You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

648 lines
20 KiB
C

/**
* Copyright 2013-2023 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <semaphore.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include "srsran/common/pcap.h"
#include "srsran/phy/ch_estimation/chest_sl.h"
#include "srsran/phy/common/phy_common_sl.h"
#include "srsran/phy/dft/ofdm.h"
#include "srsran/phy/phch/pscch.h"
#include "srsran/phy/phch/pssch.h"
#include "srsran/phy/phch/ra_sl.h"
#include "srsran/phy/phch/sci.h"
#include "srsran/phy/rf/rf.h"
#include "srsran/phy/ue/ue_sync.h"
#include "srsran/phy/utils/bit.h"
#include "srsran/phy/utils/debug.h"
#include "srsran/phy/utils/vector.h"
#define PCAP_FILENAME "/tmp/pssch.pcap"
#define MAX_SRATE_DELTA 2 // allowable delta (in Hz) between requested and actual sample rate
static bool keep_running = true;
static srsran_cell_sl_t cell_sl = {.nof_prb = 50, .tm = SRSRAN_SIDELINK_TM4, .cp = SRSRAN_CP_NORM, .N_sl_id = 0};
typedef struct {
bool use_standard_lte_rates;
bool disable_plots;
char* input_file_name;
uint32_t file_start_sf_idx;
uint32_t nof_rx_antennas;
char* rf_dev;
char* rf_args;
double rf_freq;
float rf_gain;
// Sidelink specific args
uint32_t size_sub_channel;
uint32_t num_sub_channel;
} prog_args_t;
void args_default(prog_args_t* args)
{
args->use_standard_lte_rates = false;
args->disable_plots = false;
args->input_file_name = NULL;
args->file_start_sf_idx = 0;
args->nof_rx_antennas = 1;
args->rf_dev = "";
args->rf_args = "";
args->rf_freq = 5.92e9;
args->rf_gain = 50;
args->size_sub_channel = 10;
args->num_sub_channel = 5;
}
static srsran_pscch_t pscch = {}; // Defined global for plotting thread
static srsran_pssch_t pssch = {};
#ifndef DISABLE_RF
static srsran_rf_t radio;
#endif // DISABLE_RF
static prog_args_t prog_args;
static srsran_filesource_t fsrc = {};
#ifdef ENABLE_GUI
#include "srsgui/srsgui.h"
void init_plots();
static pthread_t plot_thread;
static sem_t plot_sem;
#endif // ENABLE_GUI
void sig_int_handler(int signo)
{
printf("SIGINT received. Exiting...\n");
if (signo == SIGINT) {
keep_running = false;
} else if (signo == SIGSEGV) {
exit(1);
}
}
void pcap_pack_and_write(FILE* pcap_file,
uint8_t* pdu,
uint32_t pdu_len_bytes,
uint8_t reTX,
bool crc_ok,
uint32_t tti,
uint16_t crnti,
uint8_t direction,
uint8_t rnti_type)
{
MAC_Context_Info_t context = {.radioType = FDD_RADIO,
.direction = direction,
.rntiType = rnti_type,
.rnti = crnti,
.ueid = 1,
.isRetx = reTX,
.crcStatusOK = crc_ok,
.sysFrameNumber = (uint16_t)(tti / SRSRAN_NOF_SF_X_FRAME),
.subFrameNumber = (uint16_t)(tti % SRSRAN_NOF_SF_X_FRAME),
.nbiotMode = 0};
if (pdu) {
LTE_PCAP_MAC_WritePDU(pcap_file, &context, pdu, pdu_len_bytes);
}
}
void usage(prog_args_t* args, char* prog)
{
printf("Usage: %s [agrnmv] -f rx_frequency_hz\n", prog);
printf("\t-a RF args [Default %s]\n", args->rf_args);
printf("\t-d RF devicename [Default %s]\n", args->rf_dev);
printf("\t-i input_file_name\n");
printf("\t-m Start subframe_idx [Default %d]\n", args->file_start_sf_idx);
printf("\t-g RF Gain [Default %.2f dB]\n", args->rf_gain);
printf("\t-A nof_rx_antennas [Default %d]\n", args->nof_rx_antennas);
printf("\t-c N_sl_id [Default %d]\n", cell_sl.N_sl_id);
printf("\t-p nof_prb [Default %d]\n", cell_sl.nof_prb);
printf("\t-s size_sub_channel [Default for 50 prbs %d]\n", args->size_sub_channel);
printf("\t-n num_sub_channel [Default for 50 prbs %d]\n", args->num_sub_channel);
printf("\t-t Sidelink transmission mode {1,2,3,4} [Default %d]\n", (cell_sl.tm + 1));
printf("\t-r use_standard_lte_rates [Default %i]\n", args->use_standard_lte_rates);
#ifdef ENABLE_GUI
printf("\t-w disable plots [Default enabled]\n");
#endif
printf("\t-v srsran_verbose\n");
}
void parse_args(prog_args_t* args, int argc, char** argv)
{
int opt;
args_default(args);
while ((opt = getopt(argc, argv, "acdimgpvwrxfA")) != -1) {
switch (opt) {
case 'a':
args->rf_args = argv[optind];
break;
case 'c':
cell_sl.N_sl_id = (int32_t)strtol(argv[optind], NULL, 10);
break;
case 'd':
args->rf_dev = argv[optind];
break;
case 'i':
args->input_file_name = argv[optind];
break;
case 'm':
args->file_start_sf_idx = (uint32_t)strtol(argv[optind], NULL, 10);
break;
case 'g':
args->rf_gain = strtof(argv[optind], NULL);
break;
case 'p':
cell_sl.nof_prb = (int32_t)strtol(argv[optind], NULL, 10);
break;
case 'f':
args->rf_freq = strtof(argv[optind], NULL);
break;
case 'A':
args->nof_rx_antennas = (int32_t)strtol(argv[optind], NULL, 10);
break;
case 'v':
increase_srsran_verbose_level();
break;
case 'w':
args->disable_plots = true;
break;
case 'r':
args->use_standard_lte_rates = true;
break;
default:
usage(args, argv[0]);
exit(-1);
}
}
if (args->rf_freq < 0 && args->input_file_name == NULL) {
usage(args, argv[0]);
exit(-1);
}
}
#ifndef DISABLE_RF
int srsran_rf_recv_wrapper(void* h, cf_t* data[SRSRAN_MAX_PORTS], uint32_t nsamples, srsran_timestamp_t* t)
{
DEBUG(" ---- Receive %d samples ----", nsamples);
void* ptr[SRSRAN_MAX_PORTS];
for (int i = 0; i < SRSRAN_MAX_PORTS; i++) {
ptr[i] = data[i];
}
return srsran_rf_recv_with_time_multi(h, ptr, nsamples, true, &t->full_secs, &t->frac_secs);
}
#endif // DISABLE_RF
int main(int argc, char** argv)
{
signal(SIGINT, sig_int_handler);
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigprocmask(SIG_UNBLOCK, &sigset, NULL);
uint32_t num_decoded_sci = 0;
uint32_t num_decoded_tb = 0;
parse_args(&prog_args, argc, argv);
FILE* pcap_file = DLT_PCAP_Open(MAC_LTE_DLT, PCAP_FILENAME);
srsran_use_standard_symbol_size(prog_args.use_standard_lte_rates);
srsran_sl_comm_resource_pool_t sl_comm_resource_pool;
if (srsran_sl_comm_resource_pool_get_default_config(&sl_comm_resource_pool, cell_sl) != SRSRAN_SUCCESS) {
ERROR("Error initializing sl_comm_resource_pool");
return SRSRAN_ERROR;
}
if (prog_args.input_file_name) {
if (srsran_filesource_init(&fsrc, prog_args.input_file_name, SRSRAN_COMPLEX_FLOAT_BIN)) {
printf("Error opening file %s\n", prog_args.input_file_name);
return SRSRAN_ERROR;
}
}
#ifndef DISABLE_RF
if (!prog_args.input_file_name) {
printf("Opening RF device...\n");
if (srsran_rf_open_devname(&radio, prog_args.rf_dev, prog_args.rf_args, prog_args.nof_rx_antennas)) {
ERROR("Error opening rf");
exit(-1);
}
srsran_rf_set_rx_gain(&radio, prog_args.rf_gain);
printf("Set RX freq: %.6f MHz\n",
srsran_rf_set_rx_freq(&radio, prog_args.nof_rx_antennas, prog_args.rf_freq) / 1e6);
printf("Set RX gain: %.1f dB\n", prog_args.rf_gain);
/* set sampling frequency */
int srate = srsran_sampling_freq_hz(cell_sl.nof_prb);
if (srate != -1) {
printf("Setting sampling rate %.2f MHz\n", (float)srate / 1000000);
float srate_rf = srsran_rf_set_rx_srate(&radio, (double)srate);
if (abs(srate - (int)srate_rf) > MAX_SRATE_DELTA) {
ERROR("Could not set sampling rate : wanted %d got %f", srate, srate_rf);
exit(-1);
}
} else {
ERROR("Invalid number of PRB %d", cell_sl.nof_prb);
exit(-1);
}
}
#endif // DISABLE_RF
// allocate Rx buffers for 1ms worth of samples
uint32_t sf_len = SRSRAN_SF_LEN_PRB(cell_sl.nof_prb);
printf("Using a SF len of %d samples\n", sf_len);
cf_t* rx_buffer[SRSRAN_MAX_CHANNELS] = {}; //< For radio to receive samples
cf_t* sf_buffer[SRSRAN_MAX_PORTS] = {NULL}; ///< For OFDM object to store subframe after FFT
for (int i = 0; i < prog_args.nof_rx_antennas; i++) {
rx_buffer[i] = srsran_vec_cf_malloc(sf_len);
if (!rx_buffer[i]) {
perror("malloc");
exit(-1);
}
sf_buffer[i] = srsran_vec_cf_malloc(sf_len);
if (!sf_buffer[i]) {
perror("malloc");
exit(-1);
}
}
uint32_t sf_n_re = SRSRAN_CP_NSYMB(SRSRAN_CP_NORM) * SRSRAN_NRE * 2 * cell_sl.nof_prb;
cf_t* equalized_sf_buffer = srsran_vec_malloc(sizeof(cf_t) * sf_n_re);
// RX
srsran_ofdm_t fft[SRSRAN_MAX_PORTS] = {};
srsran_ofdm_cfg_t ofdm_cfg = {};
ofdm_cfg.nof_prb = cell_sl.nof_prb;
ofdm_cfg.cp = SRSRAN_CP_NORM;
ofdm_cfg.rx_window_offset = 0.0f;
ofdm_cfg.normalize = true;
ofdm_cfg.sf_type = SRSRAN_SF_NORM;
ofdm_cfg.freq_shift_f = -0.5;
for (int i = 0; i < prog_args.nof_rx_antennas; i++) {
ofdm_cfg.in_buffer = rx_buffer[0];
ofdm_cfg.out_buffer = sf_buffer[0];
if (srsran_ofdm_rx_init_cfg(&fft[i], &ofdm_cfg)) {
ERROR("Error initiating FFT");
goto clean_exit;
}
}
// SCI
srsran_sci_t sci;
srsran_sci_init(&sci, &cell_sl, &sl_comm_resource_pool);
uint8_t sci_rx[SRSRAN_SCI_MAX_LEN] = {};
char sci_msg[SRSRAN_SCI_MSG_MAX_LEN] = {};
// init PSCCH object
if (srsran_pscch_init(&pscch, SRSRAN_MAX_PRB) != SRSRAN_SUCCESS) {
ERROR("Error in PSCCH init");
return SRSRAN_ERROR;
}
if (srsran_pscch_set_cell(&pscch, cell_sl) != SRSRAN_SUCCESS) {
ERROR("Error in PSCCH set cell");
return SRSRAN_ERROR;
}
// PSCCH Channel estimation
srsran_chest_sl_cfg_t pscch_chest_sl_cfg = {};
srsran_chest_sl_t pscch_chest = {};
if (srsran_chest_sl_init(&pscch_chest, SRSRAN_SIDELINK_PSCCH, cell_sl, &sl_comm_resource_pool) != SRSRAN_SUCCESS) {
ERROR("Error in chest PSCCH init");
return SRSRAN_ERROR;
}
if (srsran_pssch_init(&pssch, &cell_sl, &sl_comm_resource_pool) != SRSRAN_SUCCESS) {
ERROR("Error initializing PSSCH");
return SRSRAN_ERROR;
}
srsran_chest_sl_cfg_t pssch_chest_sl_cfg = {};
srsran_chest_sl_t pssch_chest = {};
if (srsran_chest_sl_init(&pssch_chest, SRSRAN_SIDELINK_PSSCH, cell_sl, &sl_comm_resource_pool) != SRSRAN_SUCCESS) {
ERROR("Error in chest PSSCH init");
return SRSRAN_ERROR;
}
uint8_t tb[SRSRAN_SL_SCH_MAX_TB_LEN] = {};
uint8_t packed_tb[SRSRAN_SL_SCH_MAX_TB_LEN / 8] = {};
#ifndef DISABLE_RF
srsran_ue_sync_t ue_sync = {};
if (!prog_args.input_file_name) {
srsran_cell_t cell = {};
cell.nof_prb = cell_sl.nof_prb;
cell.cp = SRSRAN_CP_NORM;
cell.nof_ports = 1;
if (srsran_ue_sync_init_multi_decim_mode(&ue_sync,
cell.nof_prb,
false,
srsran_rf_recv_wrapper,
prog_args.nof_rx_antennas,
(void*)&radio,
1,
SYNC_MODE_GNSS)) {
fprintf(stderr, "Error initiating sync_gnss\n");
exit(-1);
}
if (srsran_ue_sync_set_cell(&ue_sync, cell)) {
ERROR("Error initiating ue_sync");
exit(-1);
}
srsran_rf_start_rx_stream(&radio, false);
}
#endif
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
init_plots();
sleep(1);
}
#endif
uint32_t subframe_count = 0;
uint32_t pscch_prb_start_idx = 0;
uint32_t current_sf_idx = 0;
if (prog_args.input_file_name) {
current_sf_idx = prog_args.file_start_sf_idx;
}
while (keep_running) {
if (prog_args.input_file_name) {
// read subframe from file
int nread = srsran_filesource_read(&fsrc, rx_buffer[0], sf_len);
if (nread < 0) {
fprintf(stderr, "Error reading from file\n");
goto clean_exit;
} else if (nread == 0) {
goto clean_exit;
} else if (nread < sf_len) {
fprintf(stderr, "Couldn't read entire subframe. Still processing ..\n");
nread = -1;
}
} else {
#ifndef DISABLE_RF
// receive subframe from radio
int ret = srsran_ue_sync_zerocopy(&ue_sync, rx_buffer, sf_len);
if (ret < 0) {
ERROR("Error calling srsran_ue_sync_work()");
}
// update SF index
current_sf_idx = srsran_ue_sync_get_sfidx(&ue_sync);
#endif // DISABLE_RF
}
// do FFT (on first port)
srsran_ofdm_rx_sf(&fft[0]);
for (int sub_channel_idx = 0; sub_channel_idx < sl_comm_resource_pool.num_sub_channel; sub_channel_idx++) {
pscch_prb_start_idx = sub_channel_idx * sl_comm_resource_pool.size_sub_channel;
for (uint32_t cyclic_shift = 0; cyclic_shift <= 9; cyclic_shift += 3) {
// PSCCH Channel estimation
pscch_chest_sl_cfg.cyclic_shift = cyclic_shift;
pscch_chest_sl_cfg.prb_start_idx = pscch_prb_start_idx;
srsran_chest_sl_set_cfg(&pscch_chest, pscch_chest_sl_cfg);
srsran_chest_sl_ls_estimate_equalize(&pscch_chest, sf_buffer[0], equalized_sf_buffer);
if (srsran_pscch_decode(&pscch, equalized_sf_buffer, sci_rx, pscch_prb_start_idx) == SRSRAN_SUCCESS) {
if (srsran_sci_format1_unpack(&sci, sci_rx) == SRSRAN_SUCCESS) {
srsran_sci_info(&sci, sci_msg, sizeof(sci_msg));
fprintf(stdout, "%s", sci_msg);
num_decoded_sci++;
// plot PSCCH
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
sem_post(&plot_sem);
}
#endif
// Decode PSSCH
uint32_t sub_channel_start_idx = 0;
uint32_t L_subCH = 0;
srsran_ra_sl_type0_from_riv(
sci.riv, sl_comm_resource_pool.num_sub_channel, &L_subCH, &sub_channel_start_idx);
// 3GPP TS 36.213 Section 14.1.1.4C
uint32_t pssch_prb_start_idx = (sub_channel_idx * sl_comm_resource_pool.size_sub_channel) +
pscch.pscch_nof_prb + sl_comm_resource_pool.start_prb_sub_channel;
uint32_t nof_prb_pssch = ((L_subCH + sub_channel_idx) * sl_comm_resource_pool.size_sub_channel) -
pssch_prb_start_idx + sl_comm_resource_pool.start_prb_sub_channel;
// make sure PRBs are valid for DFT precoding
nof_prb_pssch = srsran_dft_precoding_get_valid_prb(nof_prb_pssch);
uint32_t N_x_id = 0;
for (int j = 0; j < SRSRAN_SCI_CRC_LEN; j++) {
N_x_id += pscch.sci_crc[j] * exp2(SRSRAN_SCI_CRC_LEN - 1 - j);
}
uint32_t rv_idx = 0;
if (sci.retransmission == true) {
rv_idx = 1;
}
// PSSCH Channel estimation
pssch_chest_sl_cfg.N_x_id = N_x_id;
pssch_chest_sl_cfg.sf_idx = current_sf_idx;
pssch_chest_sl_cfg.prb_start_idx = pssch_prb_start_idx;
pssch_chest_sl_cfg.nof_prb = nof_prb_pssch;
srsran_chest_sl_set_cfg(&pssch_chest, pssch_chest_sl_cfg);
srsran_chest_sl_ls_estimate_equalize(&pssch_chest, sf_buffer[0], equalized_sf_buffer);
srsran_pssch_cfg_t pssch_cfg = {
pssch_prb_start_idx, nof_prb_pssch, N_x_id, sci.mcs_idx, rv_idx, current_sf_idx};
if (srsran_pssch_set_cfg(&pssch, pssch_cfg) == SRSRAN_SUCCESS) {
if (srsran_pssch_decode(&pssch, equalized_sf_buffer, tb, SRSRAN_SL_SCH_MAX_TB_LEN) == SRSRAN_SUCCESS) {
num_decoded_tb++;
// pack bit sand write to PCAP
srsran_bit_pack_vector(tb, packed_tb, pssch.sl_sch_tb_len);
pcap_pack_and_write(pcap_file,
packed_tb,
pssch.sl_sch_tb_len / 8,
0,
true,
current_sf_idx,
0x1001,
DIRECTION_UPLINK,
SL_RNTI);
#ifdef ENABLE_GUI
// plot PSSCH
if (!prog_args.disable_plots) {
sem_post(&plot_sem);
}
if (prog_args.input_file_name) {
printf("Press Enter to continue ...\n");
getchar();
}
#endif
}
}
}
}
if (SRSRAN_VERBOSE_ISDEBUG()) {
char filename[64];
snprintf(filename,
64,
"pscch_rx_syms_sf%d_shift%d_prbidx%d.bin",
subframe_count,
cyclic_shift,
pscch_prb_start_idx);
printf("Saving PSCCH symbols (%d) to %s\n", pscch.E / SRSRAN_PSCCH_QM, filename);
srsran_vec_save_file(filename, pscch.mod_symbols, pscch.E / SRSRAN_PSCCH_QM * sizeof(cf_t));
}
}
}
current_sf_idx = (current_sf_idx + 1) % 10;
subframe_count++;
}
clean_exit:
printf("num_decoded_sci=%d num_decoded_tb=%d\n", num_decoded_sci, num_decoded_tb);
if (pcap_file != NULL) {
printf("Saving PCAP file to %s\n", PCAP_FILENAME);
DLT_PCAP_Close(pcap_file);
}
#ifdef ENABLE_GUI
if (!prog_args.disable_plots) {
sem_post(&plot_sem);
usleep(1000);
if (!pthread_kill(plot_thread, 0)) {
pthread_kill(plot_thread, SIGHUP);
pthread_join(plot_thread, NULL);
}
}
sdrgui_exit();
#endif
#ifndef DISABLE_RF
srsran_rf_stop_rx_stream(&radio);
srsran_rf_close(&radio);
srsran_ue_sync_free(&ue_sync);
#endif // DISABLE_RF
srsran_sci_free(&sci);
srsran_pscch_free(&pscch);
srsran_chest_sl_free(&pscch_chest);
srsran_chest_sl_free(&pssch_chest);
for (int i = 0; i < prog_args.nof_rx_antennas; i++) {
if (rx_buffer[i]) {
free(rx_buffer[i]);
}
if (sf_buffer[i]) {
free(sf_buffer[i]);
}
srsran_ofdm_rx_free(&fft[i]);
}
if (equalized_sf_buffer) {
free(equalized_sf_buffer);
}
return SRSRAN_SUCCESS;
}
///< Plotting Functions
#ifdef ENABLE_GUI
plot_scatter_t pscatequal_pscch;
plot_scatter_t pscatequal_pssch;
void* plot_thread_run(void* arg)
{
sdrgui_init();
plot_scatter_init(&pscatequal_pscch);
plot_scatter_setTitle(&pscatequal_pscch, "PSCCH - Equalized Symbols");
plot_scatter_setXAxisScale(&pscatequal_pscch, -4, 4);
plot_scatter_setYAxisScale(&pscatequal_pscch, -4, 4);
plot_scatter_init(&pscatequal_pssch);
plot_scatter_setTitle(&pscatequal_pssch, "PSSCH - Equalized Symbols");
plot_scatter_setXAxisScale(&pscatequal_pssch, -4, 4);
plot_scatter_setYAxisScale(&pscatequal_pssch, -4, 4);
plot_scatter_addToWindowGrid(&pscatequal_pscch, (char*)"pssch_ue", 0, 0);
plot_scatter_addToWindowGrid(&pscatequal_pssch, (char*)"pssch_ue", 0, 1);
while (keep_running) {
sem_wait(&plot_sem);
plot_scatter_setNewData(&pscatequal_pscch, pscch.mod_symbols, pscch.E / SRSRAN_PSCCH_QM);
if (pssch.G > 0 && pssch.Qm > 0) {
plot_scatter_setNewData(&pscatequal_pssch, pssch.symbols, pssch.G / pssch.Qm);
}
}
return NULL;
}
void init_plots()
{
if (sem_init(&plot_sem, 0, 0)) {
perror("sem_init");
exit(-1);
}
pthread_attr_t attr;
struct sched_param param;
param.sched_priority = 0;
pthread_attr_init(&attr);
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
pthread_attr_setschedparam(&attr, &param);
if (pthread_create(&plot_thread, NULL, plot_thread_run, NULL)) {
perror("pthread_create");
exit(-1);
}
}
#endif // ENABLE_GUI