You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

345 lines
9.1 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsue/hdr/ue.h"
#include "srslte/srslte.h"
#include <pthread.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iterator>
using namespace srslte;
namespace srsue{
ue::ue()
:started(false)
{
}
ue::~ue()
{
for (uint32_t i = 0; i < phy_log.size(); i++) {
delete(phy_log[i]);
}
if (usim) {
delete usim;
}
}
bool ue::init(all_args_t *args_) {
args = args_;
if (!args->log.filename.compare("stdout")) {
logger = &logger_stdout;
} else {
logger_file.init(args->log.filename, args->log.file_max_size);
logger_file.log("\n\n");
logger_file.log(get_build_string().c_str());
logger = &logger_file;
}
rf_log.init("RF ", logger);
// Create array of pointers to phy_logs
for (int i=0;i<args->expert.phy.nof_phy_threads;i++) {
srslte::log_filter *mylog = new srslte::log_filter;
char tmp[16];
sprintf(tmp, "PHY%d",i);
mylog->init(tmp, logger, true);
phy_log.push_back(mylog);
}
mac_log.init("MAC ", logger, true);
rlc_log.init("RLC ", logger);
pdcp_log.init("PDCP", logger);
rrc_log.init("RRC ", logger);
nas_log.init("NAS ", logger);
gw_log.init("GW ", logger);
usim_log.init("USIM", logger);
// Init logs
rf_log.set_level(srslte::LOG_LEVEL_INFO);
rf_log.info("Starting UE\n");
for (int i=0;i<args->expert.phy.nof_phy_threads;i++) {
((srslte::log_filter*) phy_log[i])->set_level(level(args->log.phy_level));
}
/* here we add a log layer to handle logging from the phy library*/
srslte::log_filter *lib_log = new srslte::log_filter;
char tmp[16];
sprintf(tmp, "PHY_LIB");
lib_log->init(tmp, logger, true);
phy_log.push_back(lib_log);
((srslte::log_filter*) phy_log[args->expert.phy.nof_phy_threads])->set_level(level(args->log.phy_lib_level));
mac_log.set_level(level(args->log.mac_level));
rlc_log.set_level(level(args->log.rlc_level));
pdcp_log.set_level(level(args->log.pdcp_level));
rrc_log.set_level(level(args->log.rrc_level));
nas_log.set_level(level(args->log.nas_level));
gw_log.set_level(level(args->log.gw_level));
usim_log.set_level(level(args->log.usim_level));
for (int i=0;i<args->expert.phy.nof_phy_threads + 1;i++) {
((srslte::log_filter*) phy_log[i])->set_hex_limit(args->log.phy_hex_limit);
}
mac_log.set_hex_limit(args->log.mac_hex_limit);
rlc_log.set_hex_limit(args->log.rlc_hex_limit);
pdcp_log.set_hex_limit(args->log.pdcp_hex_limit);
rrc_log.set_hex_limit(args->log.rrc_hex_limit);
nas_log.set_hex_limit(args->log.nas_hex_limit);
gw_log.set_hex_limit(args->log.gw_hex_limit);
usim_log.set_hex_limit(args->log.usim_hex_limit);
// Set up pcap and trace
if(args->pcap.enable) {
mac_pcap.open(args->pcap.filename.c_str());
mac.start_pcap(&mac_pcap);
}
if(args->pcap.nas_enable) {
nas_pcap.open(args->pcap.nas_filename.c_str());
nas.start_pcap(&nas_pcap);
}
if(args->trace.enable) {
phy.start_trace();
radio.start_trace();
}
// Init layers
// Init USIM first to allow early exit in case reader couldn't be found
usim = usim_base::get_instance(&args->usim, &usim_log);
if (usim->init(&args->usim, &usim_log)) {
usim_log.console("Failed to initialize USIM.\n");
return false;
}
// PHY inits in background, start before radio
args->expert.phy.nof_rx_ant = args->rf.nof_rx_ant;
phy.init(&radio, &mac, &rrc, phy_log, &args->expert.phy);
/* Start Radio */
char *dev_name = NULL;
if (args->rf.device_name.compare("auto")) {
dev_name = (char*) args->rf.device_name.c_str();
}
char *dev_args = NULL;
if (args->rf.device_args.compare("auto")) {
dev_args = (char*) args->rf.device_args.c_str();
}
printf("Opening RF device with %d RX antennas...\n", args->rf.nof_rx_ant);
if(!radio.init_multi(args->rf.nof_rx_ant, dev_args, dev_name)) {
printf("Failed to find device %s with args %s\n",
args->rf.device_name.c_str(), args->rf.device_args.c_str());
return false;
}
// Set RF options
if (args->rf.time_adv_nsamples.compare("auto")) {
radio.set_tx_adv(atoi(args->rf.time_adv_nsamples.c_str()));
}
if (args->rf.burst_preamble.compare("auto")) {
radio.set_burst_preamble(atof(args->rf.burst_preamble.c_str()));
}
if (args->rf.continuous_tx.compare("auto")) {
printf("set continuous %s\n", args->rf.continuous_tx.c_str());
radio.set_continuous_tx(args->rf.continuous_tx.compare("yes")?false:true);
}
radio.set_manual_calibration(&args->rf_cal);
// Set PHY options
if (args->rf.tx_gain > 0) {
args->expert.phy.ul_pwr_ctrl_en = false;
} else {
args->expert.phy.ul_pwr_ctrl_en = true;
}
if (args->rf.rx_gain < 0) {
radio.start_agc(false);
} else {
radio.set_rx_gain(args->rf.rx_gain);
}
if (args->rf.tx_gain > 0) {
radio.set_tx_gain(args->rf.tx_gain);
} else {
radio.set_tx_gain(args->rf.rx_gain);
std::cout << std::endl <<
"Warning: TX gain was not set. " <<
"Using open-loop power control (not working properly)" << std::endl << std::endl;
}
radio.register_error_handler(rf_msg);
radio.set_freq_offset(args->rf.freq_offset);
mac.init(&phy, &rlc, &rrc, &mac_log);
rlc.init(&pdcp, &rrc, this, &rlc_log, &mac, 0 /* RB_ID_SRB0 */);
pdcp.init(&rlc, &rrc, &gw, &pdcp_log, 0 /* RB_ID_SRB0 */, SECURITY_DIRECTION_UPLINK);
srslte_nas_config_t nas_cfg(1, args->apn_name, args->apn_user, args->apn_pass); /* RB_ID_SRB1 */
nas.init(usim, &rrc, &gw, &nas_log, nas_cfg);
gw.init(&pdcp, &nas, &gw_log, 3 /* RB_ID_DRB1 */);
gw.set_netmask(args->expert.ip_netmask);
rrc.init(&phy, &mac, &rlc, &pdcp, &nas, usim, &mac, &rrc_log);
// Get current band from provided EARFCN
args->rrc.supported_bands[0] = srslte_band_get_band(args->rf.dl_earfcn);
args->rrc.nof_supported_bands = 1;
args->rrc.ue_category = atoi(args->ue_category_str.c_str());
rrc.set_args(&args->rrc);
// Currently EARFCN list is set to only one frequency as indicated in ue.conf
std::vector<uint32_t> earfcn_list;
earfcn_list.push_back(args->rf.dl_earfcn);
phy.set_earfcn(earfcn_list);
if (args->rf.dl_freq > 0 && args->rf.ul_freq > 0) {
phy.force_freq(args->rf.dl_freq, args->rf.ul_freq);
}
printf("Waiting PHY to initialize...\n");
phy.wait_initialize();
phy.configure_ul_params();
// Enable AGC once PHY is initialized
if (args->rf.rx_gain < 0) {
phy.set_agc_enable(true);
}
printf("...\n");
started = true;
return true;
}
void ue::pregenerate_signals(bool enable)
{
phy.enable_pregen_signals(enable);
}
void ue::stop()
{
if(started)
{
usim->stop();
nas.stop();
rrc.stop();
// Caution here order of stop is very important to avoid locks
// Stop RLC and PDCP before GW to avoid locking on queue
rlc.stop();
pdcp.stop();
gw.stop();
// PHY must be stopped before radio otherwise it will lock on rf_recv()
mac.stop();
phy.stop();
radio.stop();
usleep(1e5);
if(args->pcap.enable) {
mac_pcap.close();
}
if(args->pcap.nas_enable) {
nas_pcap.close();
}
if(args->trace.enable) {
phy.write_trace(args->trace.phy_filename);
radio.write_trace(args->trace.radio_filename);
}
started = false;
}
}
bool ue::attach() {
return nas.attach_request();
}
bool ue::deattach() {
return nas.deattach_request();
}
bool ue::is_attached()
{
return rrc.is_connected();
}
void ue::start_plot() {
phy.start_plot();
}
void ue::print_pool() {
byte_buffer_pool::get_instance()->print_all_buffers();
}
bool ue::get_metrics(ue_metrics_t &m)
{
m.rf = rf_metrics;
bzero(&rf_metrics, sizeof(rf_metrics_t));
rf_metrics.rf_error = false; // Reset error flag
if(EMM_STATE_REGISTERED == nas.get_state()) {
if(RRC_STATE_CONNECTED == rrc.get_state()) {
phy.get_metrics(m.phy);
mac.get_metrics(m.mac);
rlc.get_metrics(m.rlc);
gw.get_metrics(m.gw);
return true;
}
}
return false;
}
void ue::radio_overflow() {
phy.radio_overflow();
}
void ue::rf_msg(srslte_rf_error_t error)
{
ue_base *ue = ue_base::get_instance(LTE);
ue->handle_rf_msg(error);
if (error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_OVERFLOW) {
ue->radio_overflow();
} else
if (error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_RX) {
ue->stop();
ue->cleanup();
exit(-1);
}
}
} // namespace srsue