You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

413 lines
15 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <string.h>
#include <complex.h>
#include <math.h>
#include "srslte/config.h"
#include "srslte/ch_estimation/chest_dl.h"
#include "srslte/utils/vector.h"
#include "srslte/utils/convolution.h"
//#define DEFAULT_FILTER_LEN 3
#ifdef DEFAULT_FILTER_LEN
static void set_default_filter(srslte_chest_dl_t *q, int filter_len) {
float fil[SRSLTE_CHEST_DL_MAX_SMOOTH_FIL_LEN];
for (int i=0;i<filter_len/2;i++) {
fil[i] = i+1;
fil[i+filter_len/2+1]=filter_len/2-i;
}
fil[filter_len/2]=filter_len/2+1;
float s=0;
for (int i=0;i<filter_len;i++) {
s+=fil[i];
}
for (int i=0;i<filter_len;i++) {
fil[i]/=s;
}
srslte_chest_dl_set_smooth_filter(q, fil, filter_len);
}
#endif
/** 3GPP LTE Downlink channel estimator and equalizer.
* Estimates the channel in the resource elements transmitting references and interpolates for the rest
* of the resource grid.
*
* The equalizer uses the channel estimates to produce an estimation of the transmitted symbol.
*
* This object depends on the srslte_refsignal_t object for creating the LTE CSR signal.
*/
int srslte_chest_dl_init(srslte_chest_dl_t *q, srslte_cell_t cell)
{
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q != NULL &&
srslte_cell_isvalid(&cell))
{
bzero(q, sizeof(srslte_chest_dl_t));
ret = srslte_refsignal_cs_init(&q->csr_signal, cell);
if (ret != SRSLTE_SUCCESS) {
fprintf(stderr, "Error initializing CSR signal (%d)\n",ret);
goto clean_exit;
}
q->tmp_noise = srslte_vec_malloc(sizeof(cf_t) * SRSLTE_REFSIGNAL_MAX_NUM_SF(cell.nof_prb));
if (!q->tmp_noise) {
perror("malloc");
goto clean_exit;
}
q->pilot_estimates = srslte_vec_malloc(sizeof(cf_t) * SRSLTE_REFSIGNAL_MAX_NUM_SF(cell.nof_prb));
if (!q->pilot_estimates) {
perror("malloc");
goto clean_exit;
}
q->pilot_estimates_average = srslte_vec_malloc(sizeof(cf_t) * SRSLTE_REFSIGNAL_MAX_NUM_SF(cell.nof_prb));
if (!q->pilot_estimates_average) {
perror("malloc");
goto clean_exit;
}
q->pilot_recv_signal = srslte_vec_malloc(sizeof(cf_t) * SRSLTE_REFSIGNAL_MAX_NUM_SF(cell.nof_prb));
if (!q->pilot_recv_signal) {
perror("malloc");
goto clean_exit;
}
if (srslte_interp_linear_vector_init(&q->srslte_interp_linvec, SRSLTE_NRE*cell.nof_prb)) {
fprintf(stderr, "Error initializing vector interpolator\n");
goto clean_exit;
}
if (srslte_interp_linear_init(&q->srslte_interp_lin, 2*cell.nof_prb, SRSLTE_NRE/2)) {
fprintf(stderr, "Error initializing interpolator\n");
goto clean_exit;
}
if (srslte_pss_generate(q->pss_signal, cell.id%3)) {
fprintf(stderr, "Error initializing PSS signal for noise estimation\n");
goto clean_exit;
}
q->noise_alg = SRSLTE_NOISE_ALG_REFS;
q->smooth_filter_len = 3;
srslte_chest_dl_set_smooth_filter3_coeff(q, 0.1);
q->cell = cell;
}
ret = SRSLTE_SUCCESS;
clean_exit:
if (ret != SRSLTE_SUCCESS) {
srslte_chest_dl_free(q);
}
return ret;
}
void srslte_chest_dl_free(srslte_chest_dl_t *q)
{
srslte_refsignal_cs_free(&q->csr_signal);
if (q->tmp_noise) {
free(q->tmp_noise);
}
srslte_interp_linear_vector_free(&q->srslte_interp_linvec);
srslte_interp_linear_free(&q->srslte_interp_lin);
if (q->pilot_estimates) {
free(q->pilot_estimates);
}
if (q->pilot_estimates_average) {
free(q->pilot_estimates_average);
}
if (q->pilot_recv_signal) {
free(q->pilot_recv_signal);
}
bzero(q, sizeof(srslte_chest_dl_t));
}
/* Uses the difference between the averaged and non-averaged pilot estimates */
static float estimate_noise_pilots(srslte_chest_dl_t *q, uint32_t port_id)
{
int nref=SRSLTE_REFSIGNAL_NUM_SF(q->cell.nof_prb, port_id);
/* Substract noisy pilot estimates */
srslte_vec_sub_ccc(q->pilot_estimates_average, q->pilot_estimates, q->tmp_noise, nref);
#ifdef FREQ_SEL_SNR
/* Compute frequency-selective SNR */
srslte_vec_abs_square_cf(q->tmp_noise, q->snr_vector, nref);
srslte_vec_abs_square_cf(q->pilot_estimates, q->pilot_power, nref);
srslte_vec_div_fff(q->pilot_power, q->snr_vector, q->snr_vector, nref);
srslte_vec_fprint_f(stdout, q->snr_vector, nref);
#endif
/* Compute average power. Normalized for filter len 3 using matlab */
float norm = 1;
if (q->smooth_filter_len == 3) {
float a = q->smooth_filter[0];
float norm3 = 6.143*a*a+0.04859*a-0.002774;
norm /= norm3;
}
float power = norm*q->cell.nof_ports*srslte_vec_avg_power_cf(q->tmp_noise, nref);
return power;
}
static float estimate_noise_pss(srslte_chest_dl_t *q, cf_t *input, cf_t *ce)
{
/* Get PSS from received signal */
srslte_pss_get_slot(input, q->tmp_pss, q->cell.nof_prb, q->cell.cp);
/* Get channel estimates for PSS position */
srslte_pss_get_slot(ce, q->tmp_pss_noisy, q->cell.nof_prb, q->cell.cp);
/* Multiply known PSS by channel estimates */
srslte_vec_prod_ccc(q->tmp_pss_noisy, q->pss_signal, q->tmp_pss_noisy, SRSLTE_PSS_LEN);
/* Substract received signal */
srslte_vec_sub_ccc(q->tmp_pss_noisy, q->tmp_pss, q->tmp_pss_noisy, SRSLTE_PSS_LEN);
/* Compute average power */
float power = q->cell.nof_ports*srslte_vec_avg_power_cf(q->tmp_pss_noisy, SRSLTE_PSS_LEN)/sqrt(2);
return power;
}
/* Uses the 5 empty transmitted SC before and after the SSS and PSS sequences for noise estimation */
static float estimate_noise_empty_sc(srslte_chest_dl_t *q, cf_t *input) {
int k_sss = (SRSLTE_CP_NSYMB(q->cell.cp) - 2) * q->cell.nof_prb * SRSLTE_NRE + q->cell.nof_prb * SRSLTE_NRE / 2 - 31;
float noise_power = 0;
noise_power += srslte_vec_avg_power_cf(&input[k_sss-5], 5); // 5 empty SC before SSS
noise_power += srslte_vec_avg_power_cf(&input[k_sss+62], 5); // 5 empty SC after SSS
int k_pss = (SRSLTE_CP_NSYMB(q->cell.cp) - 1) * q->cell.nof_prb * SRSLTE_NRE + q->cell.nof_prb * SRSLTE_NRE / 2 - 31;
noise_power += srslte_vec_avg_power_cf(&input[k_pss-5], 5); // 5 empty SC before PSS
noise_power += srslte_vec_avg_power_cf(&input[k_pss+62], 5); // 5 empty SC after PSS
return noise_power;
}
#define cesymb(i) ce[SRSLTE_RE_IDX(q->cell.nof_prb,i,0)]
static void interpolate_pilots(srslte_chest_dl_t *q, cf_t *pilot_estimates, cf_t *ce, uint32_t port_id)
{
/* interpolate the symbols with references in the freq domain */
uint32_t l;
uint32_t nsymbols = srslte_refsignal_cs_nof_symbols(port_id);
/* Interpolate in the frequency domain */
for (l=0;l<nsymbols;l++) {
uint32_t fidx_offset = srslte_refsignal_cs_fidx(q->cell, l, port_id, 0);
srslte_interp_linear_offset(&q->srslte_interp_lin, &pilot_estimates[2*q->cell.nof_prb*l],
&ce[srslte_refsignal_cs_nsymbol(l,q->cell.cp, port_id) * q->cell.nof_prb * SRSLTE_NRE],
fidx_offset, SRSLTE_NRE/2-fidx_offset);
}
/* Now interpolate in the time domain between symbols */
if (SRSLTE_CP_ISNORM(q->cell.cp)) {
if (nsymbols == 4) {
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(0), &cesymb(4), &cesymb(1), 4, 3);
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(4), &cesymb(7), &cesymb(5), 3, 2);
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(7), &cesymb(11), &cesymb(8), 4, 3);
srslte_interp_linear_vector2(&q->srslte_interp_linvec, &cesymb(7), &cesymb(11), &cesymb(11), &cesymb(12), 4, 2);
} else {
srslte_interp_linear_vector2(&q->srslte_interp_linvec, &cesymb(8), &cesymb(1), &cesymb(1), &cesymb(0), 7, 1);
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(1), &cesymb(8), &cesymb(2), 7, 6);
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(1), &cesymb(8), &cesymb(9), 7, 5);
}
} else {
if (nsymbols == 4) {
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(0), &cesymb(3), &cesymb(1), 3, 2);
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(3), &cesymb(6), &cesymb(4), 3, 2);
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(6), &cesymb(9), &cesymb(7), 3, 2);
srslte_interp_linear_vector2(&q->srslte_interp_linvec, &cesymb(6), &cesymb(9), &cesymb(9), &cesymb(10), 3, 2);
} else {
srslte_interp_linear_vector2(&q->srslte_interp_linvec, &cesymb(7), &cesymb(1), &cesymb(1), &cesymb(0), 6, 1);
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(1), &cesymb(7), &cesymb(2), 6, 5);
srslte_interp_linear_vector(&q->srslte_interp_linvec, &cesymb(1), &cesymb(7), &cesymb(8), 6, 4);
}
}
}
void srslte_chest_dl_set_smooth_filter(srslte_chest_dl_t *q, float *filter, uint32_t filter_len) {
if (filter_len < SRSLTE_CHEST_MAX_SMOOTH_FIL_LEN) {
if (filter) {
memcpy(q->smooth_filter, filter, filter_len*sizeof(float));
q->smooth_filter_len = filter_len;
} else {
q->smooth_filter_len = 0;
}
} else {
fprintf(stderr, "Error setting smoothing filter: filter len exceeds maximum (%d>%d)\n",
filter_len, SRSLTE_CHEST_MAX_SMOOTH_FIL_LEN);
}
}
void srslte_chest_dl_set_noise_alg(srslte_chest_dl_t *q, srslte_chest_dl_noise_alg_t noise_estimation_alg) {
q->noise_alg = noise_estimation_alg;
}
void srslte_chest_dl_set_smooth_filter3_coeff(srslte_chest_dl_t* q, float w)
{
q->smooth_filter_len = 3;
q->smooth_filter[0] = w;
q->smooth_filter[2] = w;
q->smooth_filter[1] = 1-2*w;
}
static void average_pilots(srslte_chest_dl_t *q, cf_t *input, cf_t *output, uint32_t port_id) {
uint32_t nsymbols = srslte_refsignal_cs_nof_symbols(port_id);
uint32_t nref = 2*q->cell.nof_prb;
// Average in the frequency domain
for (int l=0;l<nsymbols;l++) {
srslte_conv_same_cf(&input[l*nref], q->smooth_filter, &output[l*nref], nref, q->smooth_filter_len);
}
}
float srslte_chest_dl_rssi(srslte_chest_dl_t *q, cf_t *input, uint32_t port_id) {
uint32_t l;
float rssi = 0;
uint32_t nsymbols = srslte_refsignal_cs_nof_symbols(port_id);
for (l=0;l<nsymbols;l++) {
cf_t *tmp = &input[srslte_refsignal_cs_nsymbol(l, q->cell.cp, port_id) * q->cell.nof_prb * SRSLTE_NRE];
rssi += srslte_vec_dot_prod_conj_ccc(tmp, tmp, q->cell.nof_prb * SRSLTE_NRE);
}
return rssi/nsymbols;
}
int srslte_chest_dl_estimate_port(srslte_chest_dl_t *q, cf_t *input, cf_t *ce, uint32_t sf_idx, uint32_t port_id)
{
/* Get references from the input signal */
srslte_refsignal_cs_get_sf(q->cell, port_id, input, q->pilot_recv_signal);
/* Use the known CSR signal to compute Least-squares estimates */
srslte_vec_prod_conj_ccc(q->pilot_recv_signal, q->csr_signal.pilots[port_id/2][sf_idx],
q->pilot_estimates, SRSLTE_REFSIGNAL_NUM_SF(q->cell.nof_prb, port_id));
if (ce != NULL) {
/* Smooth estimates (if applicable) and interpolate */
if (q->smooth_filter_len == 0 || (q->smooth_filter_len == 3 && q->smooth_filter[0] == 0)) {
interpolate_pilots(q, q->pilot_estimates, ce, port_id);
} else {
average_pilots(q, q->pilot_estimates, q->pilot_estimates_average, port_id);
interpolate_pilots(q, q->pilot_estimates_average, ce, port_id);
}
/* Estimate noise power */
if (q->noise_alg == SRSLTE_NOISE_ALG_REFS && q->smooth_filter_len > 0) {
q->noise_estimate[port_id] = estimate_noise_pilots(q, port_id);
} else if (q->noise_alg == SRSLTE_NOISE_ALG_PSS) {
if (sf_idx == 0 || sf_idx == 5) {
q->noise_estimate[port_id] = estimate_noise_pss(q, input, ce);
}
} else {
if (sf_idx == 0 || sf_idx == 5) {
q->noise_estimate[port_id] = estimate_noise_empty_sc(q, input);
}
}
}
/* Compute RSRP for the channel estimates in this port */
q->rsrp[port_id] = srslte_vec_avg_power_cf(q->pilot_recv_signal, SRSLTE_REFSIGNAL_NUM_SF(q->cell.nof_prb, port_id));
if (port_id == 0) {
/* compute rssi only for port 0 */
q->rssi[port_id] = srslte_chest_dl_rssi(q, input, port_id);
}
return 0;
}
int srslte_chest_dl_estimate_multi(srslte_chest_dl_t *q, cf_t *input[SRSLTE_MAX_RXANT], cf_t *ce[SRSLTE_MAX_PORTS][SRSLTE_MAX_RXANT], uint32_t sf_idx, uint32_t nof_rx_antennas)
{
for (uint32_t rxant=0;rxant<nof_rx_antennas;rxant++) {
for (uint32_t port_id=0;port_id<q->cell.nof_ports;port_id++) {
printf("rxant=%d, port=%d, input=0x%x, ce=0x%x\n", rxant, port_id, input[rxant], ce[port_id][rxant]);
if (srslte_chest_dl_estimate_port(q, input[rxant], ce[port_id][rxant], sf_idx, port_id)) {
return SRSLTE_ERROR;
}
}
}
return SRSLTE_SUCCESS;
}
int srslte_chest_dl_estimate(srslte_chest_dl_t *q, cf_t *input, cf_t *ce[SRSLTE_MAX_PORTS], uint32_t sf_idx)
{
uint32_t port_id;
for (port_id=0;port_id<q->cell.nof_ports;port_id++) {
if (srslte_chest_dl_estimate_port(q, input, ce[port_id], sf_idx, port_id)) {
return SRSLTE_ERROR;
}
}
return SRSLTE_SUCCESS;
}
float srslte_chest_dl_get_noise_estimate(srslte_chest_dl_t *q) {
return srslte_vec_acc_ff(q->noise_estimate, q->cell.nof_ports)/q->cell.nof_ports;
}
float srslte_chest_dl_get_snr(srslte_chest_dl_t *q) {
#ifdef FREQ_SEL_SNR
int nref=SRSLTE_REFSIGNAL_NUM_SF(q->cell.nof_prb, 0);
return srslte_vec_acc_ff(q->snr_vector, nref)/nref;
#else
return srslte_chest_dl_get_rsrp(q)/srslte_chest_dl_get_noise_estimate(q);
#endif
}
float srslte_chest_dl_get_rssi(srslte_chest_dl_t *q) {
return 4*q->rssi[0]/q->cell.nof_prb/SRSLTE_NRE;
}
/* q->rssi[0] is the average power in all RE in all symbol containing references for port 0 . q->rssi[0]/q->cell.nof_prb is the average power per PRB
* q->rsrp[0] is the average power of RE containing references only (for port 0).
*/
float srslte_chest_dl_get_rsrq(srslte_chest_dl_t *q) {
return q->cell.nof_prb*q->rsrp[0] / q->rssi[0];
}
float srslte_chest_dl_get_rsrp(srslte_chest_dl_t *q) {
// return sum of power received from all tx ports
return srslte_vec_acc_ff(q->rsrp, q->cell.nof_ports);
}