You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/lib/test/rlc/rlc_am_lte_test.cc

3980 lines
126 KiB
C++

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "rlc_test_common.h"
#include "srsran/common/buffer_pool.h"
#include "srsran/common/rlc_pcap.h"
#include "srsran/common/test_common.h"
#include "srsran/common/threads.h"
#include "srsran/interfaces/ue_pdcp_interfaces.h"
#include "srsran/interfaces/ue_rrc_interfaces.h"
#include "srsran/rlc/rlc_am_lte.h"
#define NBUFS 5
#define HAVE_PCAP 0
#define SDU_SIZE 500
using namespace srsue;
using namespace srsran;
class ul_writer : public thread
{
public:
ul_writer(rlc_am* rlc_) : rlc(rlc_), thread("UL_WRITER") {}
~ul_writer() { stop(); }
void stop()
{
running = false;
int cnt = 0;
while (running && cnt < 100) {
usleep(10000);
cnt++;
}
wait_thread_finish();
}
private:
void run_thread()
{
int sn = 0;
running = true;
while (running) {
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
if (!pdu) {
printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n");
// backoff for a bit
usleep(1000);
continue;
}
for (uint32_t i = 0; i < SDU_SIZE; i++) {
pdu->msg[i] = sn;
}
sn++;
pdu->N_bytes = SDU_SIZE;
rlc->write_sdu(std::move(pdu));
}
running = false;
}
rlc_am* rlc = nullptr;
std::atomic<bool> running = {false};
};
int basic_test_tx(rlc_am* rlc, byte_buffer_t pdu_bufs[NBUFS])
{
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc->write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(13 == rlc->get_buffer_state()); // 2 Bytes for fixed header + 6 for LIs + 5 for payload
// Read 5 PDUs from RLC1 (1 byte each)
for (int i = 0; i < NBUFS; i++) {
uint32_t len = rlc->read_pdu(pdu_bufs[i].msg, 3); // 2 bytes for header + 1 byte payload
pdu_bufs[i].N_bytes = len;
TESTASSERT(3 == len);
}
TESTASSERT(0 == rlc->get_buffer_state());
return SRSRAN_SUCCESS;
}
int basic_test()
{
rlc_am_tester tester;
timer_handler timers(8);
byte_buffer_t pdu_bufs[NBUFS];
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
// before configuring entity
TESTASSERT(0 == rlc1.get_buffer_state());
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
basic_test_tx(&rlc1, pdu_bufs);
// Write 5 PDUs into RLC2
for (int i = 0; i < NBUFS; i++) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
TESTASSERT(2 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
int len = rlc2.read_pdu(status_buf.msg, 2);
status_buf.N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.ack_sn == 5); // 5 is the last SN that was not received.
TESTASSERT(rlc_am_is_valid_status_pdu(status_check));
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check PDCP notifications
TESTASSERT(tester.notified_counts.size() == 5);
for (uint16_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 1);
TESTASSERT(*(tester.sdus[i]->msg) == i);
TESTASSERT(tester.notified_counts[i] == 1);
}
// Check statistics
TESTASSERT(rx_is_tx(rlc1.get_metrics(), rlc2.get_metrics()));
return SRSRAN_SUCCESS;
}
int concat_test()
{
rlc_am_tester tester;
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(13 == rlc1.get_buffer_state()); // 2 Bytes for fixed header + 6 for LIs + 5 for payload
// Read 1 PDUs from RLC1 containing all 5 SDUs
byte_buffer_t pdu_buf;
int len = rlc1.read_pdu(pdu_buf.msg, 13); // 8 bytes for header + payload
pdu_buf.N_bytes = len;
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDU into RLC2
rlc2.write_pdu(pdu_buf.msg, pdu_buf.N_bytes);
// Check status report
TESTASSERT(2 == rlc2.get_buffer_state());
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 2);
status_buf.N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.ack_sn == 1); // 1 is the last SN that was not received.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(tester.sdus.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 1);
TESTASSERT(*(tester.sdus[i]->msg) == i);
}
// Check PDCP notifications
TESTASSERT(tester.notified_counts.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 1);
TESTASSERT(*(tester.sdus[i]->msg) == i);
TESTASSERT(tester.notified_counts[i] == 1);
}
// Check statistics
TESTASSERT(rx_is_tx(rlc1.get_metrics(), rlc2.get_metrics()));
return SRSRAN_SUCCESS;
}
int segment_test(bool in_seq_rx)
{
rlc_am_tester tester;
srsran::timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (int j = 0; j < 10; j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(58 == rlc1.get_buffer_state()); // 2 bytes for header + 6 bytes for LI + 50 bytes for payload
// Read PDUs from RLC1 (force segmentation)
byte_buffer_t pdu_bufs[20];
int n_pdus = 0;
while (rlc1.get_buffer_state() > 0) {
len = rlc1.read_pdu(pdu_bufs[n_pdus].msg, 10); // 2 header + payload
pdu_bufs[n_pdus++].N_bytes = len;
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2
if (in_seq_rx) {
// deliver PDUs in order
for (int i = 0; i < n_pdus; ++i) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
} else {
// deliver PDUs in reverse order
for (int i = n_pdus - 1; i >= 0; --i) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
}
// Receiver will only generate status PDU if they arrive in order
// If SN=7 arrives first, but the Rx expects SN=0, status reporting will be delayed, see TS 36.322 v10 Section 5.2.3
if (in_seq_rx) {
TESTASSERT(2 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.ack_sn == n_pdus); // n_pdus (8) is the last SN that was not received.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check all notification of ack'ed PDUs
TESTASSERT(tester.notified_counts.size() == 5);
for (int i = 0; i < NBUFS; i++) {
auto not_it = tester.notified_counts.find(i);
TESTASSERT(not_it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
}
TESTASSERT(0 == rlc2.get_buffer_state());
TESTASSERT(tester.sdus.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 10);
for (int j = 0; j < 10; j++) {
TESTASSERT(tester.sdus[i]->msg[j] == j);
}
}
// Check statistics
TESTASSERT(rx_is_tx(rlc1.get_metrics(), rlc2.get_metrics()));
return SRSRAN_SUCCESS;
}
int retx_test()
{
rlc_am_tester tester;
timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(13 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (1 byte each)
byte_buffer_t pdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 byte header + 1 byte payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 1)
for (int i = 0; i < NBUFS; i++) {
if (i != 1) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
}
// check buffered bytes at receiver, 3 PDUs with one 1 B each (SN=0 has been delivered already)
rlc_bearer_metrics_t metrics = rlc2.get_metrics();
TESTASSERT(metrics.rx_buffered_bytes == 3);
// Step timers until reordering timeout expires
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
uint32_t buffer_state = rlc2.get_buffer_state();
TESTASSERT(4 == buffer_state);
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, buffer_state); // provide exactly the reported buffer state
status_buf.N_bytes = len;
// Assert all bytes for status PDU were read
buffer_state = rlc2.get_buffer_state();
TESTASSERT(0 == buffer_state);
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // 1 packet was lost.
TESTASSERT(status_check.nacks[0].nack_sn == 1); // SN 1 was lost.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 4.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(3 == rlc1.get_buffer_state()); // 2 byte header + 1 byte payload
// Check notifications of ack'ed PDUs
TESTASSERT(tester.notified_counts.size() == 4);
for (int i = 0; i < NBUFS; i++) {
auto not_it = tester.notified_counts.find(i);
if (i != 1) {
TESTASSERT(not_it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
} else {
TESTASSERT(not_it == tester.notified_counts.end());
}
}
// Read the retx PDU from RLC1
byte_buffer_t retx;
len = rlc1.read_pdu(retx.msg, 3); // 2 byte header + 1 byte payload
retx.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx.msg, retx.N_bytes);
TESTASSERT(tester.sdus.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
if (tester.sdus[i]->N_bytes != 1)
return -1;
if (*(tester.sdus[i]->msg) != i)
return -1;
}
// Step timers until poll Retx timeout expires
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
// Get status report of RETX PDU
buffer_state = rlc2.get_buffer_state();
TESTASSERT(2 == buffer_state);
len = rlc2.read_pdu(status_buf.msg, buffer_state); // provide exactly the reported buffer state
status_buf.N_bytes = len;
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // No packet was lost.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 4.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check all notification of ack'ed PDUs
TESTASSERT(tester.notified_counts.size() == 5);
for (int i = 0; i < NBUFS; i++) {
auto not_it = tester.notified_counts.find(i);
TESTASSERT(not_it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
return 0;
}
// Test correct upper layer signaling when maxRetx (default 4) have been reached
int max_retx_test()
{
rlc_am_tester tester;
timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
const rlc_config_t rlc_cfg = rlc_config_t::default_rlc_am_config();
if (not rlc1.configure(rlc_cfg)) {
return -1;
}
// Push 2 SDUs into RLC1
const uint32_t n_sdus = 2;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->md.pdcp_sn = i; // PDCP SN for notifications
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 2 PDUs from RLC1 (1 byte each)
const uint32_t n_pdus = 2;
byte_buffer_t pdu_bufs[n_pdus];
for (uint32_t i = 0; i < n_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 byte header + 1 byte payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Fake status PDU that ack SN=1
rlc_status_pdu_t fake_status = {};
fake_status.ack_sn = 2; // delivered up to SN=1
fake_status.N_nack = 1; // one SN was lost
fake_status.nacks[0].nack_sn = 0; // it was SN=0 that was lost
// pack into PDU
byte_buffer_t status_pdu;
rlc_am_write_status_pdu(&fake_status, &status_pdu);
// We've Tx'ed once already, loop until the max is reached
for (uint32_t retx_count = 0; retx_count < rlc_cfg.am.max_retx_thresh; ++retx_count) {
// we've not yet reached max attempts
TESTASSERT(tester.max_retx_triggered == false);
// Write status PDU to RLC1
rlc1.write_pdu(status_pdu.msg, status_pdu.N_bytes);
byte_buffer_t pdu_buf;
len = rlc1.read_pdu(pdu_buf.msg, 3);
}
// Now maxRetx should have been triggered
TESTASSERT(tester.max_retx_triggered == true);
return SRSRAN_SUCCESS;
}
// Purpose: test correct retx of lost segment and pollRetx timer expiration
int segment_retx_test()
{
rlc_am_tester tester;
timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push SDU(s) into RLC1
const uint32_t nof_sdus = 1; // just one SDU to make sure the transmitter sets polling bit
unique_byte_buffer_t sdu_bufs[nof_sdus];
for (uint32_t i = 0; i < nof_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
std::fill(sdu_bufs[i]->msg, sdu_bufs[i]->msg + sdu_bufs[i]->N_bytes, 0);
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 2 PDUs from RLC1
const uint32_t nof_pdus = 2;
byte_buffer_t pdu_bufs[nof_pdus];
for (uint32_t i = 0; i < nof_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 7); // 2 byte header
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(rlc1.get_buffer_state() == 0);
// Step timers until poll Retx timeout expires
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
uint32_t buffer_state = rlc1.get_buffer_state();
TESTASSERT(buffer_state == 7);
// Read retx PDU from RLC1
byte_buffer_t retx_pdu;
len = rlc1.read_pdu(retx_pdu.msg, buffer_state); // provide exactly the reported buffer state
retx_pdu.N_bytes = len;
// Write retx segment to RLC2
rlc2.write_pdu(retx_pdu.msg, retx_pdu.N_bytes);
buffer_state = rlc2.get_buffer_state(); // Status PDU
TESTASSERT(buffer_state == 2);
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // No packet was lost.
TESTASSERT(status_check.ack_sn == 1); // Delivered up to SN 0.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Make sure no notifications yet
TESTASSERT(tester.notified_counts.size() == 0);
// Step timers again until poll Retx timeout expires
for (int cnt = 0; cnt < 5; cnt++) {
TESTASSERT(rlc1.get_buffer_state() == 0); // No status transmissions until pollRetx expires
timers.step_all();
}
// read buffer state from RLC1 again to see if it has rescheduled SN=1 for retx
buffer_state = rlc1.get_buffer_state(); // Status PDU
TESTASSERT(buffer_state == 7);
// Read 2nd retx PDU from RLC1
byte_buffer_t retx_pdu2;
len = rlc1.read_pdu(retx_pdu2.msg, buffer_state); // provide exactly the reported buffer state
retx_pdu2.N_bytes = len;
// Write retx segment to RLC2
rlc2.write_pdu(retx_pdu2.msg, retx_pdu2.N_bytes);
// read Status PDU from RLC2 again
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // No packet was lost.
TESTASSERT(status_check.ack_sn == 2); // Delivered up to SN 0.
// Make sure SDU was notified
TESTASSERT(tester.notified_counts.size() == 1);
TESTASSERT(tester.notified_counts.find(0) != tester.notified_counts.end() && tester.notified_counts[0] == 1);
TESTASSERT(tester.sdus.size() == nof_sdus);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
if (tester.sdus[i]->N_bytes != 10) {
return SRSRAN_ERROR;
}
if (*(tester.sdus[i]->msg) != i) {
return SRSRAN_ERROR;
}
}
return SRSRAN_SUCCESS;
}
int resegment_test_1()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: | 10 | 10 | 10 | 10 | 10 |
// Retx PDU segments: | 5 | 5|
rlc_am_tester tester;
timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (int j = 0; j < 10; j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(58 == rlc1.get_buffer_state()); // 2 bytes for fixed header, 6 bytes for LIs, 50 bytes for data
// Read 5 PDUs from RLC1 (10 bytes each)
byte_buffer_t pdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 12); // 12 bytes for header + payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 1)
for (int i = 0; i < NBUFS; i++) {
if (i != 1)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
TESTASSERT(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // 1 packet was lost.
TESTASSERT(status_check.nacks[0].nack_sn == 1); // SN 1 was lost.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(12 == rlc1.get_buffer_state()); // 2 byte header + 10 data
// Check notifications
srslog::fetch_basic_logger("RLC_AM_1").debug("%ld", tester.notified_counts.size());
TESTASSERT(tester.notified_counts.size() == 4);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
if (i != 1) {
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
} else {
TESTASSERT(it == tester.notified_counts.end());
}
}
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
len = rlc1.read_pdu(retx1.msg, 9); // 4 byte header + 5 data
retx1.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
TESTASSERT(9 == rlc1.get_buffer_state());
// Step timers to get status report
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf = {};
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // 1 packet was lost.
TESTASSERT(status_check.nacks[0].nack_sn == 1); // SN 1 was lost.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Read the remaining segment
byte_buffer_t retx2;
len = rlc1.read_pdu(retx2.msg, 9); // 4 byte header + 5 data
retx2.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
TESTASSERT(tester.sdus.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
if (tester.sdus[i]->N_bytes != 10)
return -1;
for (int j = 0; j < 10; j++)
if (tester.sdus[i]->msg[j] != j)
return -1;
}
// Step timers to get status report
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf = {};
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // all packets delivered.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check notifications
TESTASSERT(tester.notified_counts.size() == 5);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
return 0;
}
int resegment_test_2()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: | 5 | 10 | 20 | 10 | 5 |
// Retx PDU segments: | 10 | 10 |
rlc_am_tester tester;
timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (int j = 0; j < 10; j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i; // Give each buffer a size of 10 bytes
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(58 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (5 bytes, 10 bytes, 20 bytes, 10 bytes, 5 bytes)
byte_buffer_t pdu_bufs[NBUFS];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 14); // 4 byte header + 10 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 25); // 5 byte header + 20 byte payload
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 14); // 4 byte header + 10 byte payload
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 7); // 2 byte header + 5 byte payload
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 2)
for (int i = 0; i < NBUFS; i++) {
if (i != 2)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
TESTASSERT(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // One packet was lost.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(25 == rlc1.get_buffer_state()); // 4 byte header + 20 data
// Check notifications
TESTASSERT(tester.notified_counts.size() == 2);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
if (i == 0 || i == 4) {
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
} else {
TESTASSERT(it == tester.notified_counts.end());
}
}
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 16); // 6 byte header + 10 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
TESTASSERT(16 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 18); // 6 byte header + 12 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
TESTASSERT(tester.sdus.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
if (tester.sdus[i]->N_bytes != 10)
return -1;
for (int j = 0; j < 10; j++)
if (tester.sdus[i]->msg[j] != j)
return -1;
}
// Step timers until reordering timeout expires
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // all packets delivered.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(tester.notified_counts.size() == 5);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
return 0;
}
int resegment_test_3()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: | 5 | 5| 20 | 10 | 10 |
// Retx PDU segments: | 10 | 10 |
rlc_am_tester tester;
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (int j = 0; j < 10; j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(58 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (5 bytes, 5 bytes, 20 bytes, 10 bytes, 10 bytes)
byte_buffer_t pdu_bufs[NBUFS];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 24); // 4 byte header + 20 byte payload
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 12); // 2 byte header + 10 byte payload
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 12); // 2 byte header + 10 byte payload
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 2)
for (int i = 0; i < NBUFS; i++) {
if (i != 2)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
TESTASSERT(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // One packet was lost.
TESTASSERT(status_check.nacks[0].nack_sn == 2); // SN 2 was lost.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check notifications
TESTASSERT(tester.notified_counts.size() == 3);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
if (i == 0 || i == 3 || i == 4) {
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
} else {
TESTASSERT(it == tester.notified_counts.end());
}
}
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 16); // 6 byte header + 10 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
// Read the remaining segment
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 16); // 6 byte header + 10 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
TESTASSERT(tester.sdus.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
if (tester.sdus[i]->N_bytes != 10)
return -1;
for (int j = 0; j < 10; j++)
if (tester.sdus[i]->msg[j] != j)
return -1;
}
// Get status from RLC 2
for (int cnt = 0; cnt < 5; cnt++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // all packets delivered.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check final notifications
TESTASSERT(tester.notified_counts.size() == 5);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
return 0;
}
int resegment_test_4()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: | 5 | 5| 30 | 5 | 5|
// Retx PDU segments: | 15 | 15 |
rlc_am_tester tester;
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (int j = 0; j < 10; j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(58 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (5 bytes, 5 bytes, 30 bytes, 5 bytes, 5 bytes)
byte_buffer_t pdu_bufs[NBUFS];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 35); // 5 byte header + 30 byte payload
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 7); // 2 byte header + 5 byte payload
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 7); // 2 byte header + 5 byte payload
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 2)
for (int i = 0; i < NBUFS; i++) {
if (i != 2)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
TESTASSERT(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // one packet lost.
TESTASSERT(status_check.nacks[0].nack_sn == 2); // SN 2 was lost.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(tester.notified_counts.size() == 2);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
if (i == 0 || i == 4) {
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
} else {
TESTASSERT(it == tester.notified_counts.end());
}
}
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 21); // 6 byte header + 15 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
TESTASSERT(21 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 21);
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
TESTASSERT(tester.sdus.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
if (tester.sdus[i]->N_bytes != 10)
return -1;
for (int j = 0; j < 10; j++)
if (tester.sdus[i]->msg[j] != j)
return -1;
}
// Get status from RLC 2
for (int i = 0; i < 5; i++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // all packets delivered.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check final notifications
TESTASSERT(tester.notified_counts.size() == 5);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
return 0;
}
int resegment_test_5()
{
// SDUs: | 10 | 10 | 10 | 10 | 10 |
// PDUs: |2|3| 40 |3|2|
// Retx PDU segments: | 20 | 20 |
rlc_am_tester tester;
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[NBUFS];
for (int i = 0; i < NBUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (int j = 0; j < 10; j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(58 == rlc1.get_buffer_state());
// Read 5 PDUs from RLC1 (2 bytes, 3 bytes, 40 bytes, 3 bytes, 2 bytes)
byte_buffer_t pdu_bufs[NBUFS];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 4); // 2 byte header + 2 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 5); // 2 byte header + 3 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 48); // 8 byte header + 40 byte payload
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 5); // 2 byte header + 3 byte payload
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 4); // 2 byte header + 2 byte payload
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 2)
for (int i = 0; i < NBUFS; i++) {
if (i != 2)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
TESTASSERT(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // one packet was lost.
TESTASSERT(status_check.nacks[0].nack_sn == 2); // SN 2 was lost.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check notifications
TESTASSERT(tester.notified_counts.size() == 0);
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 27); // 7 byte header + 20 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
TESTASSERT(32 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 40);
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
TESTASSERT(tester.sdus.size() == 5);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 10);
for (int j = 0; j < 10; j++) {
TESTASSERT(tester.sdus[i]->msg[j] == i);
}
}
// Get status from RLC 2
for (int i = 0; i < 5; i++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // all packets delivered.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check final notifications
TESTASSERT(tester.notified_counts.size() == 5);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
return 0;
}
int resegment_test_6()
{
// SDUs: |10|10|10| 54 | 54 | 54 | 54 | 54 | 54 |
// PDUs: |10|10|10| 270 | 54 |
// Retx PDU segments: | 120 | 150 |
rlc_am_tester tester;
srsran::timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push SDUs into RLC1
unique_byte_buffer_t sdu_bufs[9];
for (int i = 0; i < 3; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (int j = 0; j < 10; j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
for (int i = 3; i < 9; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (int j = 0; j < 54; j++)
sdu_bufs[i]->msg[j] = j;
sdu_bufs[i]->N_bytes = 54;
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(368 == rlc1.get_buffer_state());
// Read PDUs from RLC1 (10, 10, 10, 270, 54)
byte_buffer_t pdu_bufs[5];
for (int i = 0; i < 3; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 12);
pdu_bufs[i].N_bytes = len;
}
len = rlc1.read_pdu(pdu_bufs[3].msg, 278);
pdu_bufs[3].N_bytes = len;
len = rlc1.read_pdu(pdu_bufs[4].msg, 56);
pdu_bufs[4].N_bytes = len;
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 3)
for (int i = 0; i < 5; i++) {
if (i != 3)
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
TESTASSERT(4 == rlc2.get_buffer_state());
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
status_buf.N_bytes = len;
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // One packet was lost.
TESTASSERT(status_check.nacks[0].nack_sn == 3); // SN 3 was lost.
TESTASSERT(status_check.ack_sn == 5);
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(278 == rlc1.get_buffer_state());
// Check notifications
TESTASSERT(tester.notified_counts.size() == 4);
for (int i = 0; i < 5; i++) {
auto it = tester.notified_counts.find(i);
if (i == 0 || i == 1 || i == 2 || i == 8) {
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
} else {
TESTASSERT(it == tester.notified_counts.end());
}
}
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
len = rlc1.read_pdu(retx1.msg, 129);
retx1.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
TESTASSERT(169 == rlc1.get_buffer_state());
// Read the remaining segment
byte_buffer_t retx2;
len = rlc1.read_pdu(retx2.msg, 169);
retx2.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
TESTASSERT(tester.sdus.size() == 9);
for (int i = 0; i < 3; i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 10);
for (int j = 0; j < 10; j++)
TESTASSERT(tester.sdus[i]->msg[j] == j);
}
for (uint32_t i = 3; i < 9; i++) {
if (i >= tester.sdus.size()) {
return SRSRAN_ERROR;
}
TESTASSERT(tester.sdus[i]->N_bytes == 54);
for (int j = 0; j < 54; j++) {
TESTASSERT(tester.sdus[i]->msg[j] == j);
}
}
// Get status from RLC 2
for (int i = 0; i < 5; i++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // all packets delivered.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check final notifications
TESTASSERT(tester.notified_counts.size() == 9);
for (int i = 0; i < 9; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
return 0;
}
// Retransmission of PDU segments of the same size
int resegment_test_7()
{
// SDUs: | 30 | 30 |
7 years ago
// PDUs: | 13 | 13 | 11 | 13 | 10 |
// Rxed PDUs | 13 | 13 | | 13 | 10 |
// Retx PDU segments: | 4 | 7 |
// Retx PDU segments: |3|3]3|2|
const uint32_t N_SDU_BUFS = 2;
const uint32_t N_PDU_BUFS = 5;
const uint32_t sdu_size = 30;
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_test7.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 2 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[N_SDU_BUFS];
for (uint32_t i = 0; i < N_SDU_BUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (uint32_t j = 0; j < sdu_size; j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = sdu_size; // Give each buffer a size of 15 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(64 == rlc1.get_buffer_state());
// Read PDUs from RLC1 (15 bytes each)
byte_buffer_t pdu_bufs[N_PDU_BUFS];
for (uint32_t i = 0; i < N_PDU_BUFS; i++) {
7 years ago
pdu_bufs[i].N_bytes = rlc1.read_pdu(pdu_bufs[i].msg, 15); // 2 bytes for header + 12 B payload
TESTASSERT(pdu_bufs[i].N_bytes);
}
6 years ago
// Step timers until poll_retx timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// RLC should try to retx a random PDU because it needs to request a status from the receiver
TESTASSERT(0 != rlc1.get_buffer_state());
7 years ago
// Skip PDU with SN 2
for (uint32_t i = 0; i < N_PDU_BUFS; i++) {
if (i != 2) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#endif
}
}
// Step timers until reordering timeout expires
6 years ago
cnt = 5;
while (cnt--) {
timers.step_all();
}
6 years ago
// RLC should try to retransmit a random PDU because it needs to re-request a status PDU from the receiver
TESTASSERT(0 != rlc1.get_buffer_state());
// first round of retx, forcing resegmentation
byte_buffer_t retx[4];
for (uint32_t i = 0; i < 4; i++) {
TESTASSERT(0 != rlc1.get_buffer_state());
retx[i].N_bytes = rlc1.read_pdu(retx[i].msg, 7);
TESTASSERT(retx[i].N_bytes);
// Write the last two segments to RLC2
if (i > 1) {
rlc2.write_pdu(retx[i].msg, retx[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx[i].msg, retx[i].N_bytes);
#endif
}
}
// Read status PDU from RLC2
TESTASSERT(rlc2.get_buffer_state());
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 1); // one packet dropped.
TESTASSERT(status_check.nacks[0].nack_sn == 2); // SN 2 dropped.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
TESTASSERT(15 == rlc1.get_buffer_state());
// Check notifications
TESTASSERT(tester.notified_counts.size() == 0);
// second round of retx, forcing resegmentation
7 years ago
byte_buffer_t retx2[4];
for (uint32_t i = 0; i < 4; i++) {
TESTASSERT(rlc1.get_buffer_state() != 0);
retx2[i].N_bytes = rlc1.read_pdu(retx2[i].msg, 9);
TESTASSERT(retx2[i].N_bytes != 0);
rlc2.write_pdu(retx2[i].msg, retx2[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx[i].msg, retx[i].N_bytes);
#endif
}
// check buffer states
TESTASSERT(0 == rlc1.get_buffer_state());
// Step timers until poll_retx timeout expires
cnt = 5;
while (cnt--) {
timers.step_all();
}
// Read status PDU from RLC2
TESTASSERT(rlc2.get_buffer_state());
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Assert status is correct
status_check = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_check);
TESTASSERT(status_check.N_nack == 0); // all packets delivered.
TESTASSERT(status_check.ack_sn == 5); // Delivered up to SN 5.
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
// check status again
TESTASSERT(0 == rlc1.get_buffer_state());
TESTASSERT(0 == rlc2.get_buffer_state());
// Check number of SDUs and their content
TESTASSERT(tester.sdus.size() == N_SDU_BUFS);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == sdu_size);
for (uint32_t j = 0; j < N_SDU_BUFS; j++) {
TESTASSERT(tester.sdus[i]->msg[j] == i);
}
}
// Check final notifications
TESTASSERT(tester.notified_counts.size() == 2);
for (int i = 0; i < 2; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
#if HAVE_PCAP
pcap.close();
#endif
return 0;
}
// Retransmission of PDU segments with different size
int resegment_test_8()
{
// SDUs: | 30 | 30 |
// PDUs: | 15 | 15 | 15 | 15 | 15 |
// Rxed PDUs | 15 | | 15 | 15 |
// Retx PDU segments: | 7 | 7 | 7 | 7 |
// Retx PDU segments: | 6 | 6 ] 6 | 6 | 6 | 6 | 6 | 6 |
const uint32_t N_SDU_BUFS = 2;
const uint32_t N_PDU_BUFS = 5;
const uint32_t sdu_size = 30;
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_test8.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 2 SDUs into RLC1
unique_byte_buffer_t sdu_bufs[N_SDU_BUFS];
for (uint32_t i = 0; i < N_SDU_BUFS; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (uint32_t j = 0; j < sdu_size; j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = sdu_size; // Give each buffer a size of 30 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
TESTASSERT(64 == rlc1.get_buffer_state());
// Read PDUs from RLC1 (15 bytes each)
byte_buffer_t pdu_bufs[N_PDU_BUFS];
for (uint32_t i = 0; i < N_PDU_BUFS; i++) {
pdu_bufs[i].N_bytes = rlc1.read_pdu(pdu_bufs[i].msg, 15); // 12 bytes for header + payload
TESTASSERT(pdu_bufs[i].N_bytes);
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Skip PDU one and two
for (uint32_t i = 0; i < N_PDU_BUFS; i++) {
if (i < 1 || i > 2) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#endif
}
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
6 years ago
// what PDU to retransmit is random but it must not be zero
TESTASSERT(0 != rlc1.get_buffer_state());
// first round of retx, forcing resegmentation
byte_buffer_t retx[4];
7 years ago
for (uint32_t i = 0; i < 3; i++) {
TESTASSERT(rlc1.get_buffer_state());
7 years ago
retx[i].N_bytes = rlc1.read_pdu(retx[i].msg, 8);
TESTASSERT(retx[i].N_bytes);
// Write the last two segments to RLC2
if (i > 1) {
rlc2.write_pdu(retx[i].msg, retx[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx[i].msg, retx[i].N_bytes);
#endif
}
}
// Step timers until reordering timeout expires
cnt = 7;
while (cnt--) {
timers.step_all();
}
// Read status PDU from RLC2
TESTASSERT(rlc2.get_buffer_state());
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
TESTASSERT(15 == rlc1.get_buffer_state());
// second round of retx, reduce grant size to force different segment sizes
byte_buffer_t retx2[20];
for (uint32_t i = 0; i < 7; i++) {
TESTASSERT(rlc1.get_buffer_state() != 0);
retx2[i].N_bytes = rlc1.read_pdu(retx2[i].msg, 9);
TESTASSERT(retx2[i].N_bytes != 0);
rlc2.write_pdu(retx2[i].msg, retx2[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx[i].msg, retx[i].N_bytes);
#endif
}
// get BSR from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
// check buffer states
if (rlc1.get_buffer_state() != 0) {
return -1;
};
if (rlc2.get_buffer_state() != 0) {
return -1;
};
// Check number of SDUs and their content
TESTASSERT(tester.sdus.size() == N_SDU_BUFS);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
if (tester.sdus[i]->N_bytes != sdu_size)
return -1;
for (uint32_t j = 0; j < N_SDU_BUFS; j++) {
if (tester.sdus[i]->msg[j] != i)
return -1;
}
}
#if HAVE_PCAP
pcap.close();
#endif
return 0;
}
// Resegmentation with 1 B segments
int resegment_test_9()
{
// SDUs: | 10 | 10 | 10 |
// PDUs: | 9 | x |
// Retx PDU segments: |2| 9 |
const rlc_config_t config = rlc_config_t::default_rlc_am_config();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_resegment_test_9.pcap", config);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(config)) {
return SRSRAN_ERROR;
}
if (not rlc2.configure(config)) {
return SRSRAN_ERROR;
}
// Push 3 SDUs into RLC1
const uint32_t n_bufs = 3;
unique_byte_buffer_t sdu_bufs[n_bufs];
for (uint32_t i = 0; i < n_bufs; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (uint32_t j = 0; j < 10; j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 5 PDUs from RLC1 (2 bytes, 3 bytes, 40 bytes, 3 bytes, 2 bytes)
byte_buffer_t pdu_bufs[n_bufs];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 11); // 2 byte header + 9 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 15); // 4 byte header + 11 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 12); // 2 byte header + 10 byte payload
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 0)
for (uint32_t i = 0; i < n_bufs; i++) {
if (i != 1) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#endif
}
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
byte_buffer_t retx2;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 8); // 6 byte header + 2 data
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx1.msg, retx1.N_bytes);
#endif
// Read 2nd with a big enough grant to fit remaining content
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 40);
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx2.msg, retx2.N_bytes);
#endif
// goto exit;
TESTASSERT(tester.sdus.size() == n_bufs);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 10);
for (int j = 0; j < 10; j++) {
TESTASSERT(tester.sdus[i]->msg[j] == i);
}
}
// Get status from RLC 2
for (int i = 0; i < 5; i++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check final notifications
TESTASSERT(tester.notified_counts.size() == n_bufs);
for (uint32_t i = 0; i < n_bufs; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
// exit:
#if HAVE_PCAP
pcap.close();
#endif
return 0;
}
// Retransmission of segment Resegmentation with 1 B segments
int resegment_test_10()
{
/// 21:35:17.369012 [RLC_1] [I] DRB1 Tx PDU SN=520 (20 B)
/// 0000: 9e 08 80 40 0a 34 34 34 34 35 35 35 35 35 35 35
/// 0010: 35 35 35 36
/// 21:35:17.369016 [RLC_1] [D] [Data PDU, RF=0, P=0, FI=1, SN=520, LSF=0, SO=0, N_li=2 (4, 10, )]
/// 21:35:17.369703 [RLC_1] [I] DRB1 Retx PDU segment SN=520 [so=0] (10 B) (attempt 2/16)
/// 0000: fe 08 00 00 00 40 34 34 34 34
/// 21:35:17.369712 [RLC_2] [I] DRB1 Rx data PDU segment of SN=520 (4 B), SO=0, N_li=1
/// 0000: 34 34 34 34
/// 21:35:17.369718 [RLC_2] [D] [Data PDU, RF=1, P=1, FI=1, SN=520, LSF=0, SO=0, N_li=1 (4, )]
// SDUs: | 10 | 10 | 10 | 10 |
// PDUs: | 6 | 25(x) | 9 |
// Retx PDU segments: |4| 50 |
const rlc_config_t config = rlc_config_t::default_rlc_am_config();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_resegment_test_10.pcap", config);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(config)) {
return SRSRAN_ERROR;
}
if (not rlc2.configure(config)) {
return SRSRAN_ERROR;
}
// Push 3 SDUs into RLC1
const uint32_t n_sdus = 4;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (uint32_t j = 0; j < 10; j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 5 PDUs from RLC1 (2 bytes, 3 bytes, 40 bytes, 3 bytes, 2 bytes)
const uint32_t n_pdus = 3;
byte_buffer_t pdu_bufs[n_pdus];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 8); // 2 byte header + 6 byte payload
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 32); // 4 byte header + 25 byte payload
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 11); // 2 byte header + 9 byte payload
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 0)
for (uint32_t i = 0; i < n_pdus; i++) {
if (i != 1) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
#if HAVE_PCAP
// write to PCAP even if its lost in the TC
pcap.write_dl_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#endif
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
byte_buffer_t retx2;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 13); // 6 byte header + 4 data ( +2 B MAC)
// Write the retx PDU to RLC2
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx1.msg, retx1.N_bytes);
#endif
// Read 2nd with a big enough grant to fit remaining content
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 32);
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx2.msg, retx2.N_bytes);
#endif
TESTASSERT(tester.sdus.size() == n_sdus);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 10);
for (int j = 0; j < 10; j++) {
TESTASSERT(tester.sdus[i]->msg[j] == i);
}
}
// Get status from RLC 2
for (int i = 0; i < 5; i++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Check final notifications
TESTASSERT(tester.notified_counts.size() == n_sdus);
for (uint32_t i = 0; i < n_sdus; i++) {
auto it = tester.notified_counts.find(i);
TESTASSERT(it != tester.notified_counts.end() && tester.notified_counts[i] == 1);
}
return SRSRAN_SUCCESS;
}
// Custom resegmentation test of a orignal PDU with N_li=2
// Because the provided MAC grant is relativly small, the retx segment
// can only accomodate 2 B of the original PDU.
// The test verifies the correct PDU packing, specifically the LI value
int resegment_test_11()
{
/// Original PDU:
/// 11:29:16.065008 [RLC_1] [I] DRB1 Tx PDU SN=419 (21 B)
/// 0000: bd a3 80 50 0a aa aa aa aa aa ab ab ab ab ab ab
/// 0010: ab ab ab ab ac
/// 11:29:16.065013 [RLC_1] [D] [Data PDU, RF=0, P=1, FI=1, SN=419, LSF=0, SO=0, N_li=2 (5, 10, )]
/// Log messages with the restoration bug:
/// 11:29:16.065688 [RLC_1] [D] MAC opportunity - 10 bytes
/// 11:29:16.065695 [RLC_1] [D] DRB1 build_retx_pdu - resegmentation required
/// 11:29:16.065702 [RLC_1] [D] retx.so_start=2, retx.so_end=6
/// 11:29:16.065703 [RLC_1] [D] new_header head_len=4
/// 11:29:16.065706 [RLC_1] [D] old_header.li[0], head_len=6, pdu_space=4
/// 11:29:16.065710 [RLC_1] [D] new_header head_len=6
/// 11:29:16.065713 [RLC_1] [D] old_header.li[1], head_len=8, pdu_space=2
/// 11:29:16.065716 [RLC_1] [D] DRB1 vt_a = 419, vt_ms = 931, vt_s = 426, poll_sn = 424
/// 11:29:16.065718 [RLC_1] [I] DRB1 Retx PDU segment SN=419 [so=2] (8 B) (attempt 2/16)
/// 0000: dd a3 00 02 00 30 aa aa
/// 11:29:16.065723 [RLC_2] [I] DRB1 Rx data PDU segment of SN=419 (2 B), SO=2, N_li=1
/// 0000: aa aa
/// 11:29:16.065730 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=419, LSF=0, SO=2, N_li=1 (3, )]
/// NOTE: this segment is malformed, it has 2 B data and a larger LI field of 3 B
// SDUs: | 10 | 10 | 10 | 10 |
// PDUs: | 15 | 16(x) | 9 |
// Retx PDU segments: |4| 50 |
const rlc_config_t config = rlc_config_t::default_rlc_am_config();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_resegment_test_11.pcap", config);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(config)) {
return SRSRAN_ERROR;
}
if (not rlc2.configure(config)) {
return SRSRAN_ERROR;
}
// Push 4 SDUs into RLC1
const uint32_t n_sdus = 4;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (uint32_t j = 0; j < 10; j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 3 PDUs from RLC1 (MAC opportunities are taken from logs)
const uint32_t n_pdus = 3;
byte_buffer_t pdu_bufs[n_pdus];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 19);
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 21);
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 12);
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 1)
for (uint32_t i = 0; i < n_pdus; i++) {
if (i != 1) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
#if HAVE_PCAP
// write to PCAP even if its lost in the TC
pcap.write_dl_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#endif
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 8);
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx1.msg, retx1.N_bytes);
#endif
// Read 2nd with a small grant to trigger the original segmentation bug
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 10);
// Write the retx PDU to RLC2
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx2.msg, retx2.N_bytes);
#endif
// Read 3nd with a big enough grant to fit remaining content
byte_buffer_t retx3;
retx3.N_bytes = rlc1.read_pdu(retx3.msg, 20);
rlc2.write_pdu(retx3.msg, retx3.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx3.msg, retx3.N_bytes);
#endif
TESTASSERT(tester.sdus.size() == n_sdus);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 10);
for (int j = 0; j < 10; j++) {
TESTASSERT(tester.sdus[i]->msg[j] == i);
}
}
// Get status from RLC 2
for (int i = 0; i < 5; i++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
// Custom resegmentation test of a orignal PDU with N_li=2
// The test triggered a bug in the packing and was creating a too large
// PDU
int resegment_test_12()
{
/// Original PDU:
/// 17:19:51.296653 [RLC_1] [I] DRB1 Tx PDU SN=728 (21 B)
/// 0000: be d8 80 10 0a d1 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2
/// 0010: d3 d3 d3 d3 d3
/// 17:19:51.296659 [RLC_1] [D] [Data PDU, RF=0, P=1, FI=1, SN=728, LSF=0, SO=0, N_li=2 (1, 10, )]
/// Log messages with the segmentation bug:
/// 17:19:51.297485 [RLC_1] [D] MAC opportunity - 18 bytes
/// 17:19:51.297487 [RLC_1] [D] tx_window size - 2 PDUs
/// 17:19:51.297489 [RLC_1] [D] DRB1 build_retx_pdu - resegmentation required
/// 17:19:51.297498 [RLC_1] [I] DRB1 pdu_without_poll: 4
/// 17:19:51.297499 [RLC_1] [I] DRB1 byte_without_poll: 67
/// 17:19:51.297501 [RLC_1] [D] retx.so_start=0, retx.so_end=12
/// 17:19:51.297502 [RLC_1] [D] new_header head_len=4
/// 17:19:51.297504 [RLC_1] [D] old_header.li[0], head_len=4, pdu_space=14
/// 17:19:51.297505 [RLC_1] [D] new_header head_len=6
/// 17:19:51.297506 [RLC_1] [D] old_header.li[1], head_len=6, pdu_space=12
/// 17:19:51.297509 [RLC_1] [D] DRB1 vt_a = 724, vt_ms = 212, vt_s = 736, poll_sn = 733
/// 17:19:51.297513 [RLC_1] [E] DRB1 Retx PDU segment length error. Available: 18, Used: 19
/// 17:19:51.297522 [RLC_1] [D] DRB1 Retx PDU segment length error. Header len: 7, Payload len: 12, N_li: 2
/// 17:19:51.297527 [RLC_1] [I] DRB1 Retx PDU segment SN=728 [so=0] (19 B) (attempt 2/16)
/// 0000: de d8 00 00 80 10 0a d1 d2 d2 d2 d2 d2 d2 d2 d2
/// 0010: d2 d2 d3
/// 17:19:51.297531 [RLC_2] [I] DRB1 Rx data PDU segment of SN=728 (12 B), SO=0, N_li=2
/// 0000: d1 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d3
/// 17:19:51.297538 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=728, LSF=0, SO=0, N_li=2 (1, 10, )]
// SDUs: | 10 | 10 | 10 | 10 |
// PDUs: | 9 | 16(x) | 9 |
// Retx PDU segments: |4| 50 |
const rlc_config_t config = rlc_config_t::default_rlc_am_config();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_resegment_test_12.pcap", config);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(config)) {
return SRSRAN_ERROR;
}
if (not rlc2.configure(config)) {
return SRSRAN_ERROR;
}
// Push 4 SDUs into RLC1
const uint32_t n_sdus = 4;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
for (uint32_t j = 0; j < 10; j++) {
sdu_bufs[i]->msg[j] = i;
}
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
sdu_bufs[i]->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 3 PDUs from RLC1 (MAC opportunities are taken from logs)
const uint32_t n_pdus = 3;
byte_buffer_t pdu_bufs[n_pdus];
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 11);
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 21);
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 19);
TESTASSERT(0 == rlc1.get_buffer_state());
// Write PDUs into RLC2 (skip SN 1)
for (uint32_t i = 0; i < n_pdus; i++) {
if (i != 1) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
#if HAVE_PCAP
// write to PCAP even if its lost in the TC
pcap.write_dl_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
#endif
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// Read status PDU from RLC2
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
// Read the retx PDU from RLC1 and force resegmentation
byte_buffer_t retx1;
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 18);
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx1.msg, retx1.N_bytes);
#endif
// Read 2nd to trigger the original segmentation bug
byte_buffer_t retx2;
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 18);
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx2.msg, retx2.N_bytes);
#endif
// Read 3nd with a big enough grant to fit remaining content
byte_buffer_t retx3;
retx3.N_bytes = rlc1.read_pdu(retx3.msg, 20);
rlc2.write_pdu(retx3.msg, retx3.N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(retx3.msg, retx3.N_bytes);
#endif
TESTASSERT(tester.sdus.size() == n_sdus);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 10);
for (int j = 0; j < 10; j++) {
TESTASSERT(tester.sdus[i]->msg[j] == i);
}
}
// Get status from RLC 2
for (int i = 0; i < 5; i++) {
timers.step_all();
}
// Read status PDU from RLC2
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
// Series of header reconstruction tests that all used canned TV generated with the rlc_stress_test
// In this particular case, check correct reconstruction of headers after 2 segment retx
int header_reconstruction_test(srsran::log_sink_message_spy& spy)
{
/// Original SN=277 with 3 segments, including full SDU with 24
/// 13:35:16.337011 [RLC_1] [I] DRB1 Tx PDU SN=277 (20 B)
/// 0000: 9d 15 80 20 0a 23 23 24 24 24 24 24 24 24 24 24
/// 0010: 24 25 25 25
/// 13:35:16.337016 [RLC_1] [D] [Data PDU, RF=0, P=0, FI=1, SN=277, LSF=0, SO=0, N_li=2 (2, 10)]
// 2nd retransmission with SO=9
std::array<uint8_t, 12> tv2 = {0xdd, 0x15, 0x80, 0x09, 0x00, 0x30, 0x24, 0x24, 0x24, 0x25, 0x25, 0x25};
// 3rd retransmission with S0=0
std::array<uint8_t, 17> tv3 = {
0xdd, 0x15, 0x00, 0x00, 0x00, 0x20, 0x23, 0x23, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24};
byte_buffer_t pdu_tv2;
memcpy(pdu_tv2.msg, tv2.data(), tv2.size());
pdu_tv2.N_bytes = tv2.size();
byte_buffer_t pdu_tv3;
memcpy(pdu_tv3.msg, tv3.data(), tv3.size());
pdu_tv3.N_bytes = tv3.size();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_header_reconstruction_test.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_tv2.msg, pdu_tv2.N_bytes);
pcap.write_dl_ccch(pdu_tv3.msg, pdu_tv3.N_bytes);
#endif
rlc1.write_pdu(pdu_tv2.msg, pdu_tv2.N_bytes);
rlc1.write_pdu(pdu_tv3.msg, pdu_tv3.N_bytes);
// Check RLC re-assembled message header
TESTASSERT(spy.has_message("[Data PDU, RF=0, P=0, FI=1, SN=277, LSF=0, SO=0, N_li=2 (2, 10)]"));
#if HAVE_PCAP
pcap.close();
#endif
return 0;
}
// Check correct reconstruction of headers after 3 segment retx
int header_reconstruction_test2(srsran::log_sink_message_spy& spy)
{
/// Original SN=199 with 3 segments, including full SDU with d4
/// 15:19:19.148272 [RLC_1] [I] DRB1 Tx PDU SN=199 (19 B)
/// 0000: 9c c7 80 30 0a d3 d3 d3 d4 d4 d4 d4 d4 d4 d4 d4
/// 0010: d4 d4 d5
/// 15:19:19.148278 [RLC_1] [D] [Data PDU, RF=0, P=0, FI=1, SN=199, LSF=0, SO=0, N_li=2 (3, 10, )]
// 2nd retransmission with SO=0
std::array<uint8_t, 6> tv1 = {0xd8, 0xc7, 0x00, 0x00, 0xd3, 0xd3};
// 3rd retransmission with S0=2
std::array<uint8_t, 16> tv2 = {
0xdc, 0xc7, 0x00, 0x02, 0x00, 0x10, 0xd3, 0xd4, 0xd4, 0xd4, 0xd4, 0xd4, 0xd4, 0xd4, 0xd4, 0xd4};
std::array<uint8_t, 8> tv3 = {0xdc, 0xc7, 0x80, 0x0c, 0x00, 0x10, 0xd4, 0xd5};
byte_buffer_t pdu_tv1;
memcpy(pdu_tv1.msg, tv1.data(), tv1.size());
pdu_tv1.N_bytes = tv1.size();
byte_buffer_t pdu_tv2;
memcpy(pdu_tv2.msg, tv2.data(), tv2.size());
pdu_tv2.N_bytes = tv2.size();
byte_buffer_t pdu_tv3;
memcpy(pdu_tv3.msg, tv3.data(), tv3.size());
pdu_tv3.N_bytes = tv3.size();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_header_reconstruction_test2.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_tv1.msg, pdu_tv1.N_bytes);
pcap.write_dl_ccch(pdu_tv2.msg, pdu_tv2.N_bytes);
pcap.write_dl_ccch(pdu_tv3.msg, pdu_tv3.N_bytes);
#endif
rlc1.write_pdu(pdu_tv1.msg, pdu_tv1.N_bytes);
rlc1.write_pdu(pdu_tv2.msg, pdu_tv2.N_bytes);
rlc1.write_pdu(pdu_tv3.msg, pdu_tv3.N_bytes);
// Check RLC re-assembled message header
TESTASSERT(spy.has_message("[Data PDU, RF=0, P=0, FI=1, SN=199, LSF=0, SO=0, N_li=2 (3, 10)]"));
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
// TC with 3 segment retx
int header_reconstruction_test3(srsran::log_sink_message_spy& spy)
{
// Original PDU
// 11:13:25.994566 [RLC_1] [I] DRB1 Tx PDU SN=206 (18 B)
// 0000: 8c ce 00 a0 db db db db db db db db db db dc dc
// 0010: dc dc
// 11:13:25.994571 [RLC_1] [D] [Data PDU, RF=0, P=0, FI=1, SN=206, LSF=0, SO=0, N_li=1 (10)]
// 11:13:25.995744 [RLC_1] [I] DRB1 Retx PDU segment SN=206 [so=8] (12 B) (attempt 2/16)
// 0000: dc ce 80 08 00 20 db db dc dc dc dc
// 11:13:25.995752 [RLC_2] [I] DRB1 Rx data PDU segment of SN=206 (6 B), SO=8, N_li=1
// 0000: db db dc dc dc dc
std::array<uint8_t, 12> tv0 = {0xdc, 0xce, 0x80, 0x08, 0x00, 0x20, 0xdb, 0xdb, 0xdc, 0xdc, 0xdc, 0xdc};
// 11:13:25.996267 [RLC_1] [I] DRB1 Retx PDU segment SN=206 [so=0] (14 B) (attempt 3/16)
// 0000: c0 ce 00 00 db db db db db db db db db db
// 11:13:25.996272 [RLC_2] [I] DRB1 Rx data PDU segment of SN=206 (10 B), SO=0, N_li=0
// 0000: db db db db db db db db db db
std::array<uint8_t, 14> tv1 = {0xc0, 0xce, 0x00, 0x00, 0xdb, 0xdb, 0xdb, 0xdb, 0xdb, 0xdb, 0xdb, 0xdb, 0xdb, 0xdb};
byte_buffer_t pdu_tv0;
memcpy(pdu_tv0.msg, tv0.data(), tv0.size());
pdu_tv0.N_bytes = tv0.size();
byte_buffer_t pdu_tv1;
memcpy(pdu_tv1.msg, tv1.data(), tv1.size());
pdu_tv1.N_bytes = tv1.size();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_header_reconstruction_test3.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
// configure RLC
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_tv0.msg, pdu_tv0.N_bytes);
pcap.write_dl_ccch(pdu_tv1.msg, pdu_tv1.N_bytes);
#endif
rlc1.write_pdu(pdu_tv0.msg, pdu_tv0.N_bytes);
rlc1.write_pdu(pdu_tv1.msg, pdu_tv1.N_bytes);
// Check RLC re-assembled message header
TESTASSERT(spy.has_message("[Data PDU, RF=0, P=0, FI=1, SN=206, LSF=0, SO=0, N_li=1 (10)]"));
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
int header_reconstruction_test4(srsran::log_sink_message_spy& spy)
{
// Original PDU
// 15:32:20.667043 [RLC_1] [I] DRB1 Tx PDU SN=172 (22 B)
// 0000: 9c ac 80 10 0a af b0 b0 b0 b0 b0 b0 b0 b0 b0 b0
// 0010: b1 b1 b1 b1 b1 b1
// 15:32:20.667048 [RLC_1] [D] [Data PDU, RF=0, P=0, FI=1, SN=172, LSF=0, SO=0, N_li=2 (1, 10)]
// 15:32:20.668094 [RLC_1] [I] DRB1 Retx PDU segment SN=172 [so=0] (14 B) (attempt 2/16)
// 0000: dc ac 00 00 00 10 af b0 b0 b0 b0 b0 b0 b0
// 15:32:20.668100 [RLC_2] [I] DRB1 Rx data PDU segment of SN=172 (8 B), SO=0, N_li=1
// 0000: af b0 b0 b0 b0 b0 b0 b0
// 15:32:20.668105 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=172, LSF=0, SO=0, N_li=1 (1)]
std::array<uint8_t, 14> tv1 = {0xdc, 0xac, 0x00, 0x00, 0x00, 0x10, 0xaf, 0xb0, 0xb0, 0xb0, 0xb0, 0xb0, 0xb0, 0xb0};
// 15:32:20.668497 [RLC_1] [I] DRB1 Retx PDU segment SN=172 [so=0] (12 B) (attempt 3/16)
// 0000: fc ac 00 00 00 10 af b0 b0 b0 b0 b0
// 15:32:20.668502 [RLC_2] [I] DRB1 Rx data PDU segment of SN=172 (6 B), SO=0, N_li=1
// 0000: af b0 b0 b0 b0 b0
// 15:32:20.668507 [RLC_2] [D] [Data PDU, RF=1, P=1, FI=1, SN=172, LSF=0, SO=0, N_li=1 (1)]
std::array<uint8_t, 12> tv2 = {0xfc, 0xac, 0x00, 0x00, 0x00, 0x10, 0xaf, 0xb0, 0xb0, 0xb0, 0xb0, 0xb0};
// 15:32:20.668575 [RLC_1] [I] DRB1 Retx PDU segment SN=172 [so=6] (7 B) (attempt 3/16)
// 0000: d8 ac 00 06 b0 b0 b0
// 15:32:20.668581 [RLC_1] [I] DRB1 Tx SDU (10 B, tx_sdu_queue_len=33)
// 0000: d8 d8 d8 d8 d8 d8 d8 d8 d8 d8
// 15:32:20.668582 [RLC_2] [I] DRB1 Rx data PDU segment of SN=172 (3 B), SO=6, N_li=0
// 0000: b0 b0 b0
std::array<uint8_t, 7> tv3 = {0xd8, 0xac, 0x00, 0x06, 0xb0, 0xb0, 0xb0};
// 15:32:20.668665 [RLC_1] [I] DRB1 Retx PDU segment SN=172 [so=9] (14 B) (attempt 3/16)
// 0000: dc ac 80 09 00 20 b0 b0 b1 b1 b1 b1 b1 b1
// 15:32:20.668671 [RLC_2] [I] DRB1 Rx data PDU segment of SN=172 (8 B), SO=9, N_li=1
// 0000: b0 b0 b1 b1 b1 b1 b1 b1
// 15:32:20.668675 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=172, LSF=1, SO=9, N_li=1 (2)]
std::array<uint8_t, 14> tv4 = {0xdc, 0xac, 0x80, 0x09, 0x00, 0x20, 0xb0, 0xb0, 0xb1, 0xb1, 0xb1, 0xb1, 0xb1, 0xb1};
byte_buffer_t pdu_tv1;
memcpy(pdu_tv1.msg, tv1.data(), tv1.size());
pdu_tv1.N_bytes = tv1.size();
byte_buffer_t pdu_tv2;
memcpy(pdu_tv2.msg, tv2.data(), tv2.size());
pdu_tv2.N_bytes = tv2.size();
byte_buffer_t pdu_tv3;
memcpy(pdu_tv3.msg, tv3.data(), tv3.size());
pdu_tv3.N_bytes = tv3.size();
byte_buffer_t pdu_tv4;
memcpy(pdu_tv4.msg, tv4.data(), tv4.size());
pdu_tv4.N_bytes = tv4.size();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_header_reconstruction_test4.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
// configure RLC
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_tv1.msg, pdu_tv1.N_bytes);
pcap.write_dl_ccch(pdu_tv2.msg, pdu_tv2.N_bytes);
pcap.write_dl_ccch(pdu_tv3.msg, pdu_tv3.N_bytes);
pcap.write_dl_ccch(pdu_tv4.msg, pdu_tv4.N_bytes);
#endif
rlc1.write_pdu(pdu_tv1.msg, pdu_tv1.N_bytes);
rlc1.write_pdu(pdu_tv2.msg, pdu_tv2.N_bytes);
rlc1.write_pdu(pdu_tv3.msg, pdu_tv3.N_bytes);
rlc1.write_pdu(pdu_tv4.msg, pdu_tv4.N_bytes);
// Check RLC re-assembled message header
TESTASSERT(spy.has_message("[Data PDU, RF=0, P=0, FI=1, SN=172, LSF=0, SO=0, N_li=2 (1, 10)]"));
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
int header_reconstruction_test5(srsran::log_sink_message_spy& spy)
{
// Original PDU:
// 18:46:22.372858 [RLC_1] [I] DRB1 Tx PDU SN=222 (22 B)
// 0000: bc de 80 30 0a ee ee ee ef ef ef ef ef ef ef ef
// 0010: ef ef f0 f0 f0 f0
// 18:46:22.372863 [RLC_1] [D] [Data PDU, RF=0, P=1, FI=1, SN=222, LSF=0, SO=0, N_li=2 (3, 10)]
// 18:46:22.373623 [RLC_1] [I] DRB1 Retx PDU segment SN=222 [so=0] (7 B) (attempt 2/16)
// 0000: d0 de 00 00 ee ee ee
// 18:46:22.373629 [RLC_2] [I] DRB1 Rx data PDU segment of SN=222 (3 B), SO=0, N_li=0
// 0000: ee ee ee
std::array<uint8_t, 7> tv0 = {0xd0, 0xde, 0x00, 0x00, 0xee, 0xee, 0xee};
// 18:46:22.373707 [RLC_1] [I] DRB1 Retx PDU segment SN=222 [so=3] (19 B) (attempt 2/16)
// 0000: cc de 00 03 00 a0 ef ef ef ef ef ef ef ef ef ef
// 0010: f0 f0 f0
// 18:46:22.373714 [RLC_2] [I] DRB1 Rx data PDU segment of SN=222 (13 B), SO=3, N_li=1
// 0000: ef ef ef ef ef ef ef ef ef ef f0 f0 f0
std::array<uint8_t, 19> tv1 = {
0xcc, 0xde, 0x00, 0x03, 0x00, 0xa0, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xef, 0xf0, 0xf0, 0xf0};
// 18:46:22.373793 [RLC_1] [I] DRB1 Retx PDU segment SN=222 [so=16] (5 B) (attempt 2/16)
// 0000: d8 de 80 10 f0
// 18:46:22.373798 [RLC_2] [I] DRB1 Rx data PDU segment of SN=222 (1 B), SO=16, N_li=0
// 0000: f0
std::array<uint8_t, 5> tv2 = {0xd8, 0xde, 0x80, 0x10, 0xf0};
byte_buffer_t pdu_tv0;
memcpy(pdu_tv0.msg, tv0.data(), tv0.size());
pdu_tv0.N_bytes = tv0.size();
byte_buffer_t pdu_tv1;
memcpy(pdu_tv1.msg, tv1.data(), tv1.size());
pdu_tv1.N_bytes = tv1.size();
byte_buffer_t pdu_tv2;
memcpy(pdu_tv2.msg, tv2.data(), tv2.size());
pdu_tv2.N_bytes = tv2.size();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_header_reconstruction_test5.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
// configure RLC
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_tv0.msg, pdu_tv0.N_bytes);
pcap.write_dl_ccch(pdu_tv1.msg, pdu_tv1.N_bytes);
pcap.write_dl_ccch(pdu_tv2.msg, pdu_tv2.N_bytes);
#endif
// don't write original PDU
rlc1.write_pdu(pdu_tv0.msg, pdu_tv0.N_bytes);
rlc1.write_pdu(pdu_tv1.msg, pdu_tv1.N_bytes);
rlc1.write_pdu(pdu_tv2.msg, pdu_tv2.N_bytes);
// Check RLC re-assembled message header
TESTASSERT(spy.has_message("[Data PDU, RF=0, P=0, FI=1, SN=222, LSF=0, SO=0, N_li=2 (3, 10)]"));
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
int header_reconstruction_test6(srsran::log_sink_message_spy& spy)
{
// Original PDU:
// 21:50:12.709646 [RLC_1] [I] DRB1 Tx PDU SN=509 (20 B)
// 0000: 9d fd 80 40 0a b1 b1 b1 b1 b2 b2 b2 b2 b2 b2 b2
// 0010: b2 b2 b2 b3
// 21:50:12.709653 [RLC_1] [D] [Data PDU, RF=0, P=0, FI=1, SN=509, LSF=0, SO=0, N_li=2 (4, 10)]]
// 21:50:12.711022 [RLC_1] [I] DRB1 Retx PDU segment SN=509 [so=0] (5 B) (attempt 3/16)
// 0000: d9 fd 00 00 b1
// 21:50:12.711029 [RLC_2] [I] DRB1 Rx data PDU segment of SN=509 (1 B), SO=0, N_li=0
// 0000: b1
// 21:50:12.711034 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=509, LSF=0, SO=0, N_li=0]
std::array<uint8_t, 5> tv0 = {0xd9, 0xfd, 0x00, 0x00, 0xb1};
// 21:50:12.711104 [RLC_1] [I] DRB1 Retx PDU segment SN=509 [so=1] (7 B) (attempt 3/16)
// 0000: d1 fd 00 01 b1 b1 b1
// 21:50:12.711110 [RLC_2] [I] DRB1 Rx data PDU segment of SN=509 (3 B), SO=1, N_li=0
// 0000: b1 b1 b1
// 21:50:12.711115 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=509, LSF=0, SO=1, N_li=0]
std::array<uint8_t, 7> tv1 = {0xd1, 0xfd, 0x00, 0x01, 0xb1, 0xb1, 0xb1};
// 21:50:12.711201 [RLC_1] [I] DRB1 Retx PDU segment SN=509 [so=4] (17 B) (attempt 3/16)
// 0000: ed fd 80 04 00 a0 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2
// 0010: b3
// 21:50:12.711210 [RLC_2] [I] DRB1 Rx data PDU segment of SN=509 (11 B), SO=4, N_li=1
// 0000: b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b3
// 21:50:12.711216 [RLC_2] [D] [Data PDU, RF=1, P=1, FI=1, SN=509, LSF=1, SO=4, N_li=1 (10)]
std::array<uint8_t, 17> tv2 = {
0xed, 0xfd, 0x80, 0x04, 0x00, 0xa0, 0xb2, 0xb2, 0xb2, 0xb2, 0xb2, 0xb2, 0xb2, 0xb2, 0xb2, 0xb2, 0xb3};
byte_buffer_t pdu_tv0;
memcpy(pdu_tv0.msg, tv0.data(), tv0.size());
pdu_tv0.N_bytes = tv0.size();
byte_buffer_t pdu_tv1;
memcpy(pdu_tv1.msg, tv1.data(), tv1.size());
pdu_tv1.N_bytes = tv1.size();
byte_buffer_t pdu_tv2;
memcpy(pdu_tv2.msg, tv2.data(), tv2.size());
pdu_tv2.N_bytes = tv2.size();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_header_reconstruction_test6.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
// configure RLC
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_tv0.msg, pdu_tv0.N_bytes);
pcap.write_dl_ccch(pdu_tv1.msg, pdu_tv1.N_bytes);
pcap.write_dl_ccch(pdu_tv2.msg, pdu_tv2.N_bytes);
#endif
// don't write original PDU
rlc1.write_pdu(pdu_tv0.msg, pdu_tv0.N_bytes);
rlc1.write_pdu(pdu_tv1.msg, pdu_tv1.N_bytes);
rlc1.write_pdu(pdu_tv2.msg, pdu_tv2.N_bytes);
// Check RLC re-assembled message header
TESTASSERT(spy.has_message("[Data PDU, RF=0, P=1, FI=1, SN=509, LSF=0, SO=0, N_li=2 (4, 10)]"));
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
int header_reconstruction_test7(srsran::log_sink_message_spy& spy)
{
// Original PDU:
// 22:14:54.646530 [RLC_1] [I] DRB1 Tx PDU SN=282 (19 B)
// 0000: 9d 1a 80 10 0a 28 29 29 29 29 29 29 29 29 29 29
// 0010: 2a 2a 2a
// 22:14:54.646535 [RLC_1] [D] [Data PDU, RF=0, P=0, FI=1, SN=282, LSF=0, SO=0, N_li=2 (1, 10)]
// 22:14:54.648484 [RLC_1] [I] DRB1 Retx PDU segment SN=282 [so=2] (6 B) (attempt 2/16)
// 0000: f9 1a 00 02 29 29
// 22:14:54.648490 [RLC_2] [I] DRB1 Rx data PDU segment of SN=282 (2 B), SO=2, N_li=0
// 0000: 29 29
// 22:14:54.648495 [RLC_2] [D] [Data PDU, RF=1, P=1, FI=1, SN=282, LSF=0, SO=2, N_li=0]
std::array<uint8_t, 6> tv0 = {0xf9, 0x1a, 0x00, 0x02, 0x29, 0x29};
// 22:14:54.648576 [RLC_1] [I] DRB1 Retx PDU segment SN=282 [so=4] (11 B) (attempt 2/16)
// 0000: d1 1a 00 04 29 29 29 29 29 29 29
// 22:14:54.648583 [RLC_2] [I] DRB1 Rx data PDU segment of SN=282 (7 B), SO=4, N_li=0
// 0000: 29 29 29 29 29 29 29
// 22:14:54.648588 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=282, LSF=0, SO=4, N_li=0]
std::array<uint8_t, 11> tv1 = {0xd1, 0x1a, 0x00, 0x04, 0x29, 0x29, 0x29, 0x29, 0x29, 0x29, 0x29};
// 22:14:54.648701 [RLC_1] [I] DRB1 Retx PDU segment SN=282 [so=11] (7 B) (attempt 2/16)
// 0000: d9 1a 80 0b 2a 2a 2a
// 22:14:54.648707 [RLC_2] [I] DRB1 Rx data PDU segment of SN=282 (3 B), SO=11, N_li=0
// 0000: 2a 2a 2a
// 22:14:54.648713 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=282, LSF=1, SO=11, N_li=0]
std::array<uint8_t, 7> tv2 = {0xd9, 0x1a, 0x80, 0x0b, 0x2a, 0x2a, 0x2a};
// 22:14:54.648860 [RLC_1] [I] DRB1 Retx PDU segment SN=282 [so=0] (5 B) (attempt 3/16)
// 0000: d1 1a 00 00 28
// 22:14:54.648866 [RLC_2] [I] DRB1 Rx data PDU segment of SN=282 (1 B), SO=0, N_li=0
// 0000: 28
// 22:14:54.648871 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=282, LSF=0, SO=0, N_li=0]
std::array<uint8_t, 5> tv3 = {0xd1, 0x1a, 0x00, 0x00, 0x28};
// 22:14:54.648948 [RLC_1] [I] DRB1 Retx PDU segment SN=282 [so=1] (8 B) (attempt 3/16)
// 0000: c9 1a 00 01 29 29 29 29
// 22:14:54.648957 [RLC_2] [I] DRB1 Rx data PDU segment of SN=282 (4 B), SO=1, N_li=0
// 0000: 29 29 29 29
// 22:14:54.648962 [RLC_2] [D] [Data PDU, RF=1, P=0, FI=1, SN=282, LSF=0, SO=1, N_li=0]
std::array<uint8_t, 8> tv4 = {0xc9, 0x1a, 0x00, 0x01, 0x29, 0x29, 0x29, 0x29};
byte_buffer_t pdu_tv0;
memcpy(pdu_tv0.msg, tv0.data(), tv0.size());
pdu_tv0.N_bytes = tv0.size();
byte_buffer_t pdu_tv1;
memcpy(pdu_tv1.msg, tv1.data(), tv1.size());
pdu_tv1.N_bytes = tv1.size();
byte_buffer_t pdu_tv2;
memcpy(pdu_tv2.msg, tv2.data(), tv2.size());
pdu_tv2.N_bytes = tv2.size();
byte_buffer_t pdu_tv3;
memcpy(pdu_tv3.msg, tv3.data(), tv3.size());
pdu_tv3.N_bytes = tv3.size();
byte_buffer_t pdu_tv4;
memcpy(pdu_tv4.msg, tv4.data(), tv4.size());
pdu_tv4.N_bytes = tv4.size();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_header_reconstruction_test7.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
// configure RLC
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_tv0.msg, pdu_tv0.N_bytes);
pcap.write_dl_ccch(pdu_tv1.msg, pdu_tv1.N_bytes);
pcap.write_dl_ccch(pdu_tv2.msg, pdu_tv2.N_bytes);
pcap.write_dl_ccch(pdu_tv3.msg, pdu_tv3.N_bytes);
pcap.write_dl_ccch(pdu_tv4.msg, pdu_tv4.N_bytes);
#endif
// don't write original PDU
rlc1.write_pdu(pdu_tv0.msg, pdu_tv0.N_bytes);
rlc1.write_pdu(pdu_tv1.msg, pdu_tv1.N_bytes);
rlc1.write_pdu(pdu_tv2.msg, pdu_tv2.N_bytes);
rlc1.write_pdu(pdu_tv3.msg, pdu_tv3.N_bytes);
rlc1.write_pdu(pdu_tv4.msg, pdu_tv4.N_bytes);
// Check RLC re-assembled message header
TESTASSERT(spy.has_message("[Data PDU, RF=0, P=0, FI=1, SN=282, LSF=0, SO=0, N_li=2 (1, 10)]"));
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
int header_reconstruction_test8(srsran::log_sink_message_spy& spy)
{
// Original PDU:
// 21:23:34.407718 [RLC_1] [I] DRB1 Tx PDU SN=423 (40 B)
// 0000: b5 a7 80 38 0a 00 a0 77 77 77 78 78 78 78 78 78
// 0010: 78 78 78 78 79 79 79 79 79 79 79 79 79 79 7a 7a
// 0020: 7a 7a 7a 7a 7a 7a 7a 7a
// 21:23:34.407724 [RLC_1] [D] [Data PDU, RF=0, P=1, FI=1, SN=423, LSF=0, SO=0, N_li=3 (3, 10, 10)]
// 21:23:34.408815 [RLC_1] [I] DRB1 Retx PDU segment SN=423 [so=0] (18 B) (attempt 2/8)
// 0000: fd a7 00 00 00 30 77 77 77 78 78 78 78 78 78 78
// 0010: 78 78
// 21:23:34.408822 [RLC_2] [I] DRB1 Rx data PDU segment of SN=423 (12 B), SO=0, N_li=1
// 0000: 77 77 77 78 78 78 78 78 78 78 78 78
// 21:23:34.408828 [RLC_2] [D] [Data PDU, RF=1, P=1, FI=1, SN=423, LSF=0, SO=0, N_li=1 (3)]
std::array<uint8_t, 18> tv0 = {
0xfd, 0xa7, 0x00, 0x00, 0x00, 0x30, 0x77, 0x77, 0x77, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78};
// 21:23:34.408913 [RLC_1] [I] DRB1 Retx PDU segment SN=423 [so=12] (17 B) (attempt 2/8)
// 0000: f5 a7 00 0c 00 10 78 79 79 79 79 79 79 79 79 79
// 0010: 79
// 21:23:34.408919 [RLC_2] [I] DRB1 Rx data PDU segment of SN=423 (11 B), SO=12, N_li=1
// 0000: 78 79 79 79 79 79 79 79 79 79 79
// 21:23:34.408925 [RLC_2] [D] [Data PDU, RF=1, P=1, FI=1, SN=423, LSF=0, SO=12, N_li=1 (1)]
std::array<uint8_t, 17> tv1 = {
0xf5, 0xa7, 0x00, 0x0c, 0x00, 0x10, 0x78, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79};
// 21:23:34.409421 [RLC_1] [I] DRB1 Retx PDU segment SN=423 [so=0] (19 B) (attempt 3/8)
// 0000: f5 a7 00 00 00 30 77 77 77 78 78 78 78 78 78 78
// 0010: 78 78 78
// 21:23:34.409433 [RLC_2] [I] DRB1 Rx data PDU segment of SN=423 (13 B), SO=0, N_li=1
// 0000: 77 77 77 78 78 78 78 78 78 78 78 78 78
// 21:23:34.409440 [RLC_2] [D] [Data PDU, RF=1, P=1, FI=1, SN=423, LSF=0, SO=0, N_li=1 (3)]
std::array<uint8_t, 19> tv2 = {
0xf5, 0xa7, 0x00, 0x00, 0x00, 0x30, 0x77, 0x77, 0x77, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78, 0x78};
// 21:23:34.409524 [RLC_1] [I] DRB1 Retx PDU segment SN=423 [so=13] (26 B) (attempt 3/8)
// 0000: e5 a7 80 0d 00 a0 79 79 79 79 79 79 79 79 79 79
// 0010: 7a 7a 7a 7a 7a 7a 7a 7a 7a 7a
// 21:23:34.409531 [RLC_2] [I] DRB1 Rx data PDU segment of SN=423 (20 B), SO=13, N_li=1
// 0000: 79 79 79 79 79 79 79 79 79 79 7a 7a 7a 7a 7a 7a
// 0010: 7a 7a 7a 7a
// 21:23:34.409537 [RLC_2] [D] [Data PDU, RF=1, P=1, FI=0, SN=423, LSF=1, SO=13, N_li=1 (10)]
std::array<uint8_t, 26> tv3 = {0xe5, 0xa7, 0x80, 0x0d, 0x00, 0xa0, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79,
0x79, 0x79, 0x79, 0x7a, 0x7a, 0x7a, 0x7a, 0x7a, 0x7a, 0x7a, 0x7a, 0x7a, 0x7a};
byte_buffer_t pdu_tv0;
memcpy(pdu_tv0.msg, tv0.data(), tv0.size());
pdu_tv0.N_bytes = tv0.size();
byte_buffer_t pdu_tv1;
memcpy(pdu_tv1.msg, tv1.data(), tv1.size());
pdu_tv1.N_bytes = tv1.size();
byte_buffer_t pdu_tv2;
memcpy(pdu_tv2.msg, tv2.data(), tv2.size());
pdu_tv2.N_bytes = tv2.size();
byte_buffer_t pdu_tv3;
memcpy(pdu_tv3.msg, tv3.data(), tv3.size());
pdu_tv3.N_bytes = tv3.size();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_header_reconstruction_test8.pcap", rlc_config_t::default_rlc_am_config());
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
// configure RLC
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
#if HAVE_PCAP
pcap.write_dl_ccch(pdu_tv0.msg, pdu_tv0.N_bytes);
pcap.write_dl_ccch(pdu_tv1.msg, pdu_tv1.N_bytes);
pcap.write_dl_ccch(pdu_tv2.msg, pdu_tv2.N_bytes);
pcap.write_dl_ccch(pdu_tv3.msg, pdu_tv3.N_bytes);
pcap.close();
#endif
// don't write original PDU
rlc1.write_pdu(pdu_tv0.msg, pdu_tv0.N_bytes);
rlc1.write_pdu(pdu_tv1.msg, pdu_tv1.N_bytes);
rlc1.write_pdu(pdu_tv2.msg, pdu_tv2.N_bytes);
rlc1.write_pdu(pdu_tv3.msg, pdu_tv3.N_bytes);
// Check RLC re-assembled message header
TESTASSERT(spy.has_message("[Data PDU, RF=0, P=1, FI=1, SN=423, LSF=0, SO=0, N_li=3 (3, 10, 10)]"));
return SRSRAN_SUCCESS;
}
bool reset_test()
{
rlc_am_tester tester;
srsran::timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 1 SDU of size 10 into RLC1
unique_byte_buffer_t sdu_buf = srsran::make_byte_buffer();
sdu_buf->N_bytes = 100;
std::fill(sdu_buf->msg, sdu_buf->msg + sdu_buf->N_bytes, 0);
sdu_buf->msg[0] = 1; // Write the index into the buffer
rlc1.write_sdu(std::move(sdu_buf));
// read 1 PDU from RLC1 and force segmentation
byte_buffer_t pdu_bufs;
len = rlc1.read_pdu(pdu_bufs.msg, 4);
pdu_bufs.N_bytes = len;
// reset RLC1
rlc1.stop();
// read another PDU segment from RLC1
len = rlc1.read_pdu(pdu_bufs.msg, 4);
pdu_bufs.N_bytes = len;
// now empty RLC buffer
len = rlc1.read_pdu(pdu_bufs.msg, 100);
pdu_bufs.N_bytes = len;
if (0 != rlc1.get_buffer_state()) {
return -1;
}
return 0;
}
bool resume_test()
{
rlc_am_tester tester;
srsran::timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 1 SDU of size 10 into RLC1
unique_byte_buffer_t sdu_buf = srsran::make_byte_buffer();
sdu_buf->N_bytes = 100;
std::fill(sdu_buf->msg, sdu_buf->msg + sdu_buf->N_bytes, 0);
sdu_buf->msg[0] = 1; // Write the index into the buffer
rlc1.write_sdu(std::move(sdu_buf));
// read 1 PDU from RLC1 and force segmentation
byte_buffer_t pdu_bufs;
len = rlc1.read_pdu(pdu_bufs.msg, 4);
pdu_bufs.N_bytes = len;
// reestablish RLC1
rlc1.reestablish();
// resume RLC1
rlc1.resume();
// Buffer should be zero
if (0 != rlc1.get_buffer_state()) {
return -1;
}
// Do basic test
byte_buffer_t pdu_bufs_tx[NBUFS];
basic_test_tx(&rlc1, pdu_bufs_tx);
return 0;
}
bool stop_test()
{
rlc_am_tester tester;
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// start thread reading
ul_writer writer(&rlc1);
writer.start(-2);
// let writer thread block on tx_queue
usleep(1e6);
// stop RLC1
rlc1.stop();
return 0;
}
// This test checks if status PDUs are generated even though the grant size may not
// be enough to fit all SNs that would need to be NACKed
bool status_pdu_test()
{
rlc_am_tester tester;
srsran::timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
const uint32_t n_sdus = 10;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 5 PDUs from RLC1 (1 byte each)
const uint32_t n_pdus = n_sdus;
byte_buffer_t pdu_bufs[n_pdus];
for (uint32_t i = 0; i < n_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 byte header + 1 byte payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Only pass 1st and last PDUs to RLC2
for (uint32_t i = 0; i < n_pdus; ++i) {
if (i == 0 || i == n_pdus - 1) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
}
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
uint32_t buffer_state = rlc2.get_buffer_state();
// Read status PDU from RLC2
byte_buffer_t status_buf;
len = rlc2.read_pdu(status_buf.msg, 5); // provide only small grant
status_buf.N_bytes = len;
// check status PDU doesn't contain ACK_SN in NACK list
rlc_status_pdu_t status_pdu = {};
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_pdu);
TESTASSERT(rlc_am_is_valid_status_pdu(status_pdu));
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Read the retx PDU from RLC1
byte_buffer_t retx;
len = rlc1.read_pdu(retx.msg, 10);
retx.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx.msg, retx.N_bytes);
// Step timers until reordering timeout expires
cnt = 5;
while (cnt--) {
timers.step_all();
}
// get buffer state and status PDU again
status_buf.clear();
len = rlc2.read_pdu(status_buf.msg, 20); // big enough grant to fit full status PDU
status_buf.N_bytes = len;
TESTASSERT(status_buf.N_bytes != 0);
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// retransmission of remaining PDUs
for (int i = 0; i < 10; i++) {
retx.clear();
len = rlc1.read_pdu(retx.msg, 3);
retx.N_bytes = len;
// Write the retx PDU to RLC2
rlc2.write_pdu(retx.msg, retx.N_bytes);
}
TESTASSERT(tester.sdus.size() == n_sdus);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 1);
}
return SRSRAN_SUCCESS;
}
// This test checks the correct handling of a sending RLC entity when an incorrect status PDU is injected.
// In this test, the receiver requests the retransmission of a SN that he has acknowledeged before.
// The incidence is reported to the upper layers.
bool incorrect_status_pdu_test()
{
rlc_am_tester tester;
srsran::timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 5 SDUs into RLC1
const uint32_t n_sdus = 10;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 5 PDUs from RLC1 (1 byte each)
const uint32_t n_pdus = n_sdus;
byte_buffer_t pdu_bufs[n_pdus];
for (uint32_t i = 0; i < n_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 byte header + 1 byte payload
pdu_bufs[i].N_bytes = len;
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Construct a status PDU that ACKs SN 1
rlc_status_pdu_t status_pdu = {};
status_pdu.ack_sn = 4;
status_pdu.N_nack = 3;
status_pdu.nacks[0].nack_sn = 0;
status_pdu.nacks[1].nack_sn = 2;
TESTASSERT(rlc_am_is_valid_status_pdu(status_pdu));
// pack PDU and write to RLC
byte_buffer_t status_buf;
rlc_am_write_status_pdu(&status_pdu, &status_buf);
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// This will remove SN=1 from the Tx window
TESTASSERT(tester.protocol_failure_triggered == false);
// construct a valid but conflicting status PDU that request SN=1 for retx
status_pdu.N_nack = 1;
status_pdu.nacks[0].nack_sn = 1;
TESTASSERT(rlc_am_is_valid_status_pdu(status_pdu));
// pack and write to RLC again
rlc_am_write_status_pdu(&status_pdu, &status_buf);
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(tester.protocol_failure_triggered == true);
return SRSRAN_SUCCESS;
}
/// The test checks the correct detection of an out-of-order status PDUs
/// In contrast to the without explicitly NACK-ing specific SNs
bool incorrect_status_pdu_test2()
{
rlc_am_tester tester;
srsran::timer_handler timers(8);
int len = 0;
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
return -1;
}
// Push 10 SDUs into RLC1
const uint32_t n_sdus = 10;
unique_byte_buffer_t sdu_bufs[n_sdus];
for (uint32_t i = 0; i < n_sdus; i++) {
sdu_bufs[i] = srsran::make_byte_buffer();
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
rlc1.write_sdu(std::move(sdu_bufs[i]));
}
// Read 10 PDUs from RLC1 (1 byte each) and push half of them to RLC2
const uint32_t n_pdus = n_sdus;
byte_buffer_t pdu_bufs[n_pdus];
for (uint32_t i = 0; i < n_pdus; i++) {
len = rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 byte header + 1 byte payload
pdu_bufs[i].N_bytes = len;
if (i < 5) {
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
}
}
TESTASSERT(0 == rlc1.get_buffer_state());
// Construct a status PDU that ACKs all SNs
rlc_status_pdu_t status_pdu = {};
status_pdu.ack_sn = 5;
status_pdu.N_nack = 0;
TESTASSERT(rlc_am_is_valid_status_pdu(status_pdu));
// pack PDU and write to RLC
byte_buffer_t status_buf;
rlc_am_write_status_pdu(&status_pdu, &status_buf);
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
TESTASSERT(tester.protocol_failure_triggered == false);
// construct a valid but conflicting status PDU that acks a lower SN and requests SN=1 for retx
status_pdu.ack_sn = 3;
status_pdu.N_nack = 1;
status_pdu.nacks[0].nack_sn = 1;
TESTASSERT(rlc_am_is_valid_status_pdu(status_pdu));
// pack and write to RLC again
rlc_am_write_status_pdu(&status_pdu, &status_buf);
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// the PDU should be dropped
// resend first Status PDU again
status_pdu.ack_sn = 5;
status_pdu.N_nack = 0;
TESTASSERT(rlc_am_is_valid_status_pdu(status_pdu));
// pack and write to RLC again
rlc_am_write_status_pdu(&status_pdu, &status_buf);
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// retransmit all outstanding PDUs
for (int i = 0; i < 5; i++) {
byte_buffer_t retx;
retx.N_bytes = rlc1.read_pdu(retx.msg, 3);
rlc2.write_pdu(retx.msg, retx.N_bytes);
// Step timers until reordering timeout expires
int cnt = 5;
while (cnt--) {
timers.step_all();
}
// read status
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10);
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
}
TESTASSERT(tester.sdus.size() == n_sdus);
for (uint32_t i = 0; i < tester.sdus.size(); i++) {
TESTASSERT(tester.sdus[i]->N_bytes == 1);
}
return SRSRAN_SUCCESS;
}
// This test checks the correct functioning of RLC reestablishment
// after maxRetx attempt.
bool reestablish_test()
{
const rlc_config_t config = rlc_config_t::default_rlc_am_config();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_reestablish_test.pcap", config);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC_AM_2").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC").set_hex_dump_max_size(100);
if (not rlc1.configure(config)) {
return -1;
}
if (not rlc2.configure(config)) {
return -1;
}
bool reetablished_once = false;
// Generate 40 SDUs/PDUs
const uint32_t total_num_tx_pdus = config.am.max_retx_thresh * 10;
uint32_t num_tx_pdus = 0;
// Create a few SDUs and write to RLC1 to make sure buffers aren't empty after tx one PDU
for (uint32_t i = num_tx_pdus; i < 5; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 5; // Give each buffer a size of 1 byte
for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer
}
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
for (uint32_t i = num_tx_pdus; i < total_num_tx_pdus; i++) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 5; // Give each buffer a size of 1 byte
for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer
}
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
// Read PDU
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
pdu->N_bytes = rlc1.read_pdu(pdu->msg, 7); // 2 byte header + 5 byte payload;
// Find SN=0 PDU
bool is_data_pdu_sn0 = false;
if (not rlc_am_is_control_pdu(pdu->msg)) {
// After reestablishment after maxretx, also SN=0 is delivered
if (not reetablished_once) {
rlc_amd_pdu_header_t header = {};
rlc_am_read_data_pdu_header(pdu.get(), &header);
if (header.sn == 0) {
is_data_pdu_sn0 = true;
}
}
}
// Deliver all PDUs but SN=0 to RLC2
if (not is_data_pdu_sn0) {
rlc2.write_pdu(pdu->msg, pdu->N_bytes);
#if HAVE_PCAP
pcap.write_dl_ccch(pdu->msg, pdu->N_bytes);
#endif
}
// Check if RLC2 has something to send
if (rlc2.get_buffer_state() > 0) {
byte_buffer_t status_buf;
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 5); // provide only small grant
TESTASSERT(status_buf.N_bytes != 0);
// Write status PDU to RLC1
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
#if HAVE_PCAP
pcap.write_ul_ccch(status_buf.msg, status_buf.N_bytes);
#endif
}
// each interation is one TTI
timers.step_all();
// Reestablish if max retx have been reached
if (tester.max_retx_triggered and !reetablished_once) {
rlc1.reestablish();
rlc2.reestablish();
// make sure we only reesablish once
reetablished_once = true;
}
}
TESTASSERT(tester.sdus.size() == 18);
srslog::fetch_basic_logger("TEST").info("Received %zd SDUs", tester.sdus.size());
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
// This test checks the correct functioning of RLC discard functionality
bool discard_test()
{
const rlc_config_t config = rlc_config_t::default_rlc_am_config();
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_reestablish_test.pcap", config);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC_AM_2").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC").set_hex_dump_max_size(100);
if (not rlc1.configure(config)) {
return -1;
}
if (not rlc2.configure(config)) {
return -1;
}
// Check has_data() after a SDU discard
{
uint32_t num_tx_pdus = 1;
for (uint32_t i = 0; i < num_tx_pdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 5;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer
}
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
}
rlc1.discard_sdu(0); // Try to discard PDCP_SN=1
TESTASSERT(rlc1.has_data() == false);
// Discard an SDU in the midle of the queue and read PDUs after
{
uint32_t num_tx_pdus = 10;
for (uint32_t i = 0; i < num_tx_pdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 1;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer
}
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
}
rlc1.discard_sdu(3); // Try to discard PDCP_SN=1
TESTASSERT(rlc1.has_data() == true);
TESTASSERT(rlc1.get_buffer_state() == 23); // 2 bytes fixed header, 12 , 9 bytes of data,
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
uint32_t len = rlc1.read_pdu(pdu->msg, 50); // enough for all PDUs
pdu->N_bytes = len;
TESTASSERT(23 == len);
srslog::fetch_basic_logger("TEST").info("Received %zd SDUs", tester.sdus.size());
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
// This test checks wether re-transmissions are triggered correctly in case the t-PollRetranmission expires.
// It checks if the poll retx timer is re-armed upon receiving an ACK for POLL_SN
bool poll_retx_expiry_test()
{
rlc_config_t config = rlc_config_t::default_rlc_am_config();
// [I] SRB1 configured: t_poll_retx=65, poll_pdu=-1, poll_byte=-1, max_retx_thresh=6, t_reordering=55,
// t_status_prohibit=0
config.am.t_poll_retx = 65;
config.am.poll_pdu = -1;
config.am.poll_byte = -1;
config.am.max_retx_thresh = 6;
config.am.t_reordering = 55;
config.am.t_status_prohibit = 55;
#if HAVE_PCAP
rlc_pcap pcap;
pcap.open("rlc_am_poll_rext_expiry_test.pcap", config);
rlc_am_tester tester(&pcap);
#else
rlc_am_tester tester(NULL);
#endif
srsran::timer_handler timers(8);
rlc_am rlc1(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_1"), 1, &tester, &tester, &timers);
rlc_am rlc2(srsran_rat_t::lte, srslog::fetch_basic_logger("RLC_AM_2"), 1, &tester, &tester, &timers);
srslog::fetch_basic_logger("RLC_AM_1").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC_AM_2").set_hex_dump_max_size(100);
srslog::fetch_basic_logger("RLC").set_hex_dump_max_size(100);
if (not rlc1.configure(config)) {
return -1;
}
if (not rlc2.configure(config)) {
return -1;
}
// [I] SRB1 Tx SDU (135 B, tx_sdu_queue_len=1)
// [I] SRB1 Tx PDU SN=3 (91 B)
// [I] SRB1 Tx PDU SN=4 (48 B)
{
// Initial Tx
uint32_t num_tx_pdus = 1;
for (uint32_t i = 0; i < num_tx_pdus; ++i) {
// Write SDU
unique_byte_buffer_t sdu = srsran::make_byte_buffer();
TESTASSERT(sdu != nullptr);
sdu->N_bytes = 135;
for (uint32_t k = 0; k < sdu->N_bytes; ++k) {
sdu->msg[k] = i; // Write the index into the buffer
}
sdu->md.pdcp_sn = i;
rlc1.write_sdu(std::move(sdu));
}
unique_byte_buffer_t pdu1 = srsran::make_byte_buffer();
TESTASSERT(pdu1 != nullptr);
pdu1->N_bytes = rlc1.read_pdu(pdu1->msg, 91);
unique_byte_buffer_t pdu2 = srsran::make_byte_buffer();
TESTASSERT(pdu2 != nullptr);
pdu2->N_bytes = rlc1.read_pdu(pdu2->msg, 48);
// Deliver PDU2 to RLC2. PDU1 is lost
rlc2.write_pdu(pdu2->msg, pdu2->N_bytes);
}
// Step timers until t-PollRetransmission timer expires on RLC1
// t-Reordering timer also will expire on RLC2, so we can get an status report.
// [I] SRB1 Schedule SN=3 for reTx
for (int cnt = 0; cnt < 65; cnt++) {
timers.step_all();
}
uint32_t status_size = rlc2.get_buffer_state();
srslog::flush();
TESTASSERT(4 == status_size);
// Read status PDU from RLC2
unique_byte_buffer_t status_buf = srsran::make_byte_buffer();
TESTASSERT(status_buf != nullptr);
int len = rlc2.read_pdu(status_buf->msg, status_size);
status_buf->N_bytes = len;
TESTASSERT(0 == rlc2.get_buffer_state());
// Assert status is correct
rlc_status_pdu_t status_check = {};
rlc_am_read_status_pdu(status_buf->msg, status_buf->N_bytes, &status_check);
TESTASSERT(status_check.ack_sn == 2); // 2 is the SN after the largest SN received.
TESTASSERT(status_check.N_nack == 1); // 1 PDU lost
TESTASSERT(rlc_am_is_valid_status_pdu(status_check));
// [I] SRB1 Retx PDU segment SN=3 [so=0] (83 B) (attempt 2/6)
{
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
TESTASSERT(pdu != nullptr);
pdu->N_bytes = rlc1.read_pdu(pdu->msg, 83);
}
// [I] SRB1 Retx PDU segment SN=3 [so=79] (14 B) (attempt 2/6)
{
unique_byte_buffer_t pdu = srsran::make_byte_buffer();
TESTASSERT(pdu != nullptr);
pdu->N_bytes = rlc1.read_pdu(pdu->msg, 79);
}
// Deliver status PDU after ReTX to RLC1. This should restart t-PollRetransmission
TESTASSERT_EQ(false, rlc1.has_data());
rlc1.write_pdu(status_buf->msg, status_buf->N_bytes);
TESTASSERT_EQ(true, rlc1.has_data());
// [I] SRB1 Retx PDU segment SN=3 [so=0] (83 B) (attempt 3/6) (received a NACK and retx...)
// [I] SRB1 Retx PDU segment SN=3 [so=79] (14 B) (attempt 3/6)
{
unique_byte_buffer_t pdu1 = srsran::make_byte_buffer();
TESTASSERT(pdu1 != nullptr);
pdu1->N_bytes = rlc1.read_pdu(pdu1->msg, 83);
unique_byte_buffer_t pdu2 = srsran::make_byte_buffer();
TESTASSERT(pdu2 != nullptr);
pdu2->N_bytes = rlc1.read_pdu(pdu2->msg, 14);
}
TESTASSERT_EQ(false, rlc1.has_data());
// Step timers until t-PollRetransmission timer expires on RLC1
// [I] SRB1 Schedule SN=3 for reTx
for (int cnt = 0; cnt < 66; cnt++) {
timers.step_all();
}
TESTASSERT_EQ(true, rlc1.has_data());
srslog::fetch_basic_logger("TEST").info("t-Poll Retransmssion successfully restarted.");
#if HAVE_PCAP
pcap.close();
#endif
return SRSRAN_SUCCESS;
}
int main(int argc, char** argv)
{
// Setup the log message spy to intercept error and warning log entries from RLC
if (!srslog::install_custom_sink(srsran::log_sink_message_spy::name(),
std::unique_ptr<srsran::log_sink_message_spy>(
new srsran::log_sink_message_spy(srslog::get_default_log_formatter())))) {
return SRSRAN_ERROR;
}
auto* spy = static_cast<srsran::log_sink_message_spy*>(srslog::find_sink(srsran::log_sink_message_spy::name()));
if (!spy) {
return SRSRAN_ERROR;
}
srslog::set_default_sink(*spy);
auto& logger_rrc1 = srslog::fetch_basic_logger("RLC_AM_1", *spy, false);
auto& logger_rrc2 = srslog::fetch_basic_logger("RLC_AM_2", *spy, false);
logger_rrc1.set_hex_dump_max_size(100);
logger_rrc2.set_hex_dump_max_size(100);
logger_rrc1.set_level(srslog::basic_levels::debug);
logger_rrc2.set_level(srslog::basic_levels::debug);
// start log backend
srslog::init();
if (basic_test()) {
printf("basic_test failed\n");
exit(-1);
};
if (concat_test()) {
printf("concat_test failed\n");
exit(-1);
};
if (segment_test(true)) {
printf("segment_test with in-order PDU reception failed\n");
exit(-1);
};
if (segment_test(false)) {
printf("segment_test with out-of-order PDU reception failed\n");
exit(-1);
};
if (retx_test()) {
printf("retx_test failed\n");
exit(-1);
};
if (max_retx_test()) {
printf("max_retx_test failed\n");
exit(-1);
};
if (reestablish_test()) {
printf("reestablish_test failed\n");
exit(-1);
};
if (segment_retx_test()) {
printf("segment_retx_test failed\n");
exit(-1);
};
if (resegment_test_1()) {
printf("resegment_test_1 failed\n");
exit(-1);
};
if (resegment_test_2()) {
printf("resegment_test_2 failed\n");
exit(-1);
};
if (resegment_test_3()) {
printf("resegment_test_3 failed\n");
exit(-1);
};
if (resegment_test_4()) {
printf("resegment_test_4 failed\n");
exit(-1);
};
if (resegment_test_5()) {
printf("resegment_test_5 failed\n");
exit(-1);
};
if (resegment_test_6()) {
printf("resegment_test_6 failed\n");
exit(-1);
};
logger_rrc1.set_hex_dump_max_size(100);
logger_rrc2.set_hex_dump_max_size(100);
if (resegment_test_7()) {
printf("resegment_test_7 failed\n");
exit(-1);
}
if (resegment_test_8()) {
printf("resegment_test_8 failed\n");
exit(-1);
};
logger_rrc1.set_hex_dump_max_size(-1);
logger_rrc2.set_hex_dump_max_size(-1);
if (resegment_test_9()) {
printf("resegment_test_9 failed\n");
exit(-1);
};
if (resegment_test_10()) {
printf("resegment_test_10 failed\n");
exit(-1);
};
if (resegment_test_11()) {
printf("resegment_test_11 failed\n");
exit(-1);
};
if (resegment_test_12()) {
printf("resegment_test_12 failed\n");
exit(-1);
};
// Set of unique header reconstruction tests using the logspy
if (header_reconstruction_test(*spy)) {
printf("header_reconstruction_test failed\n");
exit(-1);
}
if (header_reconstruction_test2(*spy)) {
printf("header_reconstruction_test2 failed\n");
exit(-1);
}
if (header_reconstruction_test3(*spy)) {
printf("header_reconstruction_test3 failed\n");
exit(-1);
}
if (header_reconstruction_test4(*spy)) {
printf("header_reconstruction_test4 failed\n");
exit(-1);
}
if (header_reconstruction_test5(*spy)) {
printf("header_reconstruction_test5 failed\n");
exit(-1);
}
if (header_reconstruction_test6(*spy)) {
printf("header_reconstruction_test6 failed\n");
exit(-1);
}
if (header_reconstruction_test7(*spy)) {
printf("header_reconstruction_test7 failed\n");
exit(-1);
}
if (header_reconstruction_test8(*spy)) {
printf("header_reconstruction_test8 failed\n");
exit(-1);
}
if (reset_test()) {
printf("reset_test failed\n");
exit(-1);
};
if (stop_test()) {
printf("stop_test failed\n");
exit(-1);
};
if (resume_test()) {
printf("resume_test failed\n");
exit(-1);
};
if (status_pdu_test()) {
printf("status_pdu_test failed\n");
exit(-1);
};
if (incorrect_status_pdu_test()) {
printf("incorrect_status_pdu_test failed\n");
exit(-1);
};
if (incorrect_status_pdu_test2()) {
printf("incorrect_status_pdu_test2 failed\n");
exit(-1);
};
if (discard_test()) {
printf("discard_test failed\n");
exit(-1);
};
if (poll_retx_expiry_test()) {
printf("poll_retx_expiry_test failed\n");
exit(-1);
};
return SRSRAN_SUCCESS;
}