/** * * \section COPYRIGHT * * Copyright 2013-2020 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSLTE_COMMON_H #define SRSLTE_COMMON_H /******************************************************************************* INCLUDES *******************************************************************************/ #include "srslte/adt/span.h" #include #include #include #include #include /******************************************************************************* DEFINES *******************************************************************************/ #define SRSLTE_UE_CATEGORY 4 #define SRSLTE_N_SRB 3 #define SRSLTE_N_DRB 8 #define SRSLTE_N_RADIO_BEARERS 11 #define SRSLTE_N_MCH_LCIDS 32 #define FDD_HARQ_DELAY_DL_MS 4 #define FDD_HARQ_DELAY_UL_MS 4 #define MSG3_DELAY_MS 2 // Delay added to FDD_HARQ_DELAY_DL_MS #define TTI_SUB(a, b) ((((a) + 10240) - (b)) % 10240) #define TTI_ADD(a, b) (((a) + (b)) % 10240) #define TTI_TX(tti) TTI_ADD(tti, FDD_HARQ_DELAY_DL_MS) #define TTI_RX(tti) (TTI_SUB(tti, FDD_HARQ_DELAY_UL_MS)) #define TTI_RX_ACK(tti) (TTI_ADD(tti, FDD_HARQ_DELAY_UL_MS + FDD_HARQ_DELAY_DL_MS)) #define TTIMOD_SZ 20 #define TTIMOD(tti) (tti % TTIMOD_SZ) #define INVALID_TTI 10241 #define TX_ENB_DELAY FDD_HARQ_DELAY_UL_MS #define PHICH_MAX_SF 6 // Maximum PHICH in a subframe (1 in FDD, > 1 in TDD, see table 9.1.2-1 36.213) #define ASYNC_DL_SCHED (FDD_HARQ_DELAY_UL_MS <= 4) // Cat 4 UE - Max number of DL-SCH transport block bits received within a TTI // 3GPP 36.306 v15.4.0 Table 4.1.1 for Category 11 with 2 layers and 256QAM #define SRSLTE_MAX_TBSIZE_BITS 97896 #define SRSLTE_BUFFER_HEADER_OFFSET 1020 #define SRSLTE_MAX_BUFFER_SIZE_BITS (SRSLTE_MAX_TBSIZE_BITS + SRSLTE_BUFFER_HEADER_OFFSET) #define SRSLTE_MAX_BUFFER_SIZE_BYTES (SRSLTE_MAX_TBSIZE_BITS / 8 + SRSLTE_BUFFER_HEADER_OFFSET) //#define SRSLTE_BUFFER_POOL_LOG_ENABLED #ifdef SRSLTE_BUFFER_POOL_LOG_ENABLED #define pool_allocate (srslte::allocate_unique_buffer(*pool, __PRETTY_FUNCTION__)) #define pool_allocate_blocking (srslte::allocate_unique_buffer(*pool, __PRETTY_FUNCTION__, true)) #define SRSLTE_BUFFER_POOL_LOG_NAME_LEN 128 #else #define pool_allocate (srslte::allocate_unique_buffer(*pool)) #define pool_allocate_blocking (srslte::allocate_unique_buffer(*pool, true)) #endif /******************************************************************************* TYPEDEFS *******************************************************************************/ namespace srslte { #define ENABLE_TIMESTAMP /****************************************************************************** * Byte and Bit buffers * * Generic buffers with headroom to accommodate packet headers and custom * copy constructors & assignment operators for quick copying. Byte buffer * holds a next pointer to support linked lists. *****************************************************************************/ class byte_buffer_t { public: uint32_t N_bytes; uint8_t buffer[SRSLTE_MAX_BUFFER_SIZE_BYTES]; uint8_t* msg; #ifdef SRSLTE_BUFFER_POOL_LOG_ENABLED char debug_name[SRSLTE_BUFFER_POOL_LOG_NAME_LEN]; #endif struct buffer_metadata_t { uint32_t pdcp_sn; } md; byte_buffer_t() : N_bytes(0) { bzero(buffer, SRSLTE_MAX_BUFFER_SIZE_BYTES); msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET]; next = NULL; #ifdef SRSLTE_BUFFER_POOL_LOG_ENABLED bzero(debug_name, SRSLTE_BUFFER_POOL_LOG_NAME_LEN); #endif } byte_buffer_t(const byte_buffer_t& buf) { bzero(buffer, SRSLTE_MAX_BUFFER_SIZE_BYTES); msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET]; next = NULL; // copy actual contents md = buf.md; N_bytes = buf.N_bytes; memcpy(msg, buf.msg, N_bytes); } byte_buffer_t& operator=(const byte_buffer_t& buf) { // avoid self assignment if (&buf == this) return *this; bzero(buffer, SRSLTE_MAX_BUFFER_SIZE_BYTES); msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET]; next = NULL; N_bytes = buf.N_bytes; md = buf.md; memcpy(msg, buf.msg, N_bytes); return *this; } void clear() { msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET]; N_bytes = 0; md = {}; #ifdef ENABLE_TIMESTAMP timestamp_is_set = false; #endif } uint32_t get_headroom() { return msg - buffer; } // Returns the remaining space from what is reported to be the length of msg uint32_t get_tailroom() { return (sizeof(buffer) - (msg - buffer) - N_bytes); } std::chrono::microseconds get_latency_us() { #ifdef ENABLE_TIMESTAMP if (!timestamp_is_set) { return std::chrono::microseconds{0}; } return std::chrono::duration_cast(std::chrono::high_resolution_clock::now() - tp); #else return std::chrono::microseconds{0}; #endif } std::chrono::high_resolution_clock::time_point get_timestamp() { return tp; } void set_timestamp() { #ifdef ENABLE_TIMESTAMP tp = std::chrono::high_resolution_clock::now(); timestamp_is_set = true; #endif } void set_timestamp(std::chrono::high_resolution_clock::time_point tp_) { tp = tp_; timestamp_is_set = true; } void append_bytes(uint8_t* buf, uint32_t size) { memcpy(&msg[N_bytes], buf, size); N_bytes += size; } private: #ifdef ENABLE_TIMESTAMP std::chrono::high_resolution_clock::time_point tp; bool timestamp_is_set = false; #endif byte_buffer_t* next; }; struct bit_buffer_t { uint32_t N_bits; uint8_t buffer[SRSLTE_MAX_BUFFER_SIZE_BITS]; uint8_t* msg; #ifdef SRSLTE_BUFFER_POOL_LOG_ENABLED char debug_name[128]; #endif bit_buffer_t() : N_bits(0) { msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET]; #ifdef ENABLE_TIMESTAMP timestamp_is_set = false; #endif } bit_buffer_t(const bit_buffer_t& buf) { msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET]; N_bits = buf.N_bits; memcpy(msg, buf.msg, N_bits); } bit_buffer_t& operator=(const bit_buffer_t& buf) { // avoid self assignment if (&buf == this) { return *this; } msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET]; N_bits = buf.N_bits; memcpy(msg, buf.msg, N_bits); return *this; } void clear() { msg = &buffer[SRSLTE_BUFFER_HEADER_OFFSET]; N_bits = 0; #ifdef ENABLE_TIMESTAMP timestamp_is_set = false; #endif } uint32_t get_headroom() { return msg - buffer; } long get_latency_us() { #ifdef ENABLE_TIMESTAMP if (!timestamp_is_set) return 0; gettimeofday(×tamp[2], NULL); return timestamp[0].tv_usec; #else return 0; #endif } void set_timestamp() { #ifdef ENABLE_TIMESTAMP gettimeofday(×tamp[1], NULL); timestamp_is_set = true; #endif } private: #ifdef ENABLE_TIMESTAMP struct timeval timestamp[3]; bool timestamp_is_set; #endif }; // Create a Managed Life-Time Byte Buffer class byte_buffer_pool; class byte_buffer_deleter { public: explicit byte_buffer_deleter(byte_buffer_pool* pool_ = nullptr) : pool(pool_) {} void operator()(byte_buffer_t* buf) const; byte_buffer_pool* pool; }; typedef std::unique_ptr unique_byte_buffer_t; /// /// Utilities to create a span out of a byte_buffer. /// using byte_span = span; using const_byte_span = span; inline byte_span make_span(byte_buffer_t& b) { return byte_span{b.msg, b.N_bytes}; } inline const_byte_span make_span(const byte_buffer_t& b) { return const_byte_span{b.msg, b.N_bytes}; } inline byte_span make_span(unique_byte_buffer_t& b) { return byte_span{b->msg, b->N_bytes}; } inline const_byte_span make_span(const unique_byte_buffer_t& b) { return const_byte_span{b->msg, b->N_bytes}; } // helper functions inline const char* enum_to_text(const char* const array[], uint32_t nof_types, uint32_t enum_val) { return enum_val >= nof_types ? "" : array[enum_val]; } template ItemType enum_to_number(ItemType* array, uint32_t nof_types, uint32_t enum_val) { return enum_val >= nof_types ? -1 : array[enum_val]; } enum class srslte_rat_t { lte, nr, nulltype }; inline std::string to_string(const srslte_rat_t& type) { constexpr static const char* options[] = {"LTE", "NR"}; return enum_to_text(options, (uint32_t)srslte_rat_t::nulltype, (uint32_t)type); } } // namespace srslte #endif // SRSLTE_COMMON_H