You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/test/phy/dummy_gnb_stack.h

321 lines
12 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2021 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSRAN_DUMMY_GNB_STACK_H
#define SRSRAN_DUMMY_GNB_STACK_H
#include <mutex>
#include <srsenb/hdr/stack/mac/mac_metrics.h>
#include <srsran/adt/circular_array.h>
#include <srsran/common/phy_cfg_nr.h>
#include <srsran/common/standard_streams.h>
#include <srsran/interfaces/gnb_interfaces.h>
class gnb_dummy_stack : public srsenb::stack_interface_phy_nr
{
private:
srslog::basic_logger& logger = srslog::fetch_basic_logger("GNB STK");
const uint16_t rnti = 0x1234;
const uint32_t mcs = 1;
srsran::circular_array<srsran_dci_location_t, SRSRAN_NOF_SF_X_FRAME> dci_dl_location;
srsran::circular_array<srsran_dci_location_t, SRSRAN_NOF_SF_X_FRAME> dci_ul_location;
srsran::circular_array<uint32_t, SRSRAN_NOF_SF_X_FRAME> dl_data_to_ul_ack;
uint32_t ss_id = 0;
srsran_dci_format_nr_t dci_format_ul = SRSRAN_DCI_FORMAT_NR_COUNT;
srsran_dci_format_nr_t dci_format_dl = SRSRAN_DCI_FORMAT_NR_COUNT;
uint32_t dl_freq_res = 0;
uint32_t dl_time_res = 0;
srsran_random_t random_gen = nullptr;
srsran::phy_cfg_nr_t phy_cfg = {};
bool valid = false;
std::mutex mac_metrics_mutex;
srsenb::mac_ue_metrics_t mac_metrics = {};
// HARQ feedback
class pending_ack_t
{
private:
std::mutex mutex;
srsran_pdsch_ack_nr_t ack = {};
public:
pending_ack_t() = default;
void push_ack(srsran_harq_ack_resource_t& ack_resource)
{
// Prepare ACK information
srsran_harq_ack_m_t ack_m = {};
ack_m.resource = ack_resource;
ack_m.present = true;
std::unique_lock<std::mutex> lock(mutex);
ack.nof_cc = 1;
srsran_harq_ack_insert_m(&ack, &ack_m);
}
srsran_pdsch_ack_nr_t get_ack()
{
std::unique_lock<std::mutex> lock(mutex);
srsran_pdsch_ack_nr_t ret = ack;
ack = {};
return ret;
}
uint32_t get_dai()
{
std::unique_lock<std::mutex> lock(mutex);
return ack.cc[0].M % 4;
}
};
std::array<pending_ack_t, TTIMOD_SZ> pending_ack = {};
struct dummy_harq_proc {
static const uint32_t MAX_TB_SZ = SRSRAN_LDPC_MAX_LEN_CB * SRSRAN_SCH_NR_MAX_NOF_CB_LDPC;
std::vector<uint8_t> data;
srsran_softbuffer_tx_t softbuffer = {};
dummy_harq_proc()
{
// Allocate data
data.resize(MAX_TB_SZ);
// Initialise softbuffer
if (srsran_softbuffer_tx_init_guru(&softbuffer, SRSRAN_SCH_NR_MAX_NOF_CB_LDPC, SRSRAN_LDPC_MAX_LEN_ENCODED_CB) <
SRSRAN_SUCCESS) {
ERROR("Error Tx buffer");
}
}
~dummy_harq_proc() { srsran_softbuffer_tx_free(&softbuffer); }
};
srsran::circular_array<dummy_harq_proc, SRSRAN_MAX_HARQ_PROC_DL_NR> tx_harq_proc;
public:
struct args_t {
srsran::phy_cfg_nr_t phy_cfg; ///< Physical layer configuration
uint16_t rnti = 0x1234; ///< C-RNTI
uint32_t mcs = 10; ///< Modulation code scheme
uint32_t ss_id = 1; ///< Search Space identifier
uint32_t pdcch_aggregation_level = 0; ///< PDCCH aggregation level
uint32_t pdcch_dl_candidate_index = 0; ///< PDCCH DL DCI candidate index
uint32_t pdcch_ul_candidate_index = 0; ///< PDCCH UL DCI candidate index
uint32_t dl_start_rb = 0; ///< Start resource block
uint32_t dl_length_rb = 0l; ///< Number of resource blocks
uint32_t dl_time_res = 0; ///< PDSCH time resource
std::string log_level = "debug";
};
gnb_dummy_stack(args_t args) :
mcs(args.mcs), rnti(args.rnti), dl_time_res(args.dl_time_res), phy_cfg(args.phy_cfg), ss_id(args.ss_id)
{
random_gen = srsran_random_init(0x1234);
logger.set_level(srslog::str_to_basic_level(args.log_level));
// Select DCI locations
for (uint32_t slot = 0; slot < SRSRAN_NOF_SF_X_FRAME; slot++) {
srsran::bounded_vector<srsran_dci_location_t, SRSRAN_SEARCH_SPACE_MAX_NOF_CANDIDATES_NR> locations;
if (not phy_cfg.get_dci_locations(slot, rnti, args.ss_id, args.pdcch_aggregation_level, locations)) {
logger.error(
"Error generating locations for slot %d and aggregation level %d", slot, args.pdcch_aggregation_level);
return;
}
// DCI DL
if (args.pdcch_dl_candidate_index >= locations.size()) {
logger.error("Candidate index %d exceeds the number of candidates %d for aggregation level %d",
args.pdcch_dl_candidate_index,
(uint32_t)locations.size(),
args.pdcch_aggregation_level);
return;
}
dci_dl_location[slot] = locations[args.pdcch_dl_candidate_index];
// DCI UL
if (args.pdcch_ul_candidate_index >= locations.size()) {
logger.error("Candidate index %d exceeds the number of candidates %d for aggregation level %d",
args.pdcch_ul_candidate_index,
(uint32_t)locations.size(),
args.pdcch_aggregation_level);
return;
}
dci_ul_location[slot] = locations[args.pdcch_ul_candidate_index];
}
// Select DCI formats
dci_format_dl = phy_cfg.get_dci_format_pdsch(args.ss_id);
dci_format_ul = phy_cfg.get_dci_format_pusch(args.ss_id);
if (dci_format_dl == SRSRAN_DCI_FORMAT_NR_COUNT or dci_format_ul == SRSRAN_DCI_FORMAT_NR_COUNT) {
logger.error("Missing valid DL or UL DCI format in search space");
return;
}
// Select DL frequency domain resources
dl_freq_res = srsran_ra_nr_type1_riv(args.phy_cfg.carrier.nof_prb, args.dl_start_rb, args.dl_length_rb);
// Setup DL Data to ACK timing
for (uint32_t i = 0; i < SRSRAN_NOF_SF_X_FRAME; i++) {
dl_data_to_ul_ack[i] = args.phy_cfg.harq_ack.dl_data_to_ul_ack[i % SRSRAN_MAX_NOF_DL_DATA_TO_UL];
}
// If reached this point the configuration is valid
valid = true;
}
~gnb_dummy_stack() { srsran_random_free(random_gen); }
bool is_valid() const { return valid; }
int rx_data_indication(rx_data_ind_t& grant) override { return 0; }
int slot_indication(const srsran_slot_cfg_t& slot_cfg) override { return 0; }
int get_dl_sched(const srsran_slot_cfg_t& slot_cfg, dl_sched_t& dl_sched) override
{
logger.set_context(slot_cfg.idx);
// Check if it is TDD DL slot and PDSCH mask, if no PDSCH shall be scheduled, do not set any grant and skip
if (not srsran_tdd_nr_is_dl(&phy_cfg.tdd, phy_cfg.carrier.scs, slot_cfg.idx)) {
return SRSRAN_SUCCESS;
}
// Instantiate PDCCH and PDSCH
pdcch_dl_t pdcch = {};
pdsch_t pdsch = {};
// Select grant and set data
pdsch.data[0] = tx_harq_proc[slot_cfg.idx].data.data();
// Second TB is not used
pdsch.data[1] = nullptr;
// Fill DCI configuration
pdcch.dci_cfg = phy_cfg.get_dci_cfg();
// Fill DCI context
if (not phy_cfg.get_dci_ctx_pdsch_rnti_c(ss_id, dci_dl_location[slot_cfg.idx], rnti, pdcch.dci.ctx)) {
logger.error("Error filling PDSCH DCI context");
return SRSRAN_ERROR;
}
uint32_t harq_feedback = dl_data_to_ul_ack[slot_cfg.idx];
uint32_t harq_ack_slot_idx = TTI_ADD(slot_cfg.idx, harq_feedback);
// Fill DCI fields
srsran_dci_dl_nr_t& dci = pdcch.dci;
dci.freq_domain_assigment = dl_freq_res;
dci.time_domain_assigment = dl_time_res;
dci.mcs = mcs;
dci.rv = 0;
dci.ndi = (slot_cfg.idx / SRSRAN_NOF_SF_X_FRAME) % 2;
dci.pid = slot_cfg.idx % SRSRAN_NOF_SF_X_FRAME;
dci.dai = pending_ack[harq_ack_slot_idx % pending_ack.size()].get_dai();
dci.tpc = 1;
dci.pucch_resource = 0;
if (dci.ctx.format == srsran_dci_format_nr_1_0) {
dci.harq_feedback = dl_data_to_ul_ack[slot_cfg.idx] - 1;
} else {
dci.harq_feedback = slot_cfg.idx;
}
// Create PDSCH configuration
if (not phy_cfg.get_pdsch_cfg(slot_cfg, dci, pdsch.sch)) {
logger.error("Error converting DCI to grant");
return SRSRAN_ERROR;
}
// Generate random data
srsran_random_byte_vector(random_gen, pdsch.data[0], pdsch.sch.grant.tb[0].tbs / 8);
// Set softbuffer
pdsch.sch.grant.tb[0].softbuffer.tx = &tx_harq_proc[slot_cfg.idx].softbuffer;
// Reset Tx softbuffer always
srsran_softbuffer_tx_reset(pdsch.sch.grant.tb[0].softbuffer.tx);
// Push scheduling results
dl_sched.pdcch_dl.push_back(pdcch);
dl_sched.pdsch.push_back(pdsch);
// Generate PDSCH HARQ Feedback
srsran_harq_ack_resource_t ack_resource = {};
if (not phy_cfg.get_pdsch_ack_resource(dci, ack_resource)) {
logger.error("Error getting ack resource");
return SRSRAN_ERROR;
}
// Calculate PUCCH slot and push resource
pending_ack[harq_ack_slot_idx % pending_ack.size()].push_ack(ack_resource);
return SRSRAN_SUCCESS;
}
int get_ul_sched(const srsran_slot_cfg_t& slot_cfg, ul_sched_t& ul_sched) override
{
logger.set_context(slot_cfg.idx);
srsran_pdsch_ack_nr_t ack = pending_ack[slot_cfg.idx % pending_ack.size()].get_ack();
if (ack.nof_cc > 0) {
mac_interface_phy_nr::pucch_t pucch = {};
if (logger.debug.enabled()) {
std::array<char, 512> str = {};
if (srsran_harq_ack_info(&ack, str.data(), (uint32_t)str.size()) > 0) {
logger.debug("HARQ feedback:\n%s", str.data());
}
}
if (not phy_cfg.get_pucch(slot_cfg, ack, pucch.pucch_cfg, pucch.uci_cfg, pucch.resource)) {
logger.error("Error getting UCI CFG");
return SRSRAN_ERROR;
}
ul_sched.pucch.push_back(pucch);
}
return 0;
}
int pucch_info(const srsran_slot_cfg_t& slot_cfg, const pucch_info_t& pucch_info) override
{
std::unique_lock<std::mutex> lock(mac_metrics_mutex);
for (uint32_t i = 0; i < pucch_info.uci_data.cfg.ack.count; i++) {
const srsran_harq_ack_bit_t* ack_bit = &pucch_info.uci_data.cfg.ack.bits[i];
bool is_ok = (pucch_info.uci_data.value.ack[i] == 1) and pucch_info.uci_data.value.valid;
uint32_t tb_count = (ack_bit->tb0 ? 1 : 0) + (ack_bit->tb1 ? 1 : 0);
mac_metrics.tx_pkts += tb_count;
if (not is_ok) {
mac_metrics.tx_errors += tb_count;
logger.debug("NACK received!");
}
}
return SRSRAN_SUCCESS;
}
int pusch_info(const srsran_slot_cfg_t& slot_cfg, const pusch_info_t& pusch_info) override
{
// ... Not implemented
return SRSRAN_ERROR;
}
srsenb::mac_ue_metrics_t get_metrics()
{
std::unique_lock<std::mutex> lock(mac_metrics_mutex);
return mac_metrics;
}
};
#endif // SRSRAN_DUMMY_GNB_STACK_H