You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1031 lines
31 KiB
C

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSASN_COMMON_UTILS_H
#define SRSASN_COMMON_UTILS_H
#include <algorithm>
#include <array>
#include <cmath>
#include <cstring>
#include <sstream>
#include <stdarg.h> /* va_list, va_start, va_arg, va_end */
#include <stdint.h>
#include <string>
namespace asn1 {
#define ASN_16K 16383
/************************
logging
************************/
typedef enum { LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_WARN, LOG_LEVEL_ERROR } srsasn_logger_level_t;
typedef void (*log_handler_t)(srsasn_logger_level_t log_level, void* ctx, const char* str);
void vlog_print(log_handler_t handler, void* ctx, srsasn_logger_level_t log_level, const char* format, va_list args);
void srsasn_log_register_handler(void* ctx, log_handler_t handler);
void srsasn_log_print(srsasn_logger_level_t log_level, const char* format, ...);
/************************
error handling
************************/
enum SRSASN_CODE { SRSASN_SUCCESS, SRSASN_ERROR_ENCODE_FAIL, SRSASN_ERROR_DECODE_FAIL };
void log_error_code(SRSASN_CODE code, const char* filename, int line);
#define HANDLE_CODE(ret) \
{ \
SRSASN_CODE macrocode = (ret); \
if (macrocode != SRSASN_SUCCESS) { \
log_error_code(macrocode, __FILE__, __LINE__); \
return macrocode; \
} \
}
/************************
bit_ref
************************/
struct ValOrError {
uint32_t val;
SRSASN_CODE code;
ValOrError() : val(0), code(SRSASN_SUCCESS) {}
ValOrError(uint32_t val_, SRSASN_CODE code_) : val(val_), code(code_) {}
};
ValOrError unpack_bits(uint8_t*& ptr, uint8_t& offset, uint8_t* max_ptr, uint32_t n_bits);
class bit_ref
{
public:
bit_ref() = default;
bit_ref(uint8_t* start_ptr_, uint32_t max_size_) :
ptr(start_ptr_),
start_ptr(start_ptr_),
max_ptr(max_size_ + start_ptr_)
{
}
int distance(const bit_ref& other) const;
int distance(uint8_t* ref_ptr) const;
int distance() const;
int distance_bytes(uint8_t* ref_ptr) const;
int distance_bytes() const;
SRSASN_CODE pack(uint32_t val, uint32_t n_bits);
SRSASN_CODE pack_bytes(const uint8_t* buf, uint32_t n_bytes);
template <class T>
SRSASN_CODE unpack(T& val, uint32_t n_bits)
{
ValOrError ret = unpack_bits(ptr, offset, max_ptr, n_bits);
val = ret.val;
return ret.code;
}
SRSASN_CODE unpack_bytes(uint8_t* buf, uint32_t n_bytes);
SRSASN_CODE align_bytes();
SRSASN_CODE align_bytes_zero();
SRSASN_CODE advance_bits(uint32_t n_bits);
void set(uint8_t* start_ptr_, uint32_t max_size_);
private:
uint8_t* ptr = nullptr;
uint8_t offset = 0;
uint8_t* start_ptr = nullptr;
uint8_t* max_ptr = nullptr;
};
/*********************
function helpers
*********************/
template <class T>
class dyn_array
{
public:
typedef T item_type;
dyn_array() = default;
dyn_array(uint32_t new_size) : size_(new_size), cap_(new_size) { data_ = new T[size_]; }
dyn_array(const dyn_array<T>& other)
{
size_ = other.size_;
cap_ = other.cap_;
data_ = new T[cap_];
std::copy(&other[0], &other[size_], data_);
}
~dyn_array()
{
if (data_ != NULL) {
delete[] data_;
}
}
uint32_t size() const { return size_; }
uint32_t capacity() const { return cap_; }
T& operator[](uint32_t idx) { return data_[idx]; }
const T& operator[](uint32_t idx) const { return data_[idx]; }
dyn_array<T>& operator=(const dyn_array<T>& other)
{
if (this == &other) {
return *this;
}
resize(other.size());
std::copy(&other[0], &other[size_], data_);
return *this;
}
void resize(uint32_t new_size, uint32_t new_cap = 0)
{
if (new_size == size_) {
return;
}
if (cap_ >= new_size) {
size_ = new_size;
return;
}
T* old_data = data_;
cap_ = new_size > new_cap ? new_size : new_cap;
if (cap_ > 0) {
data_ = new T[cap_];
if (old_data != NULL) {
std::copy(&old_data[0], &old_data[size_], data_);
}
} else {
data_ = NULL;
}
size_ = new_size;
if (old_data != NULL) {
delete[] old_data;
}
}
bool operator==(const dyn_array<T>& other) const
{
return size() == other.size() and std::equal(data_, data_ + size(), other.data_);
}
void push_back(const T& elem)
{
resize(size() + 1, size() * 2);
data_[size() - 1] = elem;
}
T& back() { return data_[size() - 1]; }
const T& back() const { return data_[size() - 1]; }
T* data() { return &data_[0]; }
const T* data() const { return &data_[0]; }
T* begin() { return &data_[0]; }
T* end() { return &data_[size()]; }
const T* begin() const { return &data_[0]; }
const T* end() const { return &data_[size()]; }
using iterator = T*;
using const_iterator = const T*;
private:
T* data_ = nullptr;
uint32_t size_ = 0;
uint32_t cap_ = 0;
};
template <class T, uint32_t MAX_N>
class bounded_array
{
public:
typedef T item_type;
bounded_array(uint32_t size_ = 0) : current_size(size_) {}
static uint32_t capacity() { return MAX_N; }
uint32_t size() const { return current_size; }
T& operator[](uint32_t idx) { return data_[idx]; }
const T& operator[](uint32_t idx) const { return data_[idx]; }
bool operator==(const bounded_array<T, MAX_N>& other) const
{
return size() == other.size() and std::equal(data_, data_ + size(), other.data_);
}
void resize(uint32_t new_size) { current_size = new_size; }
void push_back(const T& elem)
{
if (current_size >= MAX_N) {
srsasn_log_print(LOG_LEVEL_ERROR, "Maximum size %d achieved for bounded_array.\n", MAX_N);
}
data_[current_size++] = elem;
}
T& back() { return data_[current_size - 1]; }
const T& back() const { return data_[current_size - 1]; }
T* data() { return &data_[0]; }
const T* data() const { return &data_[0]; }
T* begin() { return &data_[0]; }
T* end() { return &data_[size()]; }
const T* begin() const { return &data_[0]; }
const T* end() const { return &data_[size()]; }
using iterator = T*;
using const_iterator = const T*;
private:
T data_[MAX_N];
uint32_t current_size;
};
/*********************
ext packing
*********************/
SRSASN_CODE pack_unsupported_ext_flag(bit_ref& bref, bool ext);
SRSASN_CODE unpack_unsupported_ext_flag(bool& ext, bit_ref& bref);
/************************
enum packing
************************/
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t enum_val, uint32_t nbits);
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t enum_val, uint32_t nbits, uint32_t nof_noext);
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t e, uint32_t nof_types, uint32_t nof_exts, bool has_ext);
ValOrError unpack_enum(uint32_t nof_types, uint32_t nof_exts, bool has_ext, bit_ref& bref);
template <typename EnumType>
SRSASN_CODE pack_enum(bit_ref& bref, EnumType e)
{
return pack_enum(bref, e, EnumType::nof_types, EnumType::nof_exts, EnumType::has_ext);
}
template <typename EnumType>
SRSASN_CODE unpack_enum(EnumType& e, bit_ref& bref)
{
ValOrError ret = unpack_enum(EnumType::nof_types, EnumType::nof_exts, EnumType::has_ext, bref);
e = (typename EnumType::options)ret.val;
return ret.code;
}
struct EnumPacker {
template <class EnumType>
SRSASN_CODE pack(bit_ref& bref, EnumType e)
{
return pack_enum(bref, e);
}
template <class EnumType>
SRSASN_CODE unpack(EnumType& e, bit_ref& bref)
{
return unpack_enum(e, bref);
}
};
template <class EnumType>
bool string_to_enum(EnumType& e, const std::string& s)
{
for (uint32_t i = 0; i < EnumType::nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_string() == s) {
return true;
}
}
return false;
}
template <class EnumType, class NumberType>
bool number_to_enum(EnumType& e, NumberType val)
{
for (uint32_t i = 0; i < e.nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_number() == val) {
return true;
}
}
return false;
}
template <class EnumType>
bool number_string_to_enum(EnumType& e, const std::string& val)
{
for (uint32_t i = 0; i < e.nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_number_string() == val) {
return true;
}
}
return false;
}
template <class EnumType, bool E = false, uint32_t M = 0>
class enumerated : public EnumType
{
public:
static const uint32_t nof_types = EnumType::nulltype, nof_exts = M;
static const bool has_ext = E;
enumerated() { EnumType::value = EnumType::nulltype; }
enumerated(typename EnumType::options o) { EnumType::value = o; }
SRSASN_CODE pack(bit_ref& bref) const { return pack_enum(bref, *this); }
SRSASN_CODE unpack(bit_ref& bref) { return unpack_enum(*this, bref); }
EnumType& operator=(EnumType v)
{
EnumType::value = v;
return *this;
}
operator typename EnumType::options() const { return EnumType::value; }
};
/************************
integer packing
************************/
// Constrained Whole Number
template <class IntType>
SRSASN_CODE pack_unalign_integer(bit_ref& bref, IntType n, IntType lb, IntType ub);
template <class IntType>
SRSASN_CODE unpack_unalign_integer(IntType& n, bit_ref& bref, IntType lb, IntType ub);
template <class IntType>
struct UnalignedIntegerPacker {
UnalignedIntegerPacker(IntType lb_, IntType ub_) : lb(lb_), ub(ub_) {}
const IntType lb;
const IntType ub;
SRSASN_CODE pack(bit_ref& bref, IntType n) const;
SRSASN_CODE unpack(IntType& n, bit_ref& bref) const;
};
template <class IntType, IntType lb, IntType ub>
struct unaligned_integer {
IntType value;
unaligned_integer() = default;
unaligned_integer(IntType value_) : value(value_) {}
operator IntType() { return value; }
SRSASN_CODE pack(bit_ref& bref) const { return pack_unalign_integer(bref, value, lb, ub); }
SRSASN_CODE unpack(bit_ref& bref) { return unpack_unalign_integer(value, bref, lb, ub); }
};
template <class IntType>
SRSASN_CODE pack_align_integer(bit_ref& bref, IntType n, IntType lb, IntType ub);
template <typename IntType>
SRSASN_CODE unpack_align_integer(IntType& intval, bit_ref& bref, IntType lb, IntType ub);
template <class IntType>
struct AlignedIntegerPacker {
AlignedIntegerPacker(IntType lb_, IntType ub_);
IntType lb;
IntType ub;
SRSASN_CODE pack(bit_ref& bref, IntType n);
SRSASN_CODE unpack(IntType& n, bit_ref& bref);
};
// Normally Small non-negative whole number
template <typename UintType>
SRSASN_CODE pack_norm_small_integer(bit_ref& bref, UintType n);
template <typename UintType>
SRSASN_CODE unpack_norm_small_integer(UintType& n, bit_ref& bref);
// Unconstrained Whole Number
// FIXME: Implement
inline SRSASN_CODE pack_unconstrained_integer(bit_ref& bref, int64_t n)
{
// TODO
srsasn_log_print(LOG_LEVEL_ERROR, "Not implemented\n");
return SRSASN_SUCCESS;
}
inline SRSASN_CODE unpack_unconstrained_integer(int64_t& n, bit_ref& bref)
{
// TODO
srsasn_log_print(LOG_LEVEL_ERROR, "Not implemented\n");
return SRSASN_SUCCESS;
}
/************************
length determinant
************************/
// Pack as whole constrained number
template <typename IntType>
SRSASN_CODE pack_length(bit_ref& bref, IntType n, IntType lb, IntType ub);
template <typename IntType>
SRSASN_CODE unpack_length(IntType& n, bit_ref& bref, IntType lb, IntType ub);
// Pack as a small non-negative whole number
SRSASN_CODE pack_length(bit_ref& ref, uint32_t val);
SRSASN_CODE unpack_length(uint32_t& val, bit_ref& ref);
/************************
General Packer/Unpacker
************************/
struct BitPacker {
BitPacker(uint32_t nof_bits_) : nof_bits(nof_bits_) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack)
{
bref.pack(topack, nof_bits);
return SRSASN_SUCCESS;
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, bit_ref& bref)
{
return bref.unpack(tounpack, nof_bits);
}
uint32_t nof_bits;
};
struct Packer {
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack)
{
return topack.pack(bref);
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, bit_ref& bref)
{
return tounpack.unpack(bref);
}
};
/*********************
common octstring
*********************/
// helper functions common to all octstring implementations
uint64_t octstring_to_number(const uint8_t* ptr, uint32_t nbytes);
void number_to_octstring(uint8_t* ptr, uint64_t number, uint32_t nbytes);
std::string octstring_to_string(const uint8_t* ptr, uint32_t N);
void string_to_octstring(uint8_t* ptr, const std::string& str);
/************************
fixed_octstring
************************/
template <uint32_t N>
class fixed_octstring
{
public:
const uint8_t& operator[](uint32_t idx) const { return octets_[idx]; }
uint8_t& operator[](uint32_t idx) { return octets_[idx]; }
bool operator==(const fixed_octstring<N>& other) const { return octets_ == other.octets_; }
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
static uint32_t size() { return N; }
std::string to_string() const { return octstring_to_string(&octets_[0], N); }
fixed_octstring<N>& from_string(const std::string& hexstr)
{
if (hexstr.size() != 2 * N) {
srsasn_log_print(LOG_LEVEL_ERROR, "The provided hex string size is not valid (%d!=2*%d).\n", hexstr.size(), N);
} else {
string_to_octstring(&octets_[0], hexstr);
}
return *this;
}
uint64_t to_number() const { return octstring_to_number(&octets_[0], size()); }
fixed_octstring<N>& from_number(uint64_t val)
{
number_to_octstring(&octets_[0], val, size());
return *this;
}
SRSASN_CODE pack(bit_ref& bref) const;
SRSASN_CODE unpack(bit_ref& bref);
private:
std::array<uint8_t, N> octets_;
};
template <uint32_t N>
SRSASN_CODE fixed_octstring<N>::pack(bit_ref& bref) const
{
// if(N > 2) { // X.691 Sec.16
// bref.align_bytes_zero();
// }
for (uint32_t i = 0; i < size(); ++i) {
bref.pack(octets_[i], 8);
}
return SRSASN_SUCCESS;
}
template <uint32_t N>
SRSASN_CODE fixed_octstring<N>::unpack(bit_ref& bref)
{
// if(N > 2) { // X.691 Sec.16
// bref.align_bytes_zero();
// }
for (uint32_t i = 0; i < size(); ++i) {
HANDLE_CODE(bref.unpack(octets_[i], 8));
}
return SRSASN_SUCCESS;
}
/************************
dyn_octstring
************************/
class dyn_octstring
{
public:
dyn_octstring() = default;
dyn_octstring(uint32_t new_size) : octets_(new_size) {}
const uint8_t& operator[](uint32_t idx) const { return octets_[idx]; }
uint8_t& operator[](uint32_t idx) { return octets_[idx]; }
bool operator==(const dyn_octstring& other) const { return octets_ == other.octets_; }
void resize(uint32_t new_size) { octets_.resize(new_size); }
uint32_t size() const { return octets_.size(); }
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
SRSASN_CODE pack(bit_ref& ie_ref) const;
SRSASN_CODE unpack(bit_ref& ie_ref);
std::string to_string() const;
dyn_octstring& from_string(const std::string& hexstr);
uint64_t to_number() const { return octstring_to_number(&octets_[0], size()); }
dyn_octstring& from_number(uint64_t val)
{
number_to_octstring(&octets_[0], val, size());
return *this;
}
private:
dyn_array<uint8_t> octets_;
};
/*********************
common bitstring
*********************/
// helper functions common to all bitstring implementations
uint64_t bitstring_to_number(const uint8_t* ptr, uint32_t nbits);
void number_to_bitstring(uint8_t* ptr, uint64_t number, uint32_t nbits);
std::string bitstring_to_string(const uint8_t* ptr, uint32_t nbits);
inline bool bitstring_get(const uint8_t* ptr, uint32_t idx)
{
uint32_t byte_idx = idx / 8;
uint32_t offset = idx % 8;
return (ptr[byte_idx] & (1 << offset)) > 0;
}
inline void bitstring_set(uint8_t* ptr, uint32_t idx, bool value)
{
uint32_t byte_idx = idx / 8;
uint32_t offset = idx % 8;
if (value) {
ptr[byte_idx] |= (1 << offset);
} else {
ptr[byte_idx] &= ((uint16_t)(1 << 8) - 1) - (1 << offset);
}
}
/*********************
fixed_bitstring
*********************/
// fixed bitstring pack/unpack helpers
SRSASN_CODE pack_fixed_bitstring(bit_ref& bref, const uint8_t* buf, uint32_t nbits);
SRSASN_CODE pack_fixed_bitstring(bit_ref& bref, const uint8_t* buf, uint32_t nbits, bool ext);
SRSASN_CODE unpack_fixed_bitstring(uint8_t* buf, bit_ref& bref, uint32_t nbits);
SRSASN_CODE unpack_fixed_bitstring(uint8_t* buf, bool& ext, bit_ref& bref, uint32_t nbits);
template <uint32_t N>
class fixed_bitstring
{
public:
fixed_bitstring() { memset(&octets_[0], 0, nof_octets()); }
fixed_bitstring(const std::string& s)
{
if (s.size() != N) {
srsasn_log_print(
LOG_LEVEL_ERROR, "The provided string size=%d does not match the bit string size=%d\n", s.size(), N);
}
memset(&octets_[0], 0, nof_octets());
for (uint32_t i = 0; i < N; ++i)
this->set(N - i - 1, s[i] == '1');
}
bool get(uint32_t idx) const { return bitstring_get(&octets_[0], idx); }
void set(uint32_t idx, bool value) { bitstring_set(&octets_[0], idx, value); }
bool operator==(const fixed_bitstring<N>& other) const { return octets_ == other.octets_; }
bool operator==(const char* other_str) const
{
return strlen(other_str) == N and (*this) == fixed_bitstring<N>(other_str);
}
uint32_t nof_octets() const { return (uint32_t)ceilf(N / 8.0f); }
uint32_t length() const { return N; }
std::string to_string() const { return bitstring_to_string(&octets_[0], length()); }
uint64_t to_number() const { return bitstring_to_number(&octets_[0], length()); }
fixed_bitstring<N>& from_number(uint64_t val)
{
number_to_bitstring(&octets_[0], val, length());
return *this;
}
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
SRSASN_CODE pack(bit_ref& bref) const { return pack_fixed_bitstring(bref, data(), N); }
SRSASN_CODE pack(bit_ref& bref, bool ext) const { return pack_fixed_bitstring(bref, data(), N, ext); }
SRSASN_CODE unpack(bit_ref& bref) { return unpack_fixed_bitstring(data(), bref, N); }
SRSASN_CODE unpack(bit_ref& bref, bool& ext) { return unpack_fixed_bitstring(data(), ext, bref, N); }
private:
std::array<uint8_t, (uint32_t)((N + 7) / 8)> octets_; // ceil(N/8.0)
};
/*********************
dyn_bitstring
*********************/
class dyn_bitstring
{
public:
dyn_bitstring() : n_bits(0) {}
dyn_bitstring(uint32_t n_bits_);
dyn_bitstring(const char* s);
bool operator==(const dyn_bitstring& other) const { return octets_ == other.octets_; }
bool operator==(const char* other_str) const;
bool get(uint32_t idx) const { return bitstring_get(&octets_[0], idx); }
void set(uint32_t idx, bool value) { bitstring_set(&octets_[0], idx, value); }
void resize(uint32_t new_size);
uint32_t length() const { return n_bits; }
uint32_t nof_octets() const { return (uint32_t)ceilf(length() / 8.0f); }
std::string to_string() const { return bitstring_to_string(&octets_[0], length()); }
uint64_t to_number() const { return bitstring_to_number(&octets_[0], length()); }
dyn_bitstring& from_number(uint64_t val)
{
number_to_bitstring(&octets_[0], val, length());
return *this;
}
const uint8_t* data() const { return &octets_[0]; }
uint8_t* data() { return &octets_[0]; }
SRSASN_CODE pack(bit_ref& bref, uint32_t lb = 0, uint32_t ub = 0) const;
SRSASN_CODE pack(bit_ref& bref, bool ext, uint32_t lb = 0, uint32_t ub = 0) const;
SRSASN_CODE unpack(bit_ref& bref, uint32_t lb = 0, uint32_t ub = 0);
SRSASN_CODE unpack(bit_ref& bref, bool& ext, uint32_t lb = 0, uint32_t ub = 0);
private:
dyn_array<uint8_t> octets_;
uint32_t n_bits;
};
/*********************
fixed sequence of
*********************/
// packers/unpackers for fixed_length sequence-of
template <class T, class ItemPacker>
SRSASN_CODE pack_fixed_seq_of(bit_ref& bref, const T* item_array, uint32_t nof_items, ItemPacker packer)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(packer.pack(bref, item_array[i]));
}
return SRSASN_SUCCESS;
}
template <class T>
SRSASN_CODE pack_fixed_seq_of(bit_ref& bref, const T* item_array, uint32_t nof_items)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(item_array[i].pack(bref));
}
return SRSASN_SUCCESS;
}
template <class T, class ItemUnpacker>
SRSASN_CODE unpack_fixed_seq_of(T* item_array, bit_ref& bref, uint32_t nof_items, ItemUnpacker unpacker)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(unpacker.unpack(item_array[i], bref));
}
return SRSASN_SUCCESS;
}
template <class T>
SRSASN_CODE unpack_fixed_seq_of(T* item_array, bit_ref& bref, uint32_t nof_items)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(item_array[i].unpack(bref));
}
return SRSASN_SUCCESS;
}
template <class ItemPacker>
struct FixedSeqOfPacker {
FixedSeqOfPacker(uint32_t nof_items_, ItemPacker packer_) : nof_items(nof_items_), packer(packer_) {}
FixedSeqOfPacker(uint32_t nof_items_) : nof_items(nof_items_), packer(Packer()) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T* topack)
{
return pack_fixed_seq_of(bref, topack, nof_items, packer);
}
template <typename T>
SRSASN_CODE unpack(T* tounpack, bit_ref& bref)
{
return unpack_fixed_seq_of(tounpack, bref, nof_items, packer);
}
uint32_t nof_items;
ItemPacker packer;
};
/*********************
dyn sequence of
*********************/
template <class ArrayType, class ItemPacker>
SRSASN_CODE pack_dyn_seq_of(bit_ref& bref, const ArrayType& seqof, uint32_t lb, uint32_t ub, ItemPacker packer)
{
HANDLE_CODE(pack_length(bref, seqof.size(), lb, ub));
for (uint32_t i = 0; i < seqof.size(); ++i) {
HANDLE_CODE(packer.pack(bref, seqof[i]));
}
return SRSASN_SUCCESS;
}
template <class ArrayType>
SRSASN_CODE pack_dyn_seq_of(bit_ref& bref, const ArrayType& seqof, uint32_t lb, uint32_t ub)
{
HANDLE_CODE(pack_length(bref, seqof.size(), lb, ub));
for (uint32_t i = 0; i < seqof.size(); ++i) {
HANDLE_CODE(seqof[i].pack(bref));
}
return SRSASN_SUCCESS;
}
template <class ArrayType, class ItemUnpacker>
SRSASN_CODE unpack_dyn_seq_of(ArrayType& seqof, bit_ref& bref, uint32_t lb, uint32_t ub, ItemUnpacker unpacker)
{
uint32_t nof_items;
HANDLE_CODE(unpack_length(nof_items, bref, lb, ub));
seqof.resize(nof_items);
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(unpacker.unpack(seqof[i], bref));
}
return SRSASN_SUCCESS;
}
template <class ArrayType>
SRSASN_CODE unpack_dyn_seq_of(ArrayType& seqof, bit_ref& bref, uint32_t lb, uint32_t ub)
{
uint32_t nof_items;
HANDLE_CODE(unpack_length(nof_items, bref, lb, ub));
seqof.resize(nof_items);
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(seqof[i].unpack(bref));
}
return SRSASN_SUCCESS;
}
template <class InnerPacker>
struct SeqOfPacker {
SeqOfPacker(uint32_t lb_, uint32_t ub_, InnerPacker packer_) : lb(lb_), ub(ub_), packer(packer_) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack) const
{
return pack_dyn_seq_of(bref, topack, lb, ub, packer);
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, bit_ref& bref)
{
return unpack_dyn_seq_of(tounpack, bref, lb, ub, packer);
}
InnerPacker packer;
uint32_t lb;
uint32_t ub;
};
template <class ItemType, uint32_t lb, uint32_t ub>
struct dyn_seq_of : public dyn_array<ItemType> {
SeqOfPacker<Packer> packer;
dyn_seq_of() : packer(lb, ub, Packer()) {}
dyn_seq_of(const dyn_array<ItemType>& other) : dyn_array<ItemType>(other), packer(lb, ub, Packer()) {}
SRSASN_CODE pack(bit_ref& bref) const { return packer.pack(bref, *this); }
SRSASN_CODE unpack(bit_ref& bref) { return packer.unpack(*this, bref); }
};
/*********************
choice utils
*********************/
union alignment_t {
char c;
float f;
uint32_t i;
uint64_t i2;
double d;
long double d2;
uint32_t* ptr;
};
#define MAX2(a, b) ((a) > (b)) ? (a) : (b)
#define MAX4(a, b, c, d) MAX2((MAX2(a, b)), MAX2(c, d))
#define MAX8(a, b, c, d, e, f, g, h) MAX2((MAX4(a, b, c, d)), (MAX4(e, f, g, h)))
#define MAX12(a, b, c, d, e, f, g, h, i, j, k, l) MAX2((MAX8(a, b, c, d, e, f, g, h)), (MAX4(i, j, k, l)))
#define MAX16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) \
MAX2((MAX8(a, b, c, d, e, f, g, h)), (MAX8(i, j, k, l, m, n, o, p)))
#define MAX32( \
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1, o1, p1) \
MAX2((MAX16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)), \
(MAX16(a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1, o1, p1)))
template <size_t SIZE>
class choice_buffer_t
{
public:
struct __attribute__((__may_alias__)) bytes {
uint8_t buf_[MAX2(SIZE, 8)];
uint8_t* data() { return &buf_[0]; }
const uint8_t* data() const { return &buf_[0]; }
};
template <typename T>
T& get()
{
return *((T*)buffer.buf_.data());
}
template <typename T>
const T& get() const
{
return *((T*)buffer.buf_.data());
}
template <typename T>
void destroy()
{
((T*)buffer.buf_.data())->~T();
}
template <typename T>
void init()
{
new (buffer.buf_.data()) T();
}
template <typename T>
void init(const T& other)
{
new (buffer.buf_.data()) T(other);
}
template <typename T>
void set(const T& other)
{
get<T>() = other;
}
private:
union {
alignment_t a_;
bytes buf_;
} buffer;
};
/*********************
copy_ptr
*********************/
template <class T>
class copy_ptr
{
public:
explicit copy_ptr(T* ptr_ = nullptr) :
ptr(ptr_) {} // it takes hold of the pointer (including destruction). You should use make_copy_ptr() in most cases
// instead of this ctor
copy_ptr(const copy_ptr<T>& other) { ptr = (other.ptr == nullptr) ? nullptr : new T(*other.ptr); }
~copy_ptr() { destroy_(); }
copy_ptr<T>& operator=(const copy_ptr<T>& other)
{
if (this != &other) {
reset((other.ptr == nullptr) ? nullptr : new T(*other.ptr));
}
return *this;
}
bool operator==(const copy_ptr<T>& other) const { return *ptr == *other; }
T* operator->() { return ptr; }
const T* operator->() const { return ptr; }
T& operator*() { return *ptr; } // like pointers, don't call this if ptr==NULL
const T& operator*() const { return *ptr; } // like pointers, don't call this if ptr==NULL
T* get() { return ptr; }
const T* get() const { return ptr; }
T* release()
{
T* ret = ptr;
ptr = nullptr;
return ret;
}
void reset(T* ptr_ = nullptr)
{
destroy_();
ptr = ptr_;
}
void set_present(bool flag = true)
{
if (flag) {
reset(new T());
} else {
reset();
}
}
bool is_present() const { return get() != nullptr; }
private:
void destroy_()
{
if (ptr != NULL) {
delete ptr;
}
}
T* ptr;
};
template <class T>
copy_ptr<T> make_copy_ptr(const T& t)
{
return copy_ptr<T>(new T(t));
}
/*********************
ext group
*********************/
class ext_groups_packer_guard
{
public:
bool& operator[](uint32_t idx);
SRSASN_CODE pack(bit_ref& bref) const;
private:
bounded_array<bool, 20> groups;
};
class ext_groups_unpacker_guard
{
public:
explicit ext_groups_unpacker_guard(uint32_t nof_supported_groups_);
~ext_groups_unpacker_guard();
void resize(uint32_t new_size);
bool& operator[](uint32_t idx);
SRSASN_CODE unpack(bit_ref& bref);
private:
bounded_array<bool, 20> groups;
const uint32_t nof_supported_groups;
uint32_t nof_unpacked_groups = 0;
bit_ref* bref_tracker = nullptr;
};
/*********************
Var Length Field
*********************/
class varlength_field_pack_guard
{
public:
varlength_field_pack_guard(bit_ref& bref);
~varlength_field_pack_guard();
private:
bit_ref brefstart;
// bit_ref bref0;
bit_ref* bref_tracker;
uint8_t buffer[1024];
};
class varlength_field_unpack_guard
{
public:
varlength_field_unpack_guard(bit_ref& bref);
~varlength_field_unpack_guard();
private:
bit_ref bref0;
bit_ref* bref_tracker;
uint32_t len;
};
/*******************
JsonWriter
*******************/
class json_writer
{
public:
json_writer();
void write_fieldname(const std::string& fieldname);
void write_str(const std::string& fieldname, const std::string& value);
void write_str(const std::string& value);
void write_int(const std::string& fieldname, int64_t value);
void write_int(int64_t value);
void write_bool(const std::string& fieldname, bool value);
void write_bool(bool value);
void write_null(const std::string& fieldname);
void write_null();
void start_obj(const std::string& fieldname = "");
void end_obj();
void start_array(const std::string& fieldname = "");
void end_array();
std::string to_string() const;
private:
std::stringstream ss;
std::string ident;
enum separator_t { COMMA, NEWLINE, NONE };
separator_t sep;
};
} // namespace asn1
#endif // SRSASN_COMMON_UTILS_H