You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

421 lines
12 KiB
C

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <semaphore.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include "srslte/phy/ch_estimation/chest_sl.h"
#include "srslte/phy/common/phy_common_sl.h"
#include "srslte/phy/dft/ofdm.h"
#include "srslte/phy/phch/pscch.h"
#include "srslte/phy/phch/sci.h"
#include "srslte/phy/rf/rf.h"
#include "srslte/phy/ue/ue_sync.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
uint32_t nof_ports = 1;
static bool keep_running = true;
char* output_file_name;
static char rf_devname[64] = "";
static char rf_args[64] = "auto";
float rf_gain = 60.0, rf_freq = -1.0;
int nof_rx_antennas = 1;
srslte_cell_sl_t cell_sl = {.nof_prb = 50, .tm = SRSLTE_SIDELINK_TM4, .cp = SRSLTE_CP_NORM, .N_sl_id = 0};
bool use_standard_lte_rates = false;
bool disable_plots = false;
srslte_pscch_t pscch; // Defined global for plotting thread
#ifdef ENABLE_GUI
#include "srsgui/srsgui.h"
void init_plots();
pthread_t plot_thread;
sem_t plot_sem;
#endif // ENABLE_GUI
void sig_int_handler(int signo)
{
printf("SIGINT received. Exiting...\n");
if (signo == SIGINT) {
keep_running = false;
} else if (signo == SIGSEGV) {
exit(1);
}
}
void usage(char* prog)
{
printf("Usage: %s [agrnv] -f rx_frequency_hz\n", prog);
printf("\t-a RF args [Default %s]\n", rf_args);
printf("\t-d RF devicename [Default %s]\n", rf_devname);
printf("\t-g RF Gain [Default %.2f dB]\n", rf_gain);
printf("\t-A nof_rx_antennas [Default %d]\n", nof_rx_antennas);
printf("\t-c N_sl_id [Default %d]\n", cell_sl.N_sl_id);
printf("\t-p nof_prb [Default %d]\n", cell_sl.nof_prb);
printf("\t-r use_standard_lte_rates [Default %i]\n", use_standard_lte_rates);
#ifdef ENABLE_GUI
printf("\t-w disable plots [Default enabled]\n");
#endif
printf("\t-v srslte_verbose\n");
}
void parse_args(int argc, char** argv)
{
int opt;
while ((opt = getopt(argc, argv, "acdgpvwrxfA")) != -1) {
switch (opt) {
case 'a':
strncpy(rf_args, argv[optind], 63);
rf_args[63] = '\0';
break;
case 'c':
cell_sl.N_sl_id = (int32_t)strtol(argv[optind], NULL, 10);
break;
case 'd':
strncpy(rf_devname, argv[optind], 63);
rf_devname[63] = '\0';
break;
case 'g':
rf_gain = strtof(argv[optind], NULL);
break;
case 'p':
cell_sl.nof_prb = (int32_t)strtol(argv[optind], NULL, 10);
break;
case 'f':
rf_freq = strtof(argv[optind], NULL);
break;
case 'A':
nof_rx_antennas = (int32_t)strtol(argv[optind], NULL, 10);
break;
case 'v':
srslte_verbose++;
break;
case 'w':
disable_plots = true;
break;
case 'r':
use_standard_lte_rates = true;
break;
default:
usage(argv[0]);
exit(-1);
}
}
if (rf_freq < 0) {
usage(argv[0]);
exit(-1);
}
}
int srslte_rf_recv_wrapper(void* h, cf_t* data[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t* t)
{
DEBUG(" ---- Receive %d samples ---- \n", nsamples);
void* ptr[SRSLTE_MAX_PORTS];
for (int i = 0; i < SRSLTE_MAX_PORTS; i++) {
ptr[i] = data[i];
}
return srslte_rf_recv_with_time_multi(h, ptr, nsamples, true, &t->full_secs, &t->frac_secs);
}
int main(int argc, char** argv)
{
signal(SIGINT, sig_int_handler);
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);
sigprocmask(SIG_UNBLOCK, &sigset, NULL);
parse_args(argc, argv);
srslte_use_standard_symbol_size(use_standard_lte_rates);
srslte_sl_comm_resource_pool_t sl_comm_resource_pool;
if (srslte_sl_comm_resource_pool_get_default_config(&sl_comm_resource_pool, cell_sl) != SRSLTE_SUCCESS) {
ERROR("Error initializing sl_comm_resource_pool\n");
return SRSLTE_ERROR;
}
printf("Opening RF device...\n");
srslte_rf_t rf;
if (srslte_rf_open_multi(&rf, rf_args, nof_rx_antennas)) {
ERROR("Error opening rf\n");
exit(-1);
}
printf("Set RX freq: %.6f MHz\n", srslte_rf_set_rx_freq(&rf, nof_rx_antennas, rf_freq) / 1000000);
printf("Set RX gain: %.1f dB\n", srslte_rf_set_rx_gain(&rf, rf_gain));
int srate = srslte_sampling_freq_hz(cell_sl.nof_prb);
if (srate != -1) {
printf("Setting sampling rate %.2f MHz\n", (float)srate / 1000000);
float srate_rf = srslte_rf_set_rx_srate(&rf, (double)srate);
if (srate_rf != srate) {
ERROR("Could not set sampling rate\n");
exit(-1);
}
} else {
ERROR("Invalid number of PRB %d\n", cell_sl.nof_prb);
exit(-1);
}
// allocate Rx buffers for 1ms worth of samples
uint32_t sf_len = SRSLTE_SF_LEN_PRB(cell_sl.nof_prb);
printf("Using a SF len of %d samples\n", sf_len);
cf_t* rx_buffer[SRSLTE_MAX_CHANNELS] = {}; //< For radio to receive samples
cf_t* sf_buffer[SRSLTE_MAX_PORTS] = {NULL}; ///< For OFDM object to store subframe after FFT
for (int i = 0; i < nof_rx_antennas; i++) {
rx_buffer[i] = srslte_vec_cf_malloc(sf_len);
if (!rx_buffer[i]) {
perror("malloc");
exit(-1);
}
sf_buffer[i] = srslte_vec_cf_malloc(sf_len);
if (!sf_buffer[i]) {
perror("malloc");
exit(-1);
}
}
uint32_t sf_n_re = SRSLTE_CP_NSYMB(SRSLTE_CP_NORM) * SRSLTE_NRE * 2 * cell_sl.nof_prb;
cf_t* equalized_sf_buffer = srslte_vec_malloc(sizeof(cf_t) * sf_n_re);
// RX
srslte_ofdm_t fft;
if (srslte_ofdm_rx_init(&fft, cell_sl.cp, rx_buffer[0], sf_buffer[0], cell_sl.nof_prb)) {
fprintf(stderr, "Error creating FFT object\n");
return SRSLTE_ERROR;
}
srslte_ofdm_set_normalize(&fft, true);
srslte_ofdm_set_freq_shift(&fft, -0.5);
// SCI
srslte_sci_t sci;
srslte_sci_init(&sci, cell_sl, sl_comm_resource_pool);
uint8_t sci_rx[SRSLTE_SCI_MAX_LEN] = {};
char sci_msg[SRSLTE_SCI_MSG_MAX_LEN] = {};
// init PSCCH object
if (srslte_pscch_init(&pscch, SRSLTE_MAX_PRB) != SRSLTE_SUCCESS) {
ERROR("Error in PSCCH init\n");
return SRSLTE_ERROR;
}
if (srslte_pscch_set_cell(&pscch, cell_sl) != SRSLTE_SUCCESS) {
ERROR("Error in PSCCH set cell\n");
return SRSLTE_ERROR;
}
// PSCCH Channel estimation
srslte_chest_sl_cfg_t pscch_chest_sl_cfg;
srslte_chest_sl_t pscch_chest;
if (srslte_chest_sl_init(&pscch_chest, SRSLTE_SIDELINK_PSCCH, cell_sl, sl_comm_resource_pool) != SRSLTE_SUCCESS) {
ERROR("Error in chest PSCCH init\n");
return SRSLTE_ERROR;
}
srslte_ue_sync_t sync;
if (srslte_ue_sync_init_multi_decim_mode(
&sync, SRSLTE_MAX_PRB, false, srslte_rf_recv_wrapper, nof_rx_antennas, (void*)&rf, 1.0, SYNC_MODE_GNSS)) {
fprintf(stderr, "Error initiating sync_gnss\n");
exit(-1);
}
srslte_cell_t cell = {};
cell.nof_prb = cell_sl.nof_prb;
if (srslte_ue_sync_set_cell(&sync, cell)) {
ERROR("Error initiating ue_sync\n");
exit(-1);
}
#ifdef ENABLE_GUI
if (!disable_plots) {
init_plots(&pscch);
sleep(1);
}
#endif
// after configuring RF params and before starting streamer, set device to GPS time
srslte_rf_sync(&rf);
// start streaming
srslte_rf_start_rx_stream(&rf, false);
uint32_t num_decoded_sci = 0;
uint32_t subframe_count = 0;
uint32_t pscch_prb_start_idx = 0;
while (keep_running) {
// receive subframe
int ret = srslte_ue_sync_zerocopy(&sync, rx_buffer, sf_len);
if (ret < 0) {
ERROR("Error calling srslte_ue_sync_work()\n");
}
if (subframe_count == 0) {
// print timestamp of the first samples
srslte_timestamp_t ts_rx;
srslte_ue_sync_get_last_timestamp(&sync, &ts_rx);
printf("Received samples start at %ld + %.10f. TTI=%d.%d\n",
ts_rx.full_secs,
ts_rx.frac_secs,
srslte_ue_sync_get_sfn(&sync),
srslte_ue_sync_get_sfidx(&sync));
}
// do FFT
srslte_ofdm_rx_sf(&fft);
for (int sub_channel_idx = 0; sub_channel_idx < sl_comm_resource_pool.num_sub_channel; sub_channel_idx++) {
pscch_prb_start_idx = sub_channel_idx * sl_comm_resource_pool.size_sub_channel;
for (uint32_t cyclic_shift = 0; cyclic_shift <= 9; cyclic_shift += 3) {
// PSCCH Channel estimation
pscch_chest_sl_cfg.cyclic_shift = cyclic_shift;
pscch_chest_sl_cfg.prb_start_idx = pscch_prb_start_idx;
srslte_chest_sl_set_cfg(&pscch_chest, pscch_chest_sl_cfg);
srslte_chest_sl_ls_estimate_equalize(&pscch_chest, sf_buffer[0], equalized_sf_buffer);
if (srslte_pscch_decode(&pscch, equalized_sf_buffer, sci_rx, pscch_prb_start_idx) == SRSLTE_SUCCESS) {
if (srslte_sci_format1_unpack(&sci, sci_rx) == SRSLTE_SUCCESS) {
srslte_sci_info(&sci, sci_msg, sizeof(sci_msg));
fprintf(stdout, "%s", sci_msg);
num_decoded_sci++;
// plot PSCCH
#ifdef ENABLE_GUI
if (!disable_plots) {
sem_post(&plot_sem);
}
#endif
}
}
if (SRSLTE_VERBOSE_ISDEBUG()) {
char filename[64];
snprintf(filename,
64,
"pscch_rx_syms_sf%d_shift%d_prbidx%d.bin",
subframe_count,
cyclic_shift,
pscch_prb_start_idx);
printf("Saving PSCCH symbols (%d) to %s\n", pscch.E / SRSLTE_PSCCH_QM, filename);
srslte_vec_save_file(filename, pscch.mod_symbols, pscch.E / SRSLTE_PSCCH_QM * sizeof(cf_t));
}
}
}
subframe_count++;
}
printf("Processed %d subframes.\n", subframe_count);
#ifdef ENABLE_GUI
if (!disable_plots) {
sem_post(&plot_sem);
usleep(1000);
if (!pthread_kill(plot_thread, 0)) {
pthread_kill(plot_thread, SIGHUP);
pthread_join(plot_thread, NULL);
}
}
sdrgui_exit();
#endif
srslte_rf_stop_rx_stream(&rf);
srslte_rf_close(&rf);
srslte_ue_sync_free(&sync);
srslte_sci_free(&sci);
srslte_pscch_free(&pscch);
srslte_chest_sl_free(&pscch_chest);
for (int i = 0; i < nof_rx_antennas; i++) {
if (rx_buffer[i]) {
free(rx_buffer[i]);
}
if (sf_buffer[i]) {
free(sf_buffer[i]);
}
}
if (equalized_sf_buffer) {
free(equalized_sf_buffer);
}
return SRSLTE_SUCCESS;
}
///< Plotting Functions
#ifdef ENABLE_GUI
plot_scatter_t pscatequal_pscch;
void* plot_thread_run(void* arg)
{
sdrgui_init();
plot_scatter_init(&pscatequal_pscch);
plot_scatter_setTitle(&pscatequal_pscch, "PSCCH - Equalized Symbols");
plot_scatter_setXAxisScale(&pscatequal_pscch, -4, 4);
plot_scatter_setYAxisScale(&pscatequal_pscch, -4, 4);
plot_scatter_addToWindowGrid(&pscatequal_pscch, (char*)"pssch_ue", 0, 0);
while (keep_running) {
sem_wait(&plot_sem);
plot_scatter_setNewData(&pscatequal_pscch, pscch.mod_symbols, pscch.nof_tx_re);
}
return NULL;
}
void init_plots()
{
if (sem_init(&plot_sem, 0, 0)) {
perror("sem_init");
exit(-1);
}
pthread_attr_t attr;
struct sched_param param;
param.sched_priority = 0;
pthread_attr_init(&attr);
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
pthread_attr_setschedparam(&attr, &param);
if (pthread_create(&plot_thread, NULL, plot_thread_run, NULL)) {
perror("pthread_create");
exit(-1);
}
}
#endif // ENABLE_GUI