You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

786 lines
24 KiB
C

/**
* Copyright 2013-2022 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_FSM_H
#define SRSRAN_FSM_H
#include "srsran/adt/detail/type_utils.h"
#include "srsran/adt/move_callback.h"
#include "srsran/srslog/srslog.h"
#include <cstdio>
#include <deque>
#include <memory>
#include <tuple>
#define otherfsmDebug(f, fmt, ...) f->get_logger().debug("FSM \"%s\" - " fmt, get_type_name(*f).c_str(), ##__VA_ARGS__)
#define otherfsmInfo(f, fmt, ...) f->get_logger().info("FSM \"%s\" - " fmt, get_type_name(*f).c_str(), ##__VA_ARGS__)
#define otherfsmWarning(f, fmt, ...) \
f->get_logger().warning("FSM \"%s\" - " fmt, get_type_name(*f).c_str(), ##__VA_ARGS__)
#define otherfsmError(f, fmt, ...) f->get_logger().error("FSM \"%s\" - " fmt, get_type_name(*f).c_str(), ##__VA_ARGS__)
#define fsmDebug(fmt, ...) otherfsmDebug(this, fmt, ##__VA_ARGS__)
#define fsmInfo(fmt, ...) otherfsmInfo(this, fmt, ##__VA_ARGS__)
#define fsmWarning(fmt, ...) otherfsmWarning(this, fmt, ##__VA_ARGS__)
#define fsmError(fmt, ...) otherfsmError(this, fmt, ##__VA_ARGS__)
namespace srsran {
/// Forward declarations
template <typename Derived>
class base_fsm_t;
template <typename Derived, typename ParentFSM>
class composite_fsm_t;
/// Check if type T is an FSM
template <typename T>
using is_fsm = std::is_base_of<base_fsm_t<T>, T>;
/// Check if type T is a composite FSM
template <typename T, typename TCheck = void>
struct is_composite_fsm : public std::false_type {};
template <typename T>
struct is_composite_fsm<T, typename std::enable_if<is_fsm<T>::value>::type> {
const static bool value = T::is_nested;
};
namespace fsm_details {
/// check whether to log unhandled event
template <typename Event>
auto should_log_unhandled_event(const Event* ev) -> decltype(Event::log_verbose)
{
return Event::log_verbose;
}
inline bool should_log_unhandled_event(...)
{
return true;
}
//! Meta-function to filter transition_list<Rows...> by <Event, SrcState> types
template <class Event, class SrcState, class...>
struct filter_transition_type;
template <class Event, class SrcState, class... Rows>
struct filter_transition_type<Event, SrcState, type_list<Rows...> > {
template <class Row>
using predicate = typename Row::template is_match<SrcState, Event>;
using type = typename type_utils::filter<predicate, Rows...>::type;
};
template <class Event, class SrcState>
struct filter_transition_type<Event, SrcState, type_list<> > {
using type = type_list<>;
};
//! Visitor to get current state's name string
struct state_name_visitor {
template <typename State>
void operator()(State&& s)
{
name = get_type_name(s);
}
std::string name = "invalid";
};
//! Enable/Disable SFINAE meta-function to check if <State> is part of <FSM> state list
template <typename FSM, typename State, typename T = void>
using enable_if_fsm_state = typename std::enable_if<FSM::template can_hold_state<State>(), T>::type;
template <typename FSM, typename State, typename T = void>
using disable_if_fsm_state = typename std::enable_if<not FSM::template can_hold_state<State>(), T>::type;
template <typename FSM>
using enable_if_subfsm = typename std::enable_if<is_composite_fsm<FSM>::value>::type;
template <typename FSM>
using disable_if_subfsm = typename std::enable_if<not is_composite_fsm<FSM>::value>::type;
//! Metafunction to determine if FSM can hold given State type
template <typename FSM>
using fsm_state_list_type = decltype(std::declval<typename FSM::derived_view>().states);
template <typename FSM>
using fsm_transitions = typename FSM::derived_view::transitions;
//! Detection of enter/exit methods of a state.
template <typename FSM, typename State>
auto call_enter2(FSM* f, State* s) -> decltype(s->enter(f))
{
s->enter(f);
}
inline void call_enter2(...)
{
// do nothing
}
template <typename FSM, typename State, typename Event>
auto call_enter(FSM* f, State* s, const Event& ev) -> decltype(s->enter(f, ev))
{
// pass event to enter method
s->enter(f, ev);
}
template <typename FSM, typename State, typename... Args>
inline void call_enter(FSM* f, State* s, Args&&...)
{
call_enter2(f, s);
}
template <typename FSM, typename State>
auto call_exit(FSM* f, State* s) -> decltype(s->exit(f))
{
s->exit(f);
}
inline void call_exit(...) {}
//! Find State in FSM recursively (e.g. find State in FSM,FSM::parentFSM,FSM::parentFSM::parentFSM,...)
template <typename State, typename FSM>
static auto get_state_recursive(FSM* f) -> enable_if_fsm_state<FSM, State, State*>
{
return &f->states.template get_unchecked<State>();
}
template <typename FSM>
typename FSM::derived_view* get_derived(FSM* f)
{
return static_cast<typename FSM::derived_view*>(f);
}
template <typename State, typename FSM>
static auto get_state_recursive(FSM* f) -> disable_if_fsm_state<FSM, State, State*>
{
static_assert(FSM::is_nested, "State is not present in the FSM list of valid states");
return get_state_recursive<State>(get_derived(f->parent_fsm()));
}
//! Helper type for FSM state-related operations
template <typename FSM, typename State>
struct state_traits {
static_assert(FSM::template can_hold_state<State>(), "FSM type does not hold provided State");
using state_t = State;
using is_subfsm = std::integral_constant<bool, ::srsran::is_composite_fsm<State>::value>;
//! enter new state. enter is called recursively for subFSMs
template <typename Event>
static void enter_state(FSM* f, State* s, const Event& ev)
{
enter_(f, s, ev, is_subfsm{});
}
//! Change state. If DestState is not a state of FSM, call same function for parentFSM recursively
template <typename DestState, typename Event>
static enable_if_fsm_state<FSM, DestState> transit_state(FSM* f, const Event& ev)
{
call_exit(f, &f->states.template get_unchecked<State>());
f->states.template transit<DestState>();
state_traits<FSM, DestState>::enter_state(f, &f->states.template get_unchecked<DestState>(), ev);
}
template <typename DestState, typename Event>
static disable_if_fsm_state<FSM, DestState> transit_state(FSM* f, const Event& ev)
{
using parent_state_traits = state_traits<typename FSM::parent_t::derived_view, typename FSM::derived_t>;
call_exit(f, &f->states.template get_unchecked<State>());
parent_state_traits::template transit_state<DestState>(get_derived(f->parent_fsm()), ev);
}
private:
//! In case of State is a subFSM
template <typename Event>
static void enter_(FSM* f, State* s, const Event& ev, std::true_type)
{
using init_type = typename fsm_state_list_type<State>::init_state_t;
// set default FSM type
get_derived(s)->states.template transit<init_type>();
// call FSM enter function
call_enter(f, s, ev);
// call initial substate enter
state_traits<typename State::derived_view, init_type>::enter_state(
get_derived(s), &get_derived(s)->states.template get_unchecked<init_type>(), ev);
}
//! In case of State is basic state
template <typename Event>
static void enter_(FSM* f, State* s, const Event& ev, std::false_type)
{
call_enter(f, s, ev);
}
};
//! Trigger Event reaction for the first Row for which the Guard passes
template <typename FSM, typename... Types>
struct apply_first_guard_pass;
template <typename FSM, typename First, typename... Rows>
struct apply_first_guard_pass<FSM, type_list<First, Rows...> > {
template <typename SrcState>
static bool trigger(FSM* f, SrcState& s, const typename First::event_t& ev)
{
using src_state = SrcState;
using dest_state = typename First::dest_state_t;
using event_type = typename First::event_t;
bool triggered = First::react(f, s, ev);
if (triggered) {
// Log Transition
if (std::is_same<src_state, dest_state>::value) {
otherfsmInfo(static_cast<typename FSM::derived_t*>(f),
"Event \"%s\" triggered state \"%s\" update",
get_type_name<event_type>().c_str(),
get_type_name<src_state>().c_str());
} else {
otherfsmInfo(static_cast<typename FSM::derived_t*>(f),
"transition detected - %s -> %s (cause: %s)",
get_type_name<src_state>().c_str(),
get_type_name<dest_state>().c_str(),
get_type_name<event_type>().c_str());
// Apply state change operations
state_traits<FSM, src_state>::template transit_state<dest_state>(f, ev);
}
return true;
}
return apply_first_guard_pass<FSM, type_list<Rows...> >::trigger(f, s, ev);
}
};
template <typename FSM>
struct apply_first_guard_pass<FSM, type_list<> > {
template <typename SrcState, typename Event>
static bool trigger(FSM* f, SrcState& s, const Event& ev)
{
if (should_log_unhandled_event(&ev)) {
otherfsmDebug(static_cast<typename FSM::derived_t*>(f),
"unhandled event caught in state \"%s\": \"%s\"",
get_type_name<SrcState>().c_str(),
get_type_name<Event>().c_str());
}
return false;
}
};
/// Trigger Event that may result in a state transition
template <typename FSM, typename Event>
struct trigger_visitor {
using event_t = typename std::decay<Event>::type;
trigger_visitor(FSM* f_, Event&& ev_) : f(f_), ev(std::forward<Event>(ev_)) {}
/**
* @brief Trigger visitor callback for the current state.
* @description tries to find an fsm::trigger method in case the current state is a subfsm. If it does not
* find it, searches for a react(current_state&, dest_state&, event) method at the current level
* Stores True in "result" if state changed. False otherwise
*/
template <typename CurrentState>
disable_if_subfsm<CurrentState> operator()(CurrentState& s)
{
result = call_react(s);
}
template <typename CurrentState>
enable_if_subfsm<CurrentState> operator()(CurrentState& s)
{
// Enter here for SubFSMs
result = s.process_event(std::forward<Event>(ev));
if (not result) {
result = call_react(s);
}
}
template <typename SrcState>
bool call_react(SrcState& s)
{
using trigger_list =
typename filter_transition_type<event_t, SrcState, typename FSM::derived_view::transitions>::type;
return apply_first_guard_pass<FSM, trigger_list>::trigger(f, s, ev);
}
FSM* f;
Event ev;
bool result = false;
};
} // namespace fsm_details
template <typename Derived>
class base_fsm_t
{
public:
using derived_t = Derived;
//! get access to derived protected members from the base
class derived_view : public Derived
{
public:
// propagate user fsm methods
using Derived::states;
using typename Derived::transitions;
};
template <typename... Rows>
using transition_table = type_list<Rows...>;
//! Params of a state transition
template <typename SrcState,
typename DestState,
typename Event,
void (Derived::*ReactFn)(SrcState&, const Event&) = nullptr,
bool (Derived::*GuardFn)(SrcState&, const Event&) = nullptr>
struct row {
using src_state_t = SrcState;
using dest_state_t = DestState;
using event_t = Event;
constexpr static void (Derived::*react_fn)(SrcState&, const Event&) = ReactFn;
constexpr static bool (Derived::*guard_fn)(SrcState&, const Event&) = GuardFn;
// ignore warning "never nullptr" for template specialization w/wo defaults for ReactFn or GuardFn
_Pragma("GCC diagnostic push"); // save current diagnostic config
_Pragma("GCC diagnostic ignored \"-Waddress\""); // ignore -Waddress
static bool react(derived_view* f, src_state_t& s, const event_t& ev)
{
if (guard_fn == nullptr or (f->*guard_fn)(s, ev)) {
if (react_fn != nullptr) {
(f->*react_fn)(s, ev);
}
return true;
}
return false;
}
_Pragma("GCC diagnostic pop"); // restore diagnostic config
template <typename SrcState2, typename Event2>
using is_match = std::is_same<type_list<SrcState2, Event2>, type_list<src_state_t, event_t> >;
};
template <typename SrcState,
typename Event,
void (Derived::*ReactFn)(SrcState&, const Event&) = nullptr,
bool (Derived::*GuardFn)(SrcState&, const Event&) = nullptr>
using upd = row<SrcState, SrcState, Event, ReactFn, GuardFn>;
template <typename DestState,
typename Event,
void (Derived::*ReactFn)(const Event&) = nullptr,
bool (Derived::*GuardFn)(const Event&) = nullptr>
struct to_state {
using dest_state_t = DestState;
using event_t = Event;
constexpr static void (Derived::*react_fn)(const Event&) = ReactFn;
constexpr static bool (Derived::*guard_fn)(const Event&) = GuardFn;
// ignore warning "never nullptr" for template specialization w/wo defaults for ReactFn or GuardFn
_Pragma("GCC diagnostic push"); // save current diagnostic config
_Pragma("GCC diagnostic ignored \"-Waddress\""); // ignore -Waddress
template <typename SrcState>
static bool react(derived_view* f, SrcState& s, const event_t& ev)
{
if (guard_fn == nullptr or (f->*guard_fn)(ev)) {
if (react_fn != nullptr) {
(f->*react_fn)(ev);
}
return true;
}
return false;
}
_Pragma("GCC diagnostic pop"); // restore diagnostic config
template <typename SrcState2, typename Event2>
using is_match = std::is_same<Event2, event_t>;
};
//! Struct used to store FSM states
template <typename... States>
struct state_list : public std::tuple<States...> {
using tuple_base_t = std::tuple<States...>;
using init_state_t = typename std::decay<decltype(std::get<0>(std::declval<tuple_base_t>()))>::type;
static_assert(not type_list_contains<Derived, States...>(), "An FSM cannot contain itself as state");
template <typename... Args>
state_list(base_fsm_t<Derived>* f, Args&&... args) : tuple_base_t(std::forward<Args>(args)...)
{
if (not Derived::is_nested) {
// If Root FSM, call initial state enter method
fsm_details::state_traits<derived_view, init_state_t>::enter_state(
f->derived(), &get_unchecked<init_state_t>(), std::false_type{});
}
}
template <typename State>
bool is() const
{
return type_idx<State>() == current_idx;
}
template <typename State>
State& get_unchecked()
{
return std::get<type_idx<State>()>(*this);
}
template <typename State>
const State& get_unchecked() const
{
return std::get<type_idx<State>()>(*this);
}
template <typename NextState>
void transit()
{
current_idx = type_idx<NextState>();
}
template <typename State>
constexpr static bool can_hold_type()
{
return srsran::type_list_contains<State, States...>();
}
template <typename State>
constexpr static size_t type_idx()
{
return get_type_index<State, States...>();
}
size_t get_type_idx() const { return current_idx; }
private:
size_t current_idx = 0;
};
template <typename State>
bool is_in_state() const
{
return derived()->states.template is<State>();
}
template <typename State>
const State* get_if_current_state() const
{
return is_in_state<State>() ? get_state<State>() : nullptr;
}
template <typename State>
State* get_state()
{
return &derived()->states.template get_unchecked<State>();
}
template <typename State>
const State* get_state() const
{
return &derived()->states.template get_unchecked<State>();
}
std::string current_state_name() const
{
fsm_details::state_name_visitor visitor{};
srsran::visit(visitor, derived()->states);
return visitor.name;
}
//! Static method to check if State belongs to the list of possible states
template <typename State>
constexpr static bool can_hold_state()
{
return fsm_details::fsm_state_list_type<base_fsm_t<Derived> >::template can_hold_type<State>();
}
protected:
// Access to CRTP derived class
derived_view* derived() { return static_cast<derived_view*>(this); }
const derived_view* derived() const { return static_cast<const derived_view*>(this); }
template <typename Ev>
bool process_event(Ev&& e)
{
fsm_details::trigger_visitor<derived_view, Ev> visitor{derived(), std::forward<Ev>(e)};
srsran::visit(visitor, derived()->states);
return visitor.result;
}
};
template <typename Derived, typename ParentFSM>
class composite_fsm_t;
//! CRTP Class for all non-nested FSMs
template <typename Derived>
class fsm_t : public base_fsm_t<Derived>
{
protected:
using base_t = fsm_t<Derived>;
template <typename SubFSM>
using subfsm_t = composite_fsm_t<SubFSM, Derived>;
public:
static const bool is_nested = false;
explicit fsm_t(srslog::basic_logger& logger) : logger(logger) {}
// Push Events to FSM
template <typename Ev>
bool trigger(Ev&& e)
{
if (trigger_locked) {
scheduled_event(std::forward<Ev>(e), typename std::is_lvalue_reference<Ev>::type{});
return false;
}
trigger_locked = true;
bool ret = process_event(std::forward<Ev>(e));
while (not pending_events.empty()) {
pending_events.front()();
pending_events.pop_front();
}
trigger_locked = false;
return ret;
}
void set_fsm_event_log_level(srslog::basic_levels lvl) { log_level = lvl; }
srslog::basic_logger& get_logger() const { return logger; }
bool is_trigger_locked() const { return trigger_locked; }
//! Log FSM activity method, e.g. state transitions
template <typename... Args>
void log_fsm_activity(const char* format, Args&&... args)
{
switch (log_level) {
case srslog::basic_levels::debug:
logger.debug(format, std::forward<Args>(args)...);
break;
case srslog::basic_levels::info:
logger.info(format, std::forward<Args>(args)...);
break;
case srslog::basic_levels::warning:
logger.warning(format, std::forward<Args>(args)...);
break;
case srslog::basic_levels::error:
logger.error(format, std::forward<Args>(args)...);
break;
default:
break;
}
}
protected:
using base_fsm_t<Derived>::derived;
using base_fsm_t<Derived>::process_event;
template <typename Ev>
void scheduled_event(Ev&& e, std::true_type t)
{
pending_events.emplace_back([this, e]() { process_event(e); });
}
template <typename Ev>
void scheduled_event(Ev&& e, std::false_type t)
{
pending_events.emplace_back(std::bind([this](Ev& e) { process_event(std::move(e)); }, std::move(e)));
}
srslog::basic_logger& logger;
srslog::basic_levels log_level = srslog::basic_levels::info;
bool trigger_locked = false;
std::deque<srsran::move_callback<void()> > pending_events;
};
template <typename Derived, typename ParentFSM>
class composite_fsm_t : public base_fsm_t<Derived>
{
public:
using base_t = composite_fsm_t<Derived, ParentFSM>;
using parent_t = ParentFSM;
static const bool is_nested = true;
explicit composite_fsm_t(ParentFSM* parent_fsm_) : fsm_ptr(parent_fsm_) {}
composite_fsm_t(composite_fsm_t&&) noexcept = default;
composite_fsm_t& operator=(composite_fsm_t&&) noexcept = default;
// Get pointer to outer FSM in case of HFSM
const parent_t* parent_fsm() const { return fsm_ptr; }
parent_t* parent_fsm() { return fsm_ptr; }
srslog::basic_logger& get_logger() const { return parent_fsm()->get_logger(); }
// Push Events to root FSM
template <typename Ev>
bool trigger(Ev&& e)
{
return parent_fsm()->trigger(std::forward<Ev>(e));
}
// Push events to this subFSM
using base_fsm_t<Derived>::process_event;
protected:
using parent_fsm_t = ParentFSM;
ParentFSM* fsm_ptr = nullptr;
};
/**************************
* Procedure FSM
*************************/
template <typename T>
struct proc_launch_ev {
T args;
};
template <typename Result>
struct proc_complete_ev {
Result result;
};
struct failure_ev {};
template <typename Derived, typename Result = bool>
class proc_fsm_t : public fsm_t<Derived>
{
using fsm_type = Derived;
using fsm_t<Derived>::derived;
protected:
using fsm_t<Derived>::logger;
public:
using base_t = proc_fsm_t<Derived, Result>;
using fsm_t<Derived>::trigger;
// events
template <typename Arg>
using launch_ev = srsran::proc_launch_ev<Arg>;
using complete_ev = srsran::proc_complete_ev<Result>;
// states
struct idle_st {
void enter(Derived* f)
{
if (f->launch_counter > 0) {
f->logger.warning(
"FSM \"%s\": No result was set for run no. %d", get_type_name<Derived>().c_str(), f->launch_counter);
}
}
void enter(Derived* f, const complete_ev& ev)
{
f->logger.info("FSM \"%s\": Finished run no. %d", get_type_name<Derived>().c_str(), f->launch_counter);
f->last_result = ev.result;
for (auto& func : f->listening_fsms) {
func(ev);
}
f->listening_fsms.clear();
}
void exit(Derived* f)
{
f->launch_counter++;
f->logger.info("FSM \"%s\": Starting run no. %d", get_type_name<Derived>().c_str(), f->launch_counter);
}
};
explicit proc_fsm_t(srslog::basic_logger& logger) : fsm_t<Derived>(logger) {}
bool is_running() const { return not base_t::template is_in_state<idle_st>(); }
const Result& get_result() const
{
srsran_assert(launch_counter > 0 and base_t::template is_in_state<idle_st>(), "in proc_fsm_t::get_result");
return last_result;
}
template <typename OtherFSM>
void await(OtherFSM* f)
{
if (is_running()) {
listening_fsms.push_back([f](const complete_ev& ev) { return f->trigger(ev); });
} else {
f->trigger(last_result);
}
}
private:
int launch_counter = 0;
Result last_result = {};
std::vector<std::function<void(const complete_ev& ev)> > listening_fsms;
};
template <typename ProcFSM>
class proc_wait_st
{
public:
explicit proc_wait_st(ProcFSM* proc_ptr_) : proc_ptr(proc_ptr_) {}
template <typename FSM, typename Ev>
void enter(FSM* f, const Ev& ev)
{
if (proc_ptr->is_running()) {
f->get_logger().error("Unable to launch proc1");
f->trigger(typename ProcFSM::complete_ev{false});
}
proc_ptr->trigger(srsran::proc_launch_ev<Ev>{ev});
proc_ptr->await(f);
}
private:
ProcFSM* proc_ptr = nullptr;
};
/**************************************
* Event Trigger Scheduling
*************************************/
template <typename Event>
struct event_callback {
event_callback() = default;
template <typename FSM>
explicit event_callback(FSM* f)
{
callback = [f](const Event& ev) { f->trigger(ev); };
}
void operator()(const Event& ev) { callback(ev); }
void operator()(const Event& ev) const { callback(ev); }
srsran::move_task_t to_move_task(const Event& ev)
{
auto& copied_callback = callback;
return [copied_callback, ev]() { copied_callback(ev); };
}
std::function<void(const Event&)> callback;
};
template <typename Event>
srsran::move_task_t make_move_task(const event_callback<Event>& callback, const Event& ev)
{
auto& copied_callback = callback;
return [copied_callback, ev]() { copied_callback(ev); };
}
template <typename Event>
srsran::move_task_t make_move_task(std::vector<event_callback<Event> >&& callbacks, const Event& ev)
{
return std::bind(
[ev](const std::vector<event_callback<Event> >& callbacks) {
for (const auto& callback : callbacks) {
callback(ev);
}
},
std::move(callbacks));
}
} // namespace srsran
#endif // SRSRAN_FSM_H