mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
4.6 KiB
C++
175 lines
4.6 KiB
C++
/**
|
|
* Copyright 2013-2023 Software Radio Systems Limited
|
|
*
|
|
* This file is part of srsRAN.
|
|
*
|
|
* srsRAN is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Affero General Public License as
|
|
* published by the Free Software Foundation, either version 3 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* srsRAN is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Affero General Public License for more details.
|
|
*
|
|
* A copy of the GNU Affero General Public License can be found in
|
|
* the LICENSE file in the top-level directory of this distribution
|
|
* and at http://www.gnu.org/licenses/.
|
|
*
|
|
*/
|
|
|
|
#ifndef SRSRAN_ACCUMULATORS_H
|
|
#define SRSRAN_ACCUMULATORS_H
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
namespace srsran {
|
|
|
|
template <typename T>
|
|
struct rolling_average {
|
|
void push(T sample)
|
|
{
|
|
avg_ += (sample - avg_) / (count_ + 1);
|
|
++count_;
|
|
}
|
|
T value() const { return count_ == 0 ? 0 : avg_; }
|
|
uint32_t count() const { return count_; }
|
|
void reset()
|
|
{
|
|
avg_ = 0;
|
|
count_ = 0;
|
|
}
|
|
|
|
private:
|
|
T avg_ = 0;
|
|
uint32_t count_ = 0;
|
|
};
|
|
|
|
template <typename T>
|
|
struct exp_average_fast_start {
|
|
exp_average_fast_start(T alpha_val) : exp_average_fast_start(alpha_val, 1.0 / alpha_val) {}
|
|
exp_average_fast_start(T alpha_val, uint32_t start_size) : alpha_(alpha_val), start_count_size(start_size)
|
|
{
|
|
assert(alpha_ < 1);
|
|
assert(start_size > 0);
|
|
}
|
|
void push(T sample)
|
|
{
|
|
if (count < start_count_size) {
|
|
avg_ += (sample - avg_) / (count + 1);
|
|
count++;
|
|
} else {
|
|
avg_ = (1 - alpha_) * avg_ + alpha_ * sample;
|
|
}
|
|
}
|
|
T value() const { return count == 0 ? 0 : avg_; }
|
|
T alpha() const { return alpha_; }
|
|
bool is_exp_average_mode() const { return count >= start_count_size; }
|
|
|
|
private:
|
|
T avg_ = 0;
|
|
uint32_t count = 0;
|
|
uint32_t start_count_size;
|
|
T alpha_;
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
template <typename T>
|
|
struct sliding_window {
|
|
sliding_window(uint32_t N, T val = 0) : window(N, val) {}
|
|
void push(T sample)
|
|
{
|
|
window[next_idx++] = sample;
|
|
if (next_idx >= window.size()) {
|
|
next_idx -= window.size();
|
|
}
|
|
}
|
|
std::size_t size() const { return window.size(); }
|
|
const T& oldest() const { return window[next_idx % size()]; }
|
|
T& operator[](std::size_t i) { return window[i]; }
|
|
const T& operator[](std::size_t i) const { return window[i]; }
|
|
std::vector<T> window;
|
|
std::size_t next_idx = 0;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
template <typename T>
|
|
struct sliding_sum : private detail::sliding_window<T> {
|
|
using base_t = detail::sliding_window<T>;
|
|
using base_t::oldest;
|
|
using base_t::push;
|
|
using base_t::size;
|
|
using base_t::sliding_window;
|
|
|
|
T value() const
|
|
{
|
|
T ret = 0;
|
|
for (std::size_t i = 0; i < size(); ++i) {
|
|
ret += (*this)[i];
|
|
}
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct sliding_average {
|
|
sliding_average(uint32_t N) : window(N, 0) {}
|
|
void push(T sample) { window.push(sample); }
|
|
T value() const { return window.value() / window.size(); }
|
|
|
|
private:
|
|
sliding_sum<T> window;
|
|
};
|
|
|
|
template <typename T>
|
|
struct null_sliding_average {
|
|
null_sliding_average(uint32_t N) : window(N, null_value()) {}
|
|
void push(T sample) { window.push(sample); }
|
|
void push_hole() { window.push(null_value()); }
|
|
T value() const
|
|
{
|
|
T ret = 0;
|
|
uint32_t count = 0;
|
|
for (std::size_t i = 0; i < window.size(); ++i) {
|
|
if (window[i] != null_value()) {
|
|
ret += window[i];
|
|
count++;
|
|
}
|
|
}
|
|
return (count == 0) ? null_value() : ret / count;
|
|
}
|
|
static constexpr T null_value() { return std::numeric_limits<T>::max(); }
|
|
|
|
private:
|
|
detail::sliding_window<T> window;
|
|
};
|
|
|
|
template <typename T>
|
|
struct exp_average_irreg_sampling {
|
|
// an exp_average has the formula y_n = alpha*x + (1-alpha)*y_n-1 <=> y_n += alpha(x - y_n-1)
|
|
// alpha can be thought as 1-exp^{-dt/T} where dt is the sample period and T is the time-constant of a LP filter
|
|
// for variable dt, alpha[dt] = 1-exp^{-dt/T} = 1-(exp^{-1/T})^dt = 1 - (1-alpha[1])^dt
|
|
exp_average_irreg_sampling(T alpha_, T init_val) : avg_(init_val)
|
|
{
|
|
assert(alpha_ < 1 and alpha_ > 0 and "Invalid alpha parameter.");
|
|
coeff = 1 - alpha_;
|
|
}
|
|
void push(T sample, uint32_t sample_jump) { avg_ += (1 - pow(coeff, sample_jump)) * (sample - avg_); }
|
|
T value() const { return avg_; }
|
|
|
|
private:
|
|
T avg_ = 0;
|
|
T coeff;
|
|
};
|
|
|
|
} // namespace srsran
|
|
|
|
#endif // SRSRAN_ACCUMULATORS_H
|