You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

976 lines
29 KiB
C

/*
Copyright 2013-2017 Software Radio Systems Limited
This file is part of srsLTE
srsLTE is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
srsLTE is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
A copy of the GNU Affero General Public License can be found in
the LICENSE file in the top-level directory of this distribution
and at http://www.gnu.org/licenses/.
*/
#ifndef SRSASN_COMMON_UTILS_H
#define SRSASN_COMMON_UTILS_H
#include <algorithm>
#include <cmath>
#include <cstring>
#include <sstream>
#include <stdarg.h> /* va_list, va_start, va_arg, va_end */
#include <stdint.h>
#include <string>
// TODOS/FIXME:
// - ext flag as an template arg?
// - custom allocators?
namespace asn1 {
#define ASN_16K 16383
/************************
logging
************************/
typedef enum { LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_WARN, LOG_LEVEL_ERROR } srsasn_logger_level_t;
typedef void (*log_handler_t)(srsasn_logger_level_t log_level, void* ctx, const char* str);
void vlog_print(log_handler_t handler, void* ctx, srsasn_logger_level_t log_level, const char* format, va_list args);
void srsasn_log_register_handler(void* ctx, log_handler_t handler);
void srsasn_log_print(srsasn_logger_level_t log_level, const char* format, ...);
/************************
error handling
************************/
enum SRSASN_CODE { SRSASN_SUCCESS, SRSASN_ERROR_ENCODE_FAIL, SRSASN_ERROR_DECODE_FAIL };
void log_error_code(SRSASN_CODE code, const char* filename, int line);
#define HANDLE_CODE(ret) \
{ \
SRSASN_CODE macrocode = (ret); \
if (macrocode != SRSASN_SUCCESS) { \
log_error_code(macrocode, __FILE__, __LINE__); \
return macrocode; \
} \
}
/************************
bit_ref
************************/
struct ValOrError {
uint32_t val;
SRSASN_CODE code;
ValOrError() : val(0), code(SRSASN_SUCCESS) {}
ValOrError(uint32_t val_, SRSASN_CODE code_) : val(val_), code(code_) {}
};
ValOrError unpack_bits(uint8_t*& ptr, uint8_t& offset, uint8_t* max_ptr, uint32_t n_bits);
class bit_ref
{
public:
bit_ref();
bit_ref(uint8_t* start_ptr_, uint32_t max_size_);
int distance(const bit_ref& other) const;
int distance(uint8_t* ref_ptr) const;
int distance() const;
int distance_bytes(uint8_t* ref_ptr) const;
int distance_bytes() const;
SRSASN_CODE pack(uint32_t val, uint32_t n_bits);
template <class T>
SRSASN_CODE unpack(T& val, uint32_t n_bits)
{
ValOrError ret = unpack_bits(ptr, offset, max_ptr, n_bits);
val = ret.val;
return ret.code;
}
SRSASN_CODE align_bytes();
SRSASN_CODE align_bytes_zero();
void set(uint8_t* start_ptr_, uint32_t max_size_);
private:
uint8_t* ptr;
uint8_t offset;
uint8_t* start_ptr;
uint8_t* max_ptr;
};
/*********************
function helpers
*********************/
template <class T>
class dyn_array
{
public:
typedef T item_type;
dyn_array() : data_(NULL), size_(0), cap_(0) {}
dyn_array(uint32_t new_size) : size_(new_size), cap_(new_size) { data_ = new T[size_]; }
dyn_array(const dyn_array<T>& other)
{
size_ = other.size_;
cap_ = other.cap_;
data_ = new T[cap_];
std::copy(&other[0], &other[size_], data_);
}
~dyn_array()
{
if (data_ != NULL) {
delete[] data_;
}
}
uint32_t size() const { return size_; }
uint32_t capacity() const { return cap_; }
T& operator[](uint32_t idx) { return data_[idx]; }
const T& operator[](uint32_t idx) const { return data_[idx]; }
dyn_array<T>& operator=(const dyn_array<T>& other)
{
if (this == &other) {
return *this;
}
resize(other.size());
std::copy(&other[0], &other[size_], data_);
return *this;
}
void resize(uint32_t new_size, uint32_t new_cap = 0)
{
if (new_size == size_) {
return;
}
if (cap_ >= new_size) {
size_ = new_size;
return;
}
T* old_data = data_;
cap_ = new_size > new_cap ? new_size : new_cap;
if (cap_ > 0) {
data_ = new T[cap_];
if (old_data != NULL) {
std::copy(&old_data[0], &old_data[size_], data_);
}
} else {
data_ = NULL;
}
size_ = new_size;
if (old_data != NULL) {
delete[] old_data;
}
}
bool operator==(const dyn_array<T>& other) const
{
return size() == other.size() and std::equal(data_, data_ + size(), other.data_);
}
void push_back(const T& elem)
{
resize(size() + 1, size() * 2);
data_[size() - 1] = elem;
}
T& back() { return data_[size() - 1]; }
const T& back() const { return data_[size() - 1]; }
T* data() { return &data_[0]; }
const T* data() const { return &data_[0]; }
private:
T* data_;
uint32_t size_, cap_;
};
template <class T, uint32_t MAX_N>
class bounded_array
{
public:
typedef T item_type;
bounded_array(uint32_t size_ = 0) : current_size(size_) {}
static uint32_t capacity() { return MAX_N; }
uint32_t size() const { return current_size; }
T& operator[](uint32_t idx) { return data_[idx]; }
const T& operator[](uint32_t idx) const { return data_[idx]; }
bool operator==(const bounded_array<T, MAX_N>& other) const
{
return size() == other.size() and std::equal(data_, data_ + size(), other.data_);
}
void resize(uint32_t new_size) { current_size = new_size; }
void push_back(const T& elem)
{
if (current_size >= MAX_N) {
srsasn_log_print(LOG_LEVEL_ERROR, "Maximum size %d achieved for bounded_array.\n", MAX_N);
}
data_[current_size++] = elem;
}
T& back() { return data_[current_size - 1]; }
const T& back() const { return data_[current_size - 1]; }
T* data() { return &data_[0]; }
const T* data() const { return &data_[0]; }
private:
T data_[MAX_N];
uint32_t current_size;
};
template <class T, uint32_t N>
class fixed_array
{
public:
typedef T item_type;
static uint32_t size() { return N; }
T& operator[](uint32_t idx) { return data_[idx]; }
const T& operator[](uint32_t idx) const { return data_[idx]; }
bool operator==(const fixed_array<T, N>& other) const { return std::equal(data_, data_ + size(), other.data_); }
T& back() { return data_[size() - 1]; }
const T& back() const { return data_[size() - 1]; }
T* data() { return &data_[0]; }
const T* data() const { return &data_[0]; }
private:
T data_[N];
};
/*********************
ext packing
*********************/
SRSASN_CODE pack_unsupported_ext_flag(bit_ref& bref, bool ext);
SRSASN_CODE unpack_unsupported_ext_flag(bool& ext, bit_ref& bref);
/************************
enum packing
************************/
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t enum_val, uint32_t nbits);
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t enum_val, uint32_t nbits, uint32_t nof_noext);
SRSASN_CODE pack_enum(bit_ref& bref, uint32_t e, uint32_t nof_types, uint32_t nof_exts, bool has_ext);
ValOrError unpack_enum(uint32_t nof_types, uint32_t nof_exts, bool has_ext, bit_ref& bref);
template <typename EnumType>
SRSASN_CODE pack_enum(bit_ref& bref, EnumType e)
{
return pack_enum(bref, e, EnumType::nof_types, EnumType::nof_exts, EnumType::has_ext);
}
template <typename EnumType>
SRSASN_CODE unpack_enum(EnumType& e, bit_ref& bref)
{
ValOrError ret = unpack_enum(EnumType::nof_types, EnumType::nof_exts, EnumType::has_ext, bref);
e = (typename EnumType::options)ret.val;
return ret.code;
}
struct EnumPacker {
template <class EnumType>
SRSASN_CODE pack(bit_ref& bref, EnumType e)
{
return pack_enum(bref, e);
}
template <class EnumType>
SRSASN_CODE unpack(EnumType& e, bit_ref& bref)
{
return unpack_enum(e, bref);
}
};
template <class EnumType>
bool string_to_enum(EnumType& e, const std::string& s)
{
for (uint32_t i = 0; i < EnumType::nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_string() == s) {
return true;
}
}
return false;
}
template <class EnumType, class NumberType>
bool number_to_enum(EnumType& e, NumberType val)
{
for (uint32_t i = 0; i < e.nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_number() == val) {
return true;
}
}
return false;
}
template <class EnumType>
bool number_string_to_enum(EnumType& e, const std::string& val)
{
for (uint32_t i = 0; i < e.nof_types; ++i) {
e = (typename EnumType::options)i;
if (e.to_number_string() == val) {
return true;
}
}
return false;
}
/************************
integer packing
************************/
// Constrained Whole Number
template <class IntType>
SRSASN_CODE pack_unalign_integer(bit_ref& bref, IntType n, IntType lb, IntType ub);
template <class IntType>
SRSASN_CODE unpack_unalign_integer(IntType& n, bit_ref& bref, IntType lb, IntType ub);
template <class IntType>
struct UnalignedIntegerPacker {
UnalignedIntegerPacker(IntType, IntType);
IntType lb;
IntType ub;
SRSASN_CODE pack(bit_ref& bref, IntType n);
SRSASN_CODE unpack(IntType& n, bit_ref& bref);
};
template <class IntType>
SRSASN_CODE pack_align_integer(bit_ref& bref, IntType n, IntType lb, IntType ub);
template <typename IntType>
SRSASN_CODE unpack_align_integer(IntType& intval, bit_ref& bref, IntType lb, IntType ub);
template <class IntType>
struct AlignedIntegerPacker {
AlignedIntegerPacker(IntType lb_, IntType ub_);
IntType lb;
IntType ub;
SRSASN_CODE pack(bit_ref& bref, IntType n);
SRSASN_CODE unpack(IntType& n, bit_ref& bref);
};
// Normally Small non-negative whole number
template <typename UintType>
SRSASN_CODE pack_norm_small_integer(bit_ref& bref, UintType n);
template <typename UintType>
SRSASN_CODE unpack_norm_small_integer(UintType& n, bit_ref& bref);
// Unconstrained Whole Number
// FIXME: Implement
inline SRSASN_CODE pack_unconstrained_integer(bit_ref& bref, int64_t n)
{
// TODO
srsasn_log_print(LOG_LEVEL_ERROR, "Not implemented\n");
return SRSASN_SUCCESS;
}
inline SRSASN_CODE unpack_unconstrained_integer(int64_t& n, bit_ref& bref)
{
// TODO
srsasn_log_print(LOG_LEVEL_ERROR, "Not implemented\n");
return SRSASN_SUCCESS;
}
/************************
length determinant
************************/
// Pack as whole constrained number
template <typename IntType>
SRSASN_CODE pack_length(bit_ref& bref, IntType n, IntType lb, IntType ub);
template <typename IntType>
SRSASN_CODE unpack_length(IntType& n, bit_ref& bref, IntType lb, IntType ub);
// Pack as a small non-negative whole number
SRSASN_CODE pack_length(bit_ref& ref, uint32_t val);
SRSASN_CODE unpack_length(uint32_t& val, bit_ref& ref);
/************************
General Packer/Unpacker
************************/
struct BitPacker {
BitPacker(uint32_t nof_bits_) : nof_bits(nof_bits_) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack)
{
bref.pack(topack, nof_bits);
return SRSASN_SUCCESS;
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, bit_ref& bref)
{
return bref.unpack(tounpack, nof_bits);
}
uint32_t nof_bits;
};
struct Packer {
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack)
{
return topack.pack(bref);
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, bit_ref& bref)
{
return tounpack.unpack(bref);
}
};
/*********************
common octstring
*********************/
// helper functions common to all octstring implementations
uint64_t octstring_to_number(const uint8_t* ptr, uint32_t nbytes);
void number_to_octstring(uint8_t* ptr, uint64_t number, uint32_t nbytes);
std::string octstring_to_string(const uint8_t* ptr, uint32_t N);
void string_to_octstring(uint8_t* ptr, const std::string& str);
/************************
fixed_octstring
************************/
template <uint32_t N>
class fixed_octstring
{
public:
const uint8_t& operator[](uint32_t idx) const { return octets_[idx]; }
uint8_t& operator[](uint32_t idx) { return octets_[idx]; }
bool operator==(const fixed_octstring<N>& other) const { return octets_ == other.octets_; }
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
static uint32_t size() { return N; }
std::string to_string() const { return octstring_to_string(&octets_[0], N); }
fixed_octstring<N>& from_string(const std::string& hexstr)
{
if (hexstr.size() != 2 * N) {
srsasn_log_print(LOG_LEVEL_ERROR, "The provided hex string size is not valid (%d!=2*%d).\n", hexstr.size(), N);
} else {
string_to_octstring(&octets_[0], hexstr);
}
return *this;
}
uint64_t to_number() const { return octstring_to_number(&octets_[0], size()); }
fixed_octstring<N>& from_number(uint64_t val)
{
number_to_octstring(&octets_[0], val, size());
return *this;
}
SRSASN_CODE pack(bit_ref& bref) const;
SRSASN_CODE unpack(bit_ref& bref);
private:
fixed_array<uint8_t, N> octets_;
};
template <uint32_t N>
SRSASN_CODE fixed_octstring<N>::pack(bit_ref& bref) const
{
// if(N > 2) { // X.691 Sec.16
// bref.align_bytes_zero();
// }
for (uint32_t i = 0; i < size(); ++i) {
bref.pack(octets_[i], 8);
}
return SRSASN_SUCCESS;
}
template <uint32_t N>
SRSASN_CODE fixed_octstring<N>::unpack(bit_ref& bref)
{
// if(N > 2) { // X.691 Sec.16
// bref.align_bytes_zero();
// }
for (uint32_t i = 0; i < size(); ++i) {
HANDLE_CODE(bref.unpack(octets_[i], 8));
}
return SRSASN_SUCCESS;
}
/************************
dyn_octstring
************************/
class dyn_octstring
{
public:
dyn_octstring() {}
dyn_octstring(uint32_t new_size) : octets_(new_size) {}
const uint8_t& operator[](uint32_t idx) const { return octets_[idx]; }
uint8_t& operator[](uint32_t idx) { return octets_[idx]; }
bool operator==(const dyn_octstring& other) const { return octets_ == other.octets_; }
void resize(uint32_t new_size) { octets_.resize(new_size); }
uint32_t size() const { return octets_.size(); }
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
SRSASN_CODE pack(bit_ref& ie_ref) const;
SRSASN_CODE unpack(bit_ref& ie_ref);
std::string to_string() const;
dyn_octstring& from_string(const std::string& hexstr);
uint64_t to_number() const { return octstring_to_number(&octets_[0], size()); }
dyn_octstring& from_number(uint64_t val)
{
number_to_octstring(&octets_[0], val, size());
return *this;
}
private:
dyn_array<uint8_t> octets_;
};
/*********************
common bitstring
*********************/
// helper functions common to all bitstring implementations
uint64_t bitstring_to_number(const uint8_t* ptr, uint32_t nbits);
void number_to_bitstring(uint8_t* ptr, uint64_t number, uint32_t nbits);
std::string bitstring_to_string(const uint8_t* ptr, uint32_t nbits);
inline bool bitstring_get(const uint8_t* ptr, uint32_t idx)
{
uint32_t byte_idx = idx / 8;
uint32_t offset = idx % 8;
return (ptr[byte_idx] & (1 << offset)) > 0;
}
inline void bitstring_set(uint8_t* ptr, uint32_t idx, bool value)
{
uint32_t byte_idx = idx / 8;
uint32_t offset = idx % 8;
if (value) {
ptr[byte_idx] |= (1 << offset);
} else {
ptr[byte_idx] &= ((uint16_t)(1 << 8) - 1) - (1 << offset);
}
}
/*********************
fixed_bitstring
*********************/
// fixed bitstring pack/unpack helpers
SRSASN_CODE pack_fixed_bitstring(bit_ref& bref, const uint8_t* buf, uint32_t nbits);
SRSASN_CODE pack_fixed_bitstring(bit_ref& bref, const uint8_t* buf, uint32_t nbits, bool ext);
SRSASN_CODE unpack_fixed_bitstring(uint8_t* buf, bit_ref& bref, uint32_t nbits);
SRSASN_CODE unpack_fixed_bitstring(uint8_t* buf, bool& ext, bit_ref& bref, uint32_t nbits);
template <uint32_t N>
class fixed_bitstring
{
public:
fixed_bitstring() { memset(&octets_[0], 0, nof_octets()); }
fixed_bitstring(const std::string& s)
{
if (s.size() != N) {
srsasn_log_print(LOG_LEVEL_ERROR, "The provided string size=%d does not match the bit string size=%d\n", s.size(),
N);
}
memset(&octets_[0], 0, nof_octets());
for (uint32_t i = 0; i < N; ++i)
this->set(N - i - 1, s[i] == '1');
}
bool get(uint32_t idx) const { return bitstring_get(&octets_[0], idx); }
void set(uint32_t idx, bool value) { bitstring_set(&octets_[0], idx, value); }
bool operator==(const fixed_bitstring<N>& other) const { return octets_ == other.octets_; }
bool operator==(const char* other_str) const
{
return strlen(other_str) == N and (*this) == fixed_bitstring<N>(other_str);
}
uint32_t nof_octets() const { return (uint32_t)ceilf(N / 8.0f); }
uint32_t length() const { return N; }
std::string to_string() const { return bitstring_to_string(&octets_[0], length()); }
uint64_t to_number() const { return bitstring_to_number(&octets_[0], length()); }
fixed_bitstring<N>& from_number(uint64_t val)
{
number_to_bitstring(&octets_[0], val, length());
return *this;
}
uint8_t* data() { return &octets_[0]; }
const uint8_t* data() const { return &octets_[0]; }
SRSASN_CODE pack(bit_ref& bref) const { return pack_fixed_bitstring(bref, data(), N); }
SRSASN_CODE pack(bit_ref& bref, bool ext) const { return pack_fixed_bitstring(bref, data(), N, ext); }
SRSASN_CODE unpack(bit_ref& bref) { return unpack_fixed_bitstring(data(), bref, N); }
SRSASN_CODE unpack(bit_ref& bref, bool& ext) { return unpack_fixed_bitstring(data(), ext, bref, N); }
private:
fixed_array<uint8_t, (uint32_t)((N + 7) / 8)> octets_; // ceil(N/8.0)
};
/*********************
dyn_bitstring
*********************/
class dyn_bitstring
{
public:
dyn_bitstring() : n_bits(0) {}
dyn_bitstring(uint32_t n_bits_);
dyn_bitstring(const char* s);
bool operator==(const dyn_bitstring& other) const { return octets_ == other.octets_; }
bool operator==(const char* other_str) const;
bool get(uint32_t idx) const { return bitstring_get(&octets_[0], idx); }
void set(uint32_t idx, bool value) { bitstring_set(&octets_[0], idx, value); }
void resize(uint32_t new_size);
uint32_t length() const { return n_bits; }
uint32_t nof_octets() const { return (uint32_t)ceilf(length() / 8.0f); }
std::string to_string() const { return bitstring_to_string(&octets_[0], length()); }
uint64_t to_number() const { return bitstring_to_number(&octets_[0], length()); }
dyn_bitstring& from_number(uint64_t val)
{
number_to_bitstring(&octets_[0], val, length());
return *this;
}
const uint8_t* data() const { return &octets_[0]; }
uint8_t* data() { return &octets_[0]; }
SRSASN_CODE pack(bit_ref& bref, uint32_t lb = 0, uint32_t ub = 0) const;
SRSASN_CODE pack(bit_ref& bref, bool ext, uint32_t lb = 0, uint32_t ub = 0) const;
SRSASN_CODE unpack(bit_ref& bref, uint32_t lb = 0, uint32_t ub = 0);
SRSASN_CODE unpack(bit_ref& bref, bool& ext, uint32_t lb = 0, uint32_t ub = 0);
private:
dyn_array<uint8_t> octets_;
uint32_t n_bits;
};
/*********************
fixed sequence of
*********************/
// packers/unpackers for fixed_length sequence-of
template <class T, class ItemPacker>
SRSASN_CODE pack_fixed_seq_of(bit_ref& bref, const T* item_array, uint32_t nof_items, ItemPacker packer)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(packer.pack(bref, item_array[i]));
}
return SRSASN_SUCCESS;
}
template <class T>
SRSASN_CODE pack_fixed_seq_of(bit_ref& bref, const T* item_array, uint32_t nof_items)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(item_array[i].pack(bref));
}
return SRSASN_SUCCESS;
}
template <class T, class ItemUnpacker>
SRSASN_CODE unpack_fixed_seq_of(T* item_array, bit_ref& bref, uint32_t nof_items, ItemUnpacker unpacker)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(unpacker.unpack(item_array[i], bref));
}
return SRSASN_SUCCESS;
}
template <class T>
SRSASN_CODE unpack_fixed_seq_of(T* item_array, bit_ref& bref, uint32_t nof_items)
{
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(item_array[i].unpack(bref));
}
return SRSASN_SUCCESS;
}
template <class ItemPacker>
struct FixedSeqOfPacker {
FixedSeqOfPacker(uint32_t nof_items_, ItemPacker packer_) : nof_items(nof_items_), packer(packer_) {}
FixedSeqOfPacker(uint32_t nof_items_) : nof_items(nof_items_), packer(Packer()) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T* topack)
{
return pack_fixed_seq_of(bref, topack, nof_items, packer);
}
template <typename T>
SRSASN_CODE unpack(T* tounpack, bit_ref& bref)
{
return unpack_fixed_seq_of(tounpack, bref, nof_items, packer);
}
uint32_t nof_items;
ItemPacker packer;
};
/*********************
dyn sequence of
*********************/
template <class ArrayType, class ItemPacker>
SRSASN_CODE pack_dyn_seq_of(bit_ref& bref, const ArrayType& seqof, uint32_t lb, uint32_t ub, ItemPacker packer)
{
HANDLE_CODE(pack_length(bref, seqof.size(), lb, ub));
for (uint32_t i = 0; i < seqof.size(); ++i) {
HANDLE_CODE(packer.pack(bref, seqof[i]));
}
return SRSASN_SUCCESS;
}
template <class ArrayType>
SRSASN_CODE pack_dyn_seq_of(bit_ref& bref, const ArrayType& seqof, uint32_t lb, uint32_t ub)
{
HANDLE_CODE(pack_length(bref, seqof.size(), lb, ub));
for (uint32_t i = 0; i < seqof.size(); ++i) {
HANDLE_CODE(seqof[i].pack(bref));
}
return SRSASN_SUCCESS;
}
template <class ArrayType, class ItemUnpacker>
SRSASN_CODE unpack_dyn_seq_of(ArrayType& seqof, bit_ref& bref, uint32_t lb, uint32_t ub, ItemUnpacker unpacker)
{
uint32_t nof_items;
HANDLE_CODE(unpack_length(nof_items, bref, lb, ub));
seqof.resize(nof_items);
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(unpacker.unpack(seqof[i], bref));
}
return SRSASN_SUCCESS;
}
template <class ArrayType>
SRSASN_CODE unpack_dyn_seq_of(ArrayType& seqof, bit_ref& bref, uint32_t lb, uint32_t ub)
{
uint32_t nof_items;
HANDLE_CODE(unpack_length(nof_items, bref, lb, ub));
seqof.resize(nof_items);
for (uint32_t i = 0; i < nof_items; ++i) {
HANDLE_CODE(seqof[i].unpack(bref));
}
return SRSASN_SUCCESS;
}
template <class InnerPacker>
struct SeqOfPacker {
SeqOfPacker(uint32_t lb_, uint32_t ub_, InnerPacker packer_) : lb(lb_), ub(ub_), packer(packer_) {}
template <typename T>
SRSASN_CODE pack(bit_ref& bref, const T& topack)
{
return pack_dyn_seq_of(bref, topack, lb, ub, packer);
}
template <typename T>
SRSASN_CODE unpack(T& tounpack, bit_ref& bref)
{
return unpack_dyn_seq_of(tounpack, bref, lb, ub, packer);
}
InnerPacker packer;
uint32_t lb;
uint32_t ub;
};
/*********************
choice utils
*********************/
union alignment_t {
char c;
float f;
uint32_t i;
uint64_t i2;
double d;
long double d2;
uint32_t* ptr;
};
#define MAX2(a, b) ((a) > (b)) ? (a) : (b)
#define MAX4(a, b, c, d) MAX2((MAX2(a, b)), MAX2(c, d))
#define MAX8(a, b, c, d, e, f, g, h) MAX2((MAX4(a, b, c, d)), (MAX4(e, f, g, h)))
#define MAX12(a, b, c, d, e, f, g, h, i, j, k, l) MAX2((MAX8(a, b, c, d, e, f, g, h)), (MAX4(i, j, k, l)))
#define MAX16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) \
MAX2((MAX8(a, b, c, d, e, f, g, h)), (MAX8(i, j, k, l, m, n, o, p)))
#define MAX32(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1, \
o1, p1) \
MAX2((MAX16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)), \
(MAX16(a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1, o1, p1)))
template <size_t SIZE>
class choice_buffer_t
{
public:
struct __attribute__((__may_alias__)) bytes {
uint8_t buf_[MAX2(SIZE, 8)];
uint8_t* data() { return &buf_[0]; }
const uint8_t* data() const { return &buf_[0]; }
};
template <typename T>
T& get()
{
return *((T*)buffer.buf_.data());
}
template <typename T>
const T& get() const
{
return *((T*)buffer.buf_.data());
}
template <typename T>
void destroy()
{
((T*)buffer.buf_.data())->~T();
}
template <typename T>
void init()
{
new (buffer.buf_.data()) T();
}
template <typename T>
void init(const T& other)
{
new (buffer.buf_.data()) T(other);
}
template <typename T>
void set(const T& other)
{
get<T>() = other;
}
private:
union {
alignment_t a_;
bytes buf_;
} buffer;
};
/*********************
copy_ptr
*********************/
template <class T>
class copy_ptr
{
public:
copy_ptr() : ptr(NULL) {}
explicit copy_ptr(T* ptr_) :
ptr(ptr_) {} // it takes hold of the pointer (including destruction). You should use make_copy_ptr() in most cases
// instead of this ctor
copy_ptr(const copy_ptr<T>& other) { ptr = other.make_obj_(); } // it allocates new memory for the new object
~copy_ptr() { destroy_(); }
inline copy_ptr<T>& operator=(const copy_ptr<T>& other)
{
if (this != &other) {
acquire(other.make_obj_());
}
return *this;
}
inline bool operator==(const copy_ptr<T>& other) const { return *ptr == *other; }
inline T* operator->() { return ptr; }
inline const T* operator->() const { return ptr; }
inline T& operator*() { return *ptr; } // like pointers, don't call this if ptr==NULL
inline const T& operator*() const { return *ptr; } // like pointers, don't call this if ptr==NULL
inline T* get() { return ptr; }
inline const T* get() const { return ptr; }
inline T* release()
{
T* ret = ptr;
ptr = NULL;
return ret;
}
inline void acquire(T* ptr_)
{
destroy_();
ptr = ptr_;
}
inline void reset() { acquire(NULL); }
private:
inline void destroy_()
{
if (ptr != NULL) {
delete ptr;
}
}
inline T* make_obj_() const { return (ptr == NULL) ? NULL : new T(*ptr); }
T* ptr;
};
template <class T>
copy_ptr<T> make_copy_ptr(const T& t)
{
return copy_ptr<T>(new T(t));
}
/*********************
ext group
*********************/
class ext_groups_header
{
public:
ext_groups_header(uint32_t max_nof_groups, uint32_t nof_nogroups_ = 0);
bool& operator[](uint32_t idx);
SRSASN_CODE pack_nof_groups(bit_ref& bref) const;
SRSASN_CODE pack_group_flags(bit_ref& bref) const;
SRSASN_CODE pack(bit_ref& bref) const;
SRSASN_CODE unpack_nof_groups(bit_ref& bref);
SRSASN_CODE unpack_group_flags(bit_ref& bref);
SRSASN_CODE unpack(bit_ref& bref);
private:
mutable uint32_t nof_groups;
const uint32_t nof_nogroups;
bounded_array<bool, 20> groups;
};
/*********************
Var Length Field
*********************/
class varlength_field_pack_guard
{
public:
varlength_field_pack_guard(bit_ref& bref);
~varlength_field_pack_guard();
private:
bit_ref brefstart;
// bit_ref bref0;
bit_ref* bref_tracker;
uint8_t buffer[1024];
};
class varlength_field_unpack_guard
{
public:
varlength_field_unpack_guard(bit_ref& bref);
~varlength_field_unpack_guard();
private:
bit_ref bref0;
bit_ref* bref_tracker;
uint32_t len;
};
/*******************
JsonWriter
*******************/
class json_writer
{
public:
json_writer();
void write_fieldname(const std::string& fieldname);
void write_str(const std::string& fieldname, const std::string& value);
void write_str(const std::string& value);
void write_int(const std::string& fieldname, int64_t value);
void write_int(int64_t value);
void write_bool(const std::string& fieldname, bool value);
void write_bool(bool value);
void write_null(const std::string& fieldname);
void write_null();
void start_obj(const std::string& fieldname = "");
void end_obj();
void start_array(const std::string& fieldname = "");
void end_array();
std::string to_string() const;
private:
std::stringstream ss;
std::string ident;
enum separator_t { COMMA, NEWLINE, NONE };
separator_t sep;
};
} // namespace asn1
#endif // SRSASN_COMMON_UTILS_H