You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

516 lines
15 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsenb/hdr/phy/txrx.h"
#include "srslte/asn1/rrc_asn1.h"
#include "srslte/common/log.h"
#include "srslte/common/threads.h"
#include "srslte/phy/channel/channel.h"
#include <sstream>
#include <assert.h>
#define Error(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->error(fmt, ##__VA_ARGS__)
#define Warning(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->warning(fmt, ##__VA_ARGS__)
#define Info(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->info(fmt, ##__VA_ARGS__)
#define Debug(fmt, ...) \
if (SRSLTE_DEBUG_ENABLED) \
log_h->debug(fmt, ##__VA_ARGS__)
using namespace std;
using namespace asn1::rrc;
namespace srsenb {
phy_common::phy_common(uint32_t max_workers_) : tx_sem(max_workers_), cell_list()
{
params.max_prach_offset_us = 20;
max_workers = max_workers_;
for (uint32_t i = 0; i < max_workers; i++) {
sem_init(&tx_sem[i], 0, 0); // All semaphores start blocked
}
}
phy_common::~phy_common()
{
for (uint32_t i = 0; i < max_workers; i++) {
sem_destroy(&tx_sem[i]);
}
}
void phy_common::set_nof_workers(uint32_t nof_workers_)
{
nof_workers = nof_workers_;
}
void phy_common::reset()
{
for (auto& q : dl_grants) {
for (auto& g : q) {
g = {};
}
}
for (auto& q : ul_grants) {
for (auto& g : q) {
g = {};
}
}
}
bool phy_common::init(const phy_cell_cfg_list_t& cell_list_,
srslte::radio_interface_phy* radio_h_,
stack_interface_phy_lte* stack_)
{
radio = radio_h_;
stack = stack_;
cell_list = cell_list_;
pthread_mutex_init(&mtch_mutex, nullptr);
pthread_cond_init(&mtch_cvar, nullptr);
// Instantiate DL channel emulator
if (params.ul_channel_args.enable) {
dl_channel = srslte::channel_ptr(new srslte::channel(params.dl_channel_args, 1));
dl_channel->set_srate((uint32_t)srslte_sampling_freq_hz(cell_list[0].cell.nof_prb));
}
// Create grants
for (auto& q : dl_grants) {
q.resize(cell_list.size());
}
for (auto& q : ul_grants) {
q.resize(cell_list.size());
}
is_first_tx = true;
reset();
return true;
}
void phy_common::stop()
{
for (uint32_t i = 0; i < max_workers; i++) {
sem_post(&tx_sem[i]);
}
}
/* The transmission of UL subframes must be in sequence. The correct sequence is guaranteed by a chain of N semaphores,
* one per TTI%nof_workers. Each threads waits for the semaphore for the current thread and after transmission allows
* next TTI to be transmitted
*
* Each worker uses this function to indicate that all processing is done and data is ready for transmission or
* there is no transmission at all (tx_enable). In that case, the end of burst message will be sent to the radio
*/
void phy_common::worker_end(uint32_t tti,
cf_t* buffer[SRSLTE_MAX_PORTS],
uint32_t nof_samples,
srslte_timestamp_t tx_time)
{
// This variable is not protected but it is very unlikely that 2 threads arrive here simultaneously since at the
// beginning there is no workload and threads are separated by 1 ms
if (is_first_tx) {
is_first_tx = false;
// Allow my own transmission if I'm the first to transmit
sem_post(&tx_sem[tti % nof_workers]);
}
// Wait for the green light to transmit in the current TTI
sem_wait(&tx_sem[tti % nof_workers]);
if (dl_channel) {
dl_channel->run(buffer, buffer, nof_samples, tx_time);
}
// always transmit on single radio
radio->tx(0, buffer, nof_samples, tx_time);
// Allow next TTI to transmit
sem_post(&tx_sem[(tti + 1) % nof_workers]);
// Trigger MAC clock
stack->tti_clock();
}
void phy_common::ue_db_clear_tti_pending_ack(uint32_t tti)
{
std::lock_guard<std::mutex> lock(user_mutex);
for (auto& iter : common_ue_db) {
common_ue& ue = iter.second;
// Reset all pending ACKs in all carriers
ue.pending_ack[TTIMOD(tti)] = {};
}
}
void phy_common::ue_db_addmod_rnti(uint16_t rnti, const std::vector<uint32_t>& cell_index_list)
{
std::lock_guard<std::mutex> lock(user_mutex);
// Create new user if did not exist
if (!common_ue_db.count(rnti)) {
add_rnti(rnti);
}
// Get UE by reference
common_ue& ue = common_ue_db[rnti];
// Clear SCell map to avoid overlap from previous calls
ue.scell_map.clear();
// Add SCells to map
for (uint32_t i = 0; i < cell_index_list.size(); i++) {
common_ue_db[rnti].scell_map[cell_index_list[i]] = i;
}
}
// Private function not mutexed
void phy_common::add_rnti(uint16_t rnti)
{
for (auto& pending_ack : common_ue_db[rnti].pending_ack) {
pending_ack = {};
}
}
void phy_common::ue_db_rem_rnti(uint16_t rnti)
{
std::lock_guard<std::mutex> lock(user_mutex);
if (!common_ue_db.count(rnti)) {
common_ue_db.erase(rnti);
}
}
void phy_common::ue_db_set_ack_pending(uint32_t tti, uint32_t cc_idx, const srslte_dci_dl_t& dci)
{
std::lock_guard<std::mutex> lock(user_mutex);
// Check if the UE exists
if (!common_ue_db.count(dci.rnti)) {
return;
}
// Check Component Carrier is part of UE SCell map
common_ue& ue = common_ue_db[dci.rnti];
if (!ue.scell_map.count(cc_idx)) {
return;
}
uint32_t scell_idx = ue.scell_map[cc_idx];
uint32_t tti_idx = TTIMOD(tti);
pending_ack_t& pending_ack = ue.pending_ack[tti_idx]; // Assume it has been zero'ed for the TTI
// Set DCI info
pending_ack.ack[scell_idx].grant_cc_idx = scell_idx; // No cross carrier scheduling supported
pending_ack.ack[scell_idx].ncce[0] = dci.location.ncce;
// Set TB info
for (uint32_t i = 0; i < srslte_dci_format_max_tb(dci.format); i++) {
if (SRSLTE_DCI_IS_TB_EN(dci.tb[i])) {
pending_ack.ack[scell_idx].pending_tb[i] = true;
pending_ack.ack[scell_idx].nof_acks++;
}
}
}
void phy_common::ue_db_get_ack_pending(uint32_t tti,
uint32_t cc_idx,
uint16_t rnti,
srslte_uci_cfg_ack_t uci_cfg_ack[SRSLTE_MAX_CARRIERS])
{
std::lock_guard<std::mutex> lock(user_mutex);
// Check if the UE exists
if (!common_ue_db.count(rnti)) {
return;
}
common_ue& ue = common_ue_db[rnti];
uint32_t tti_idx = TTIMOD(tti);
// Check Component Carrier is the UE PCell
if (common_ue_db[rnti].pcell_idx == cc_idx) {
srslte_uci_cfg_ack_t* pending_acks = ue.pending_ack[tti_idx].ack;
for (uint32_t i = 0; i < SRSLTE_MAX_CARRIERS; i++) {
// Copy pending acks
uci_cfg_ack[i] = pending_acks[i];
// Reset stored pending acks
pending_acks[i] = {};
}
} else {
for (uint32_t i = 0; i < SRSLTE_MAX_CARRIERS; i++) {
// Set all to zeros, equivalent to no UCI data
uci_cfg_ack[i] = {};
}
}
}
uint32_t phy_common::ue_db_get_nof_ca_cells(uint16_t rnti)
{
std::lock_guard<std::mutex> lock(user_mutex);
auto ret = 0;
if (common_ue_db.count(rnti)) {
ret = common_ue_db[rnti].scell_map.size();
}
return ret;
}
uint32_t phy_common::ue_db_get_cc_pcell(uint16_t rnti)
{
std::lock_guard<std::mutex> lock(user_mutex);
auto ret = static_cast<uint32_t>(cell_list.size());
if (common_ue_db.count(rnti)) {
ret = common_ue_db[rnti].pcell_idx;
}
return ret;
}
uint32_t phy_common::ue_db_get_cc_scell(uint16_t rnti, uint32_t scell_idx)
{
std::lock_guard<std::mutex> lock(user_mutex);
if (common_ue_db.count(rnti)) {
auto& ue = common_ue_db[rnti];
for (auto& it : ue.scell_map) {
if (it.second == scell_idx) {
return it.first;
}
}
}
return static_cast<uint32_t>(cell_list.size());
}
void phy_common::ue_db_set_ri(uint16_t rnti, uint8_t ri)
{
std::lock_guard<std::mutex> lock(user_mutex);
if (common_ue_db.count(rnti)) {
common_ue_db[rnti].ri = ri;
}
}
uint8_t phy_common::ue_db_get_ri(uint16_t rnti)
{
std::lock_guard<std::mutex> lock(user_mutex);
uint8_t ret = 0;
if (common_ue_db.count(rnti)) {
ret = common_ue_db[rnti].ri;
}
return ret;
}
void phy_common::ue_db_set_last_ul_tb(uint16_t rnti, uint32_t pid, srslte_ra_tb_t tb)
{
std::lock_guard<std::mutex> lock(user_mutex);
if (!common_ue_db.count(rnti)) {
add_rnti(rnti);
}
common_ue_db[rnti].last_tb[pid % SRSLTE_MAX_HARQ_PROC] = tb;
}
srslte_ra_tb_t phy_common::ue_db_get_last_ul_tb(uint16_t rnti, uint32_t pid)
{
std::lock_guard<std::mutex> lock(user_mutex);
srslte_ra_tb_t ret = {};
if (common_ue_db.count(rnti)) {
ret = common_ue_db[rnti].last_tb[pid % SRSLTE_FDD_NOF_HARQ];
}
return ret;
}
void phy_common::set_mch_period_stop(uint32_t stop)
{
pthread_mutex_lock(&mtch_mutex);
have_mtch_stop = true;
mch_period_stop = stop;
pthread_cond_signal(&mtch_cvar);
pthread_mutex_unlock(&mtch_mutex);
}
void phy_common::configure_mbsfn(phy_interface_stack_lte::phy_cfg_mbsfn_t* cfg)
{
mbsfn = *cfg;
build_mch_table();
build_mcch_table();
sib13_configured = true;
mcch_configured = true;
}
void phy_common::build_mch_table()
{
// First reset tables
ZERO_OBJECT(mcch_table);
// 40 element table represents 4 frames (40 subframes)
uint32_t nof_sfs = 0;
if (mbsfn.mbsfn_subfr_cnfg.sf_alloc.type().value == mbsfn_sf_cfg_s::sf_alloc_c_::types::one_frame) {
generate_mch_table(&mch_table[0], (uint32_t)mbsfn.mbsfn_subfr_cnfg.sf_alloc.one_frame().to_number(), 1);
nof_sfs = 10;
} else if (mbsfn.mbsfn_subfr_cnfg.sf_alloc.type().value == mbsfn_sf_cfg_s::sf_alloc_c_::types::four_frames) {
generate_mch_table(&mch_table[0], (uint32_t)mbsfn.mbsfn_subfr_cnfg.sf_alloc.four_frames().to_number(), 4);
nof_sfs = 40;
} else {
fprintf(stderr, "No valid SF alloc\n");
}
// Debug
std::stringstream ss;
ss << "|";
for (uint32_t j = 0; j < 40; j++) {
ss << (int)mch_table[j] << "|";
}
stack->set_sched_dl_tti_mask(mch_table, nof_sfs);
}
void phy_common::build_mcch_table()
{
ZERO_OBJECT(mcch_table);
generate_mcch_table(mcch_table, static_cast<uint32>(mbsfn.mbsfn_area_info.mcch_cfg_r9.sf_alloc_info_r9.to_number()));
std::stringstream ss;
ss << "|";
for (uint32_t j = 0; j < 10; j++) {
ss << (int)mcch_table[j] << "|";
}
}
bool phy_common::is_mcch_subframe(srslte_mbsfn_cfg_t* cfg, uint32_t phy_tti)
{
uint32_t sfn; // System Frame Number
uint8_t sf; // Subframe
uint8_t offset;
uint8_t period;
sfn = phy_tti / 10;
sf = phy_tti % 10;
if (sib13_configured) {
mbsfn_area_info_r9_s* area_info = &mbsfn.mbsfn_area_info;
offset = area_info->mcch_cfg_r9.mcch_offset_r9;
period = area_info->mcch_cfg_r9.mcch_repeat_period_r9.to_number();
if ((sfn % period == offset) && mcch_table[sf] > 0) {
cfg->mbsfn_area_id = area_info->mbsfn_area_id_r9;
cfg->non_mbsfn_region_length = area_info->non_mbsfn_region_len.to_number();
cfg->mbsfn_mcs = area_info->mcch_cfg_r9.sig_mcs_r9.to_number();
cfg->enable = true;
cfg->is_mcch = true;
have_mtch_stop = false;
return true;
}
}
return false;
}
bool phy_common::is_mch_subframe(srslte_mbsfn_cfg_t* cfg, uint32_t phy_tti)
{
uint32_t sfn; // System Frame Number
uint8_t sf; // Subframe
uint8_t offset;
uint8_t period;
sfn = phy_tti / 10;
sf = phy_tti % 10;
// Set some defaults
cfg->mbsfn_area_id = 0;
cfg->non_mbsfn_region_length = 1;
cfg->mbsfn_mcs = 2;
cfg->enable = false;
cfg->is_mcch = false;
// Check for MCCH
if (is_mcch_subframe(cfg, phy_tti)) {
return true;
}
6 years ago
if (not mcch_configured) {
return false;
}
// Not MCCH, check for MCH
mbsfn_sf_cfg_s* subfr_cnfg = &mbsfn.mbsfn_subfr_cnfg;
mbsfn_area_info_r9_s* area_info = &mbsfn.mbsfn_area_info;
offset = subfr_cnfg->radioframe_alloc_offset;
period = subfr_cnfg->radioframe_alloc_period.to_number();
if (subfr_cnfg->sf_alloc.type() == mbsfn_sf_cfg_s::sf_alloc_c_::types::one_frame) {
if ((sfn % period == offset) && (mch_table[sf] > 0)) {
if (sib13_configured) {
cfg->mbsfn_area_id = area_info->mbsfn_area_id_r9;
cfg->non_mbsfn_region_length = area_info->non_mbsfn_region_len.to_number();
if (mcch_configured) {
// Iterate through PMCH configs to see which one applies in the current frame
mbsfn_area_cfg_r9_s* area_r9 = &mbsfn.mcch.msg.c1().mbsfn_area_cfg_r9();
uint32_t frame_alloc_idx = sfn % area_r9->common_sf_alloc_period_r9.to_number();
uint32_t mbsfn_per_frame = area_r9->pmch_info_list_r9[0].pmch_cfg_r9.sf_alloc_end_r9 /
+area_r9->pmch_info_list_r9[0].pmch_cfg_r9.mch_sched_period_r9.to_number();
uint32_t sf_alloc_idx = frame_alloc_idx * mbsfn_per_frame + ((sf < 4) ? sf - 1 : sf - 3);
while (!have_mtch_stop) {
pthread_cond_wait(&mtch_cvar, &mtch_mutex);
}
for (uint32_t i = 0; i < area_r9->pmch_info_list_r9.size(); i++) {
if (sf_alloc_idx <= mch_period_stop) {
cfg->mbsfn_mcs = mbsfn.mcch.msg.c1().mbsfn_area_cfg_r9().pmch_info_list_r9[i].pmch_cfg_r9.data_mcs_r9;
cfg->enable = true;
}
}
}
}
return true;
}
} else if (subfr_cnfg->sf_alloc.type() == mbsfn_sf_cfg_s::sf_alloc_c_::types::four_frames) {
uint8_t idx = sfn % period;
if ((idx >= offset) && (idx < offset + 4)) {
if (mch_table[(idx * 10) + sf] > 0) {
if (sib13_configured) {
cfg->mbsfn_area_id = area_info->mbsfn_area_id_r9;
cfg->non_mbsfn_region_length = area_info->non_mbsfn_region_len.to_number();
// TODO: check for MCCH configuration, set MCS and decode
}
return true;
}
}
}
return false;
}
bool phy_common::is_mbsfn_sf(srslte_mbsfn_cfg_t* cfg, uint32_t phy_tti)
{
return is_mch_subframe(cfg, phy_tti);
}
} // namespace srsenb