You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

265 lines
7.8 KiB
C++

/**
* Copyright 2013-2023 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_TA_CONTROL_H
#define SRSUE_TA_CONTROL_H
#include <inttypes.h>
#include <mutex>
#include <srsran/phy/common/phy_common.h>
namespace srsue {
class ta_control
{
private:
static const size_t MAX_NOF_SPEED_VALUES = 50; ///< Maximum number of data to store for speed calculation
static const size_t MIN_NOF_SPEED_VALUES = 1; ///< Minimum number of data for calculating the speed
static const size_t MAX_AGE_SPEED_VALUES = 10000; ///< Maximum age of speed data in milliseconds. Discards older data.
srslog::basic_logger& logger;
mutable std::mutex mutex;
uint32_t next_base_nta = 0;
float next_base_sec = 0.0f;
// Vector containing data for calculating speed. The first value is the time increment from TTI and the second value
// is the distance increment from the TA command
struct speed_data_t {
uint32_t tti;
float delta_t;
float delta_d;
};
std::array<speed_data_t, MAX_NOF_SPEED_VALUES> speed_data = {};
int32_t last_tti = -1; // Last TTI writen, -1 if none
uint32_t write_idx = 0;
uint32_t read_idx = 0;
void reset_speed_data()
{
write_idx = 0;
read_idx = 0;
last_tti = -1;
}
public:
ta_control(srslog::basic_logger& logger) : logger(logger) {}
/**
* Sets the next base time in seconds, discarding previous changes.
*
* @param ta_base_sec Time Alignment value in seconds
*/
void set_base_sec(float ta_base_sec)
{
std::lock_guard<std::mutex> lock(mutex);
// Forces next base
next_base_sec = ta_base_sec;
// Update base in nta
next_base_nta = static_cast<uint32_t>(roundf(next_base_sec / SRSRAN_LTE_TS));
// Reset speed data
reset_speed_data();
logger.info("PHY: Set TA base: n_ta: %d, ta_usec: %.1f", next_base_nta, next_base_sec * 1e6f);
}
/**
* Increments (delta) the next base time. The value in seconds will be added to the next base.
*
* @param ta_delta_sec Time Alignment increment value in seconds
*/
void add_delta_sec(float ta_delta_sec)
{
std::lock_guard<std::mutex> lock(mutex);
// Increments the next base
next_base_sec += ta_delta_sec;
// Update base in nta
next_base_nta = static_cast<uint32_t>(roundf(next_base_sec / SRSRAN_LTE_TS));
logger.info("PHY: Set TA: ta_delta_usec: %.1f, n_ta: %d, ta_usec: %.1f",
ta_delta_sec * 1e6f,
next_base_nta,
next_base_sec * 1e6f);
}
void add_ta_offset(uint32_t ta_offset)
{
std::lock_guard<std::mutex> lock(mutex);
// Assuming numerology 0
next_base_nta = ta_offset / 64;
// Update base in seconds
next_base_sec = static_cast<float>(next_base_nta) * SRSRAN_LTE_TS;
logger.info("PHY: Set TA offset: n_ta_offset: %d, ta_usec: %.1f", next_base_nta, next_base_sec * 1e6f);
}
/**
* Increments (delta) the next base time according to time alignment command from a Random Access Response (RAR).
*
* @param ta_cmd Time Alignment command
*/
void add_ta_cmd_rar(uint32_t tti, uint32_t ta_cmd)
{
std::lock_guard<std::mutex> lock(mutex);
// Update base nta
next_base_nta += srsran_N_ta_new_rar(ta_cmd);
// Update base in seconds
next_base_sec = static_cast<float>(next_base_nta) * SRSRAN_LTE_TS;
// Reset speed data
reset_speed_data();
last_tti = tti;
logger.info("PHY: Set TA RAR: ta_cmd: %d, n_ta: %d, ta_usec: %.1f", ta_cmd, next_base_nta, next_base_sec * 1e6f);
}
/**
* Increments (delta) the next base time according to time alignment command from a MAC Control Element.
*
* @param ta_cmd Time Alignment command
*/
void add_ta_cmd_new(uint32_t tti, uint32_t ta_cmd)
{
std::lock_guard<std::mutex> lock(mutex);
float prev_base_sec = next_base_sec;
// Update base nta
next_base_nta = srsran_N_ta_new(next_base_nta, ta_cmd);
// Update base in seconds
next_base_sec = static_cast<float>(next_base_nta) * SRSRAN_LTE_TS;
logger.info("PHY: Set TA: ta_cmd: %d, n_ta: %d, ta_usec: %.1f", ta_cmd, next_base_nta, next_base_sec * 1e6f);
// Calculate speed data
if (last_tti > 0) {
float delta_t = TTI_SUB(tti, last_tti) * 1e-3f; // Calculate the elapsed time since last time command
float delta_d = (next_base_sec - prev_base_sec) * 3e8f / 2.0f; // Calculate distance difference in metres
// Write new data
speed_data[write_idx].tti = tti;
speed_data[write_idx].delta_t = delta_t;
speed_data[write_idx].delta_d = delta_d;
// Advance write index
write_idx = (write_idx + 1) % MAX_NOF_SPEED_VALUES;
// Advance read index if overlaps with write
if (write_idx == read_idx) {
read_idx = (read_idx + 1) % MAX_NOF_SPEED_VALUES;
}
}
last_tti = tti; // Update last TTI
}
/**
* Get the current time alignment in seconds
*
* @return Time alignment in seconds
*/
float get_sec() const
{
std::lock_guard<std::mutex> lock(mutex);
// Returns the current base
return next_base_sec;
}
/**
* Get the current time alignment in microseconds
*
* @return Time alignment in microseconds
*/
float get_usec() const
{
std::lock_guard<std::mutex> lock(mutex);
// Returns the current base
return next_base_sec * 1e6f;
}
/**
* Get the current time alignment in kilometers between the eNb and the UE
*
* @return Distance based on the current time base
*/
float get_km() const
{
std::lock_guard<std::mutex> lock(mutex);
// Returns the current base, one direction distance
return next_base_sec * (3e8f / 2e3f);
}
/**
* Calculates approximated speed in km/h from the TA commands
*
* @return Distance based on the current time base if enough data has been gathered
*/
float get_speed_kmph(uint32_t tti)
{
std::lock_guard<std::mutex> lock(mutex);
// Advance read pointer for old TTI
while (read_idx != write_idx and TTI_SUB(tti, speed_data[read_idx].tti) > MAX_AGE_SPEED_VALUES) {
read_idx = (read_idx + 1) % MAX_NOF_SPEED_VALUES;
// If there us no data, make last_tti invalid to prevent invalid TTI difference
if (read_idx == write_idx) {
last_tti = -1;
}
}
// Early return if there is not enough data to calculate speed
uint32_t nof_values = ((write_idx + MAX_NOF_SPEED_VALUES) - read_idx) % MAX_NOF_SPEED_VALUES;
if (nof_values < MIN_NOF_SPEED_VALUES) {
return 0.0f;
}
// Compute speed from gathered data
float sum_t = 0.0f;
float sum_d = 0.0f;
for (uint32_t i = read_idx; i != write_idx; i = (i + 1) % MAX_NOF_SPEED_VALUES) {
sum_t += speed_data[i].delta_t;
sum_d += speed_data[i].delta_d;
}
if (!std::isnormal(sum_t)) {
return 0.0f; // Avoid zero division
}
float speed_mps = sum_d / sum_t; // Speed in m/s
// Returns the speed in km/h
return speed_mps * 3.6f;
}
};
} // namespace srsue
#endif // SRSUE_TA_CONTROL_H