You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

322 lines
8.5 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2020 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSLTE_COMMON_H
#define SRSLTE_COMMON_H
/*******************************************************************************
INCLUDES
*******************************************************************************/
#include "srslte/adt/span.h"
#include <chrono>
#include <memory>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>
/*******************************************************************************
DEFINES
*******************************************************************************/
#define SRSLTE_UE_CATEGORY 4
#define SRSLTE_N_SRB 3
#define SRSLTE_N_DRB 8
#define SRSLTE_N_RADIO_BEARERS 11
#define SRSLTE_N_MCH_LCIDS 32
#define FDD_HARQ_DELAY_DL_MS 4
#define FDD_HARQ_DELAY_UL_MS 4
#define MSG3_DELAY_MS 2 // Delay added to FDD_HARQ_DELAY_DL_MS
#define TTI_SUB(a, b) ((((a) + 10240) - (b)) % 10240)
#define TTI_ADD(a, b) (((a) + (b)) % 10240)
#define TTI_TX(tti) TTI_ADD(tti, FDD_HARQ_DELAY_DL_MS)
#define TTI_RX(tti) (TTI_SUB(tti, FDD_HARQ_DELAY_UL_MS))
#define TTI_RX_ACK(tti) (TTI_ADD(tti, FDD_HARQ_DELAY_UL_MS + FDD_HARQ_DELAY_DL_MS))
#define TTIMOD_SZ 20
#define TTIMOD(tti) (tti % TTIMOD_SZ)
#define INVALID_TTI 10241
#define TX_ENB_DELAY FDD_HARQ_DELAY_UL_MS
#define PHICH_MAX_SF 6 // Maximum PHICH in a subframe (1 in FDD, > 1 in TDD, see table 9.1.2-1 36.213)
#define ASYNC_DL_SCHED (FDD_HARQ_DELAY_UL_MS <= 4)
// Cat 4 UE - Max number of DL-SCH transport block bits received within a TTI
// 3GPP 36.306 v15.4.0 Table 4.1.1 for Category 11 with 2 layers and 256QAM
#define SRSLTE_MAX_TBSIZE_BITS 97896
#define SRSLTE_BUFFER_HEADER_OFFSET 1020
#define SRSLTE_MAX_BUFFER_SIZE_BITS (SRSLTE_MAX_TBSIZE_BITS + SRSLTE_BUFFER_HEADER_OFFSET)
#define SRSLTE_MAX_BUFFER_SIZE_BYTES (SRSLTE_MAX_TBSIZE_BITS / 8 + SRSLTE_BUFFER_HEADER_OFFSET)
//#define SRSLTE_BUFFER_POOL_LOG_ENABLED
#ifdef SRSLTE_BUFFER_POOL_LOG_ENABLED
#define pool_allocate (srslte::allocate_unique_buffer(*pool, __PRETTY_FUNCTION__))
#define pool_allocate_blocking (srslte::allocate_unique_buffer(*pool, __PRETTY_FUNCTION__, true))
#define SRSLTE_BUFFER_POOL_LOG_NAME_LEN 128
#else
#define pool_allocate (srslte::allocate_unique_buffer(*pool))
#define pool_allocate_blocking (srslte::allocate_unique_buffer(*pool, true))
#endif
/*******************************************************************************
TYPEDEFS
*******************************************************************************/
namespace srslte {
#define ENABLE_TIMESTAMP
/******************************************************************************
* Byte and Bit buffers
*
* Generic buffers with headroom to accommodate packet headers and custom
* copy constructors & assignment operators for quick copying. Byte buffer
* holds a next pointer to support linked lists.
*****************************************************************************/
class byte_buffer_t
{
public:
uint32_t N_bytes;
uint8_t buffer[SRSLTE_MAX_BUFFER_SIZE_BYTES];
uint8_t* msg;
#ifdef SRSLTE_BUFFER_POOL_LOG_ENABLED
char debug_name[SRSLTE_BUFFER_POOL_LOG_NAME_LEN];
#endif
struct buffer_metadata_t {
uint32_t pdcp_sn;
} md;
byte_buffer_t() : N_bytes(0)
{
bzero(buffer, SRSLTE_MAX_BUFFER_SIZE_BYTES);
msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET];
next = NULL;
#ifdef SRSLTE_BUFFER_POOL_LOG_ENABLED
bzero(debug_name, SRSLTE_BUFFER_POOL_LOG_NAME_LEN);
#endif
}
byte_buffer_t(const byte_buffer_t& buf)
{
bzero(buffer, SRSLTE_MAX_BUFFER_SIZE_BYTES);
msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET];
next = NULL;
// copy actual contents
md = buf.md;
N_bytes = buf.N_bytes;
memcpy(msg, buf.msg, N_bytes);
}
byte_buffer_t& operator=(const byte_buffer_t& buf)
{
// avoid self assignment
if (&buf == this)
return *this;
bzero(buffer, SRSLTE_MAX_BUFFER_SIZE_BYTES);
msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET];
next = NULL;
N_bytes = buf.N_bytes;
md = buf.md;
memcpy(msg, buf.msg, N_bytes);
return *this;
}
void clear()
{
msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET];
N_bytes = 0;
md = {};
#ifdef ENABLE_TIMESTAMP
timestamp_is_set = false;
#endif
}
uint32_t get_headroom() { return msg - buffer; }
// Returns the remaining space from what is reported to be the length of msg
uint32_t get_tailroom() { return (sizeof(buffer) - (msg - buffer) - N_bytes); }
std::chrono::microseconds get_latency_us()
{
#ifdef ENABLE_TIMESTAMP
if (!timestamp_is_set) {
return std::chrono::microseconds{0};
}
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::high_resolution_clock::now() - tp);
#else
return std::chrono::microseconds{0};
#endif
}
std::chrono::high_resolution_clock::time_point get_timestamp() { return tp; }
void set_timestamp()
{
#ifdef ENABLE_TIMESTAMP
tp = std::chrono::high_resolution_clock::now();
timestamp_is_set = true;
#endif
}
void set_timestamp(std::chrono::high_resolution_clock::time_point tp_)
{
tp = tp_;
timestamp_is_set = true;
}
void append_bytes(uint8_t* buf, uint32_t size)
{
memcpy(&msg[N_bytes], buf, size);
N_bytes += size;
}
private:
#ifdef ENABLE_TIMESTAMP
std::chrono::high_resolution_clock::time_point tp;
bool timestamp_is_set = false;
#endif
byte_buffer_t* next;
};
struct bit_buffer_t {
uint32_t N_bits;
uint8_t buffer[SRSLTE_MAX_BUFFER_SIZE_BITS];
uint8_t* msg;
#ifdef SRSLTE_BUFFER_POOL_LOG_ENABLED
char debug_name[128];
#endif
bit_buffer_t() : N_bits(0)
{
msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET];
#ifdef ENABLE_TIMESTAMP
timestamp_is_set = false;
#endif
}
bit_buffer_t(const bit_buffer_t& buf)
{
msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET];
N_bits = buf.N_bits;
memcpy(msg, buf.msg, N_bits);
}
bit_buffer_t& operator=(const bit_buffer_t& buf)
{
// avoid self assignment
if (&buf == this) {
return *this;
}
msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET];
N_bits = buf.N_bits;
memcpy(msg, buf.msg, N_bits);
return *this;
}
void clear()
{
msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET];
N_bits = 0;
#ifdef ENABLE_TIMESTAMP
timestamp_is_set = false;
#endif
}
uint32_t get_headroom() { return msg - buffer; }
long get_latency_us()
{
#ifdef ENABLE_TIMESTAMP
if (!timestamp_is_set)
return 0;
gettimeofday(&timestamp[2], NULL);
return timestamp[0].tv_usec;
#else
return 0;
#endif
}
void set_timestamp()
{
#ifdef ENABLE_TIMESTAMP
gettimeofday(&timestamp[1], NULL);
timestamp_is_set = true;
#endif
}
private:
#ifdef ENABLE_TIMESTAMP
struct timeval timestamp[3];
bool timestamp_is_set;
#endif
};
// Create a Managed Life-Time Byte Buffer
class byte_buffer_pool;
class byte_buffer_deleter
{
public:
explicit byte_buffer_deleter(byte_buffer_pool* pool_ = nullptr) : pool(pool_) {}
void operator()(byte_buffer_t* buf) const;
byte_buffer_pool* pool;
};
typedef std::unique_ptr<byte_buffer_t, byte_buffer_deleter> unique_byte_buffer_t;
///
/// Utilities to create a span out of a byte_buffer.
///
using byte_span = span<uint8_t>;
using const_byte_span = span<const uint8_t>;
inline byte_span make_span(byte_buffer_t& b)
{
return byte_span{b.msg, b.N_bytes};
}
inline const_byte_span make_span(const byte_buffer_t& b)
{
return const_byte_span{b.msg, b.N_bytes};
}
inline byte_span make_span(unique_byte_buffer_t& b)
{
return byte_span{b->msg, b->N_bytes};
}
inline const_byte_span make_span(const unique_byte_buffer_t& b)
{
return const_byte_span{b->msg, b->N_bytes};
}
// helper functions
inline const char* enum_to_text(const char* const array[], uint32_t nof_types, uint32_t enum_val)
{
return enum_val >= nof_types ? "" : array[enum_val];
}
template <class ItemType>
ItemType enum_to_number(ItemType* array, uint32_t nof_types, uint32_t enum_val)
{
return enum_val >= nof_types ? -1 : array[enum_val];
}
enum class srslte_rat_t { lte, nr, nulltype };
inline std::string to_string(const srslte_rat_t& type)
{
constexpr static const char* options[] = {"LTE", "NR"};
return enum_to_text(options, (uint32_t)srslte_rat_t::nulltype, (uint32_t)type);
}
} // namespace srslte
#endif // SRSLTE_COMMON_H