You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

175 lines
4.6 KiB
C++

/**
* Copyright 2013-2023 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSRAN_ACCUMULATORS_H
#define SRSRAN_ACCUMULATORS_H
#include <cassert>
#include <cmath>
#include <cstdint>
#include <limits>
#include <vector>
namespace srsran {
template <typename T>
struct rolling_average {
void push(T sample)
{
avg_ += (sample - avg_) / (count_ + 1);
++count_;
}
T value() const { return count_ == 0 ? 0 : avg_; }
uint32_t count() const { return count_; }
void reset()
{
avg_ = 0;
count_ = 0;
}
private:
T avg_ = 0;
uint32_t count_ = 0;
};
template <typename T>
struct exp_average_fast_start {
exp_average_fast_start(T alpha_val) : exp_average_fast_start(alpha_val, 1.0 / alpha_val) {}
exp_average_fast_start(T alpha_val, uint32_t start_size) : alpha_(alpha_val), start_count_size(start_size)
{
assert(alpha_ < 1);
assert(start_size > 0);
}
void push(T sample)
{
if (count < start_count_size) {
avg_ += (sample - avg_) / (count + 1);
count++;
} else {
avg_ = (1 - alpha_) * avg_ + alpha_ * sample;
}
}
T value() const { return count == 0 ? 0 : avg_; }
T alpha() const { return alpha_; }
bool is_exp_average_mode() const { return count >= start_count_size; }
private:
T avg_ = 0;
uint32_t count = 0;
uint32_t start_count_size;
T alpha_;
};
namespace detail {
template <typename T>
struct sliding_window {
sliding_window(uint32_t N, T val = 0) : window(N, val) {}
void push(T sample)
{
window[next_idx++] = sample;
if (next_idx >= window.size()) {
next_idx -= window.size();
}
}
std::size_t size() const { return window.size(); }
const T& oldest() const { return window[next_idx % size()]; }
T& operator[](std::size_t i) { return window[i]; }
const T& operator[](std::size_t i) const { return window[i]; }
std::vector<T> window;
std::size_t next_idx = 0;
};
} // namespace detail
template <typename T>
struct sliding_sum : private detail::sliding_window<T> {
using base_t = detail::sliding_window<T>;
using base_t::oldest;
using base_t::push;
using base_t::size;
using base_t::sliding_window;
T value() const
{
T ret = 0;
for (std::size_t i = 0; i < size(); ++i) {
ret += (*this)[i];
}
return ret;
}
};
template <typename T>
struct sliding_average {
sliding_average(uint32_t N) : window(N, 0) {}
void push(T sample) { window.push(sample); }
T value() const { return window.value() / window.size(); }
private:
sliding_sum<T> window;
};
template <typename T>
struct null_sliding_average {
null_sliding_average(uint32_t N) : window(N, null_value()) {}
void push(T sample) { window.push(sample); }
void push_hole() { window.push(null_value()); }
T value() const
{
T ret = 0;
uint32_t count = 0;
for (std::size_t i = 0; i < window.size(); ++i) {
if (window[i] != null_value()) {
ret += window[i];
count++;
}
}
return (count == 0) ? null_value() : ret / count;
}
static constexpr T null_value() { return std::numeric_limits<T>::max(); }
private:
detail::sliding_window<T> window;
};
template <typename T>
struct exp_average_irreg_sampling {
// an exp_average has the formula y_n = alpha*x + (1-alpha)*y_n-1 <=> y_n += alpha(x - y_n-1)
// alpha can be thought as 1-exp^{-dt/T} where dt is the sample period and T is the time-constant of a LP filter
// for variable dt, alpha[dt] = 1-exp^{-dt/T} = 1-(exp^{-1/T})^dt = 1 - (1-alpha[1])^dt
exp_average_irreg_sampling(T alpha_, T init_val) : avg_(init_val)
{
assert(alpha_ < 1 and alpha_ > 0 and "Invalid alpha parameter.");
coeff = 1 - alpha_;
}
void push(T sample, uint32_t sample_jump) { avg_ += (1 - pow(coeff, sample_jump)) * (sample - avg_); }
T value() const { return avg_; }
private:
T avg_ = 0;
T coeff;
};
} // namespace srsran
#endif // SRSRAN_ACCUMULATORS_H