size()) {
tx_freq_hz[ch] = target_freq; last_error = "Invalid channel index " + std::to_string(ch);
actual_freq = tx_freq_hz[ch]; return UHD_ERROR_INDEX;
} }
return UHD_ERROR_NONE; if (not std::isnormal(target_freq)) {
last_error = "Invalid TX frequency value " + std::to_string(target_freq) + " for channel " + std::to_string(ch);
return UHD_ERROR_VALUE;
}
// Nothing to update
if (std::round(tx_freq_hz[ch]) == std::round(target_freq)) {
last_error = "None";
return UHD_ERROR_NONE;
}
// Update frequency
tx_freq_hz[ch] = target_freq;
actual_freq = tx_freq_hz[ch];
UHD_SAFE_C_SAVE_ERROR(this,
// For each radio...
for (size_t i = 0; i < nof_radios; i++) {
// Calculate center frequency from average
double center_freq_hz = 0.0;
for (size_t j = 0; j < nof_channels; j++) {
if (not std::isnormal(tx_freq_hz[i * nof_channels + j])) {
tx_freq_hz[i * nof_channels + j] = target_freq;
}
center_freq_hz += tx_freq_hz[i * nof_channels + j];
}
center_freq_hz /= nof_channels;
// Set Radio Tx freq
UHD_LOG_DEBUG(radio_id[i], "Setting TX Freq: " << center_freq_hz / 1e6 << " MHz...");
radio_ctrl[i]->set_tx_frequency(center_freq_hz, 0);
center_freq_hz = radio_ctrl[i]->get_tx_frequency(0);
UHD_LOG_DEBUG(radio_id[i], "Actual TX Freq: " << center_freq_hz / 1e6 << " MHz...");
// Setup DUC
for (size_t j = 0; j < nof_channels; j++) {
double freq_hz = tx_freq_hz[nof_channels * i + j] - center_freq_hz;
UHD_LOG_DEBUG(duc_id[i], "Setting " << j << " freq: " << freq_hz / 1e6 << " MHz ...");
duc_ctrl[i]->set_arg("freq", std::to_string(freq_hz), j);
}
})
} }
uhd_error set_rx_freq(uint32_t ch, double target_freq, double& actual_freq) override uhd_error set_rx_freq(uint32_t ch, double target_freq, double& actual_freq) override
{ {
if (ch < rx_freq_hz.size()) { if (ch >= rx_freq_hz.size()) {
rx_freq_hz[ch] = target_freq; last_error = "Invalid channel index " + std::to_string(ch);
actual_freq = rx_freq_hz[ch]; return UHD_ERROR_INDEX;
} }
return UHD_ERROR_NONE; if (not std::isnormal(target_freq)) {
last_error = "Invalid TX frequency value " + std::to_string(target_freq) + " for channel " + std::to_string(ch);
return UHD_ERROR_VALUE;
}
// Nothing to update
if (std::round(rx_freq_hz[ch]) == std::round(target_freq)) {
last_error = "None";
return UHD_ERROR_NONE;
}
// Update frequency
rx_freq_hz[ch] = target_freq;
actual_freq = rx_freq_hz[ch];
UHD_SAFE_C_SAVE_ERROR(this, for (size_t i = 0; i < nof_radios; i++) {
// Calculate center frequency from average
double center_freq_hz = 0.0;
for (size_t j = 0; j < nof_channels; j++) {
if (not std::isnormal(rx_freq_hz[i * nof_channels + j])) {
rx_freq_hz[i * nof_channels + j] = target_freq;
}
center_freq_hz += rx_freq_hz[i * nof_channels + j];
}
center_freq_hz /= nof_channels;
// Set Radio Tx freq
UHD_LOG_DEBUG(radio_id[i], "Setting RX Freq: " << center_freq_hz / 1e6 << " MHz...");
radio_ctrl[i]->set_rx_frequency(center_freq_hz, 0);
center_freq_hz = radio_ctrl[i]->get_rx_frequency(0);
UHD_LOG_DEBUG(radio_id[i], "Actual RX Freq: " << center_freq_hz / 1e6 << " MHz...");
// Setup DDC
for (size_t j = 0; j < nof_channels; j++) {
double freq_hz = rx_freq_hz[nof_channels * i + j] - center_freq_hz;
UHD_LOG_DEBUG(ddc_id[i], "Setting " << j << " freq: " << freq_hz / 1e6 << " MHz ...");
ddc_ctrl[i]->set_arg("freq", std::to_string(freq_hz), j);
}
})
} }
}; };

Loading…
Cancel
Save