You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

216 lines
6.0 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The libLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the libLTE library.
*
* libLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* libLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <assert.h>
#include <complex.h>
#include <string.h>
#include <math.h>
#include "lte/common/base.h"
#include "lte/mimo/precoding.h"
#include "lte/utils/vector.h"
int precoding_single(cf_t *x, cf_t *y, int nof_symbols) {
memcpy(y, x, nof_symbols * sizeof(cf_t));
return nof_symbols;
}
int precoding_diversity(cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_ports, int nof_symbols) {
int i;
if (nof_ports == 2) {
/* FIXME: Use VOLK here */
for (i=0;i<nof_symbols;i++) {
y[0][2*i] = x[0][i]/sqrtf(2);
y[1][2*i] = -conjf(x[1][i])/sqrtf(2);
y[0][2*i+1] = x[1][i]/sqrtf(2);
y[1][2*i+1] = conjf(x[0][i])/sqrtf(2);
}
return 2*i;
} else if (nof_ports == 4) {
//int m_ap = (nof_symbols%4)?(nof_symbols*4-2):nof_symbols*4;
int m_ap = 4 * nof_symbols;
for (i=0;i<m_ap/4;i++) {
y[0][4*i] = x[0][i]/sqrtf(2);
y[1][4*i] = 0;
y[2][4*i] = -conjf(x[1][i])/sqrtf(2);
y[3][4*i] = 0;
y[0][4*i+1] = x[1][i]/sqrtf(2);
y[1][4*i+1] = 0;
y[2][4*i+1] = conjf(x[0][i])/sqrtf(2);
y[3][4*i+1] = 0;
y[0][4*i+2] = 0;
y[1][4*i+2] = x[2][i]/sqrtf(2);
y[2][4*i+2] = 0;
y[3][4*i+2] = -conjf(x[3][i])/sqrtf(2);
y[0][4*i+3] = 0;
y[1][4*i+3] = x[3][i]/sqrtf(2);
y[2][4*i+3] = 0;
y[3][4*i+3] = conjf(x[2][i])/sqrtf(2);
}
return 4*i;
} else {
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity\n");
return -1;
}
}
/* 36.211 v10.3.0 Section 6.3.4 */
int precoding_type(cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_layers, int nof_ports, int nof_symbols,
mimo_type_t type) {
if (nof_ports > MAX_PORTS) {
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", MAX_PORTS, nof_ports);
return -1;
}
if (nof_layers > MAX_LAYERS) {
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n", MAX_LAYERS, nof_layers);
return -1;
}
switch(type) {
case SINGLE_ANTENNA:
if (nof_ports == 1 && nof_layers == 1) {
return precoding_single(x[0], y[0], nof_symbols);
} else {
fprintf(stderr, "Number of ports and layers must be 1 for transmission on single antenna ports\n");
return -1;
}
break;
case TX_DIVERSITY:
if (nof_ports == nof_layers) {
return precoding_diversity(x, y, nof_ports, nof_symbols);
} else {
fprintf(stderr, "Error number of layers must equal number of ports in transmit diversity\n");
return -1;
}
case SPATIAL_MULTIPLEX:
fprintf(stderr, "Spatial multiplexing not supported\n");
return -1;
}
return 0;
}
/* ZF detector */
int predecoding_single_zf(cf_t *y, cf_t *ce, cf_t *x, int nof_symbols) {
vec_div_ccc(y, ce, x, nof_symbols);
return nof_symbols;
}
/* ZF detector */
int predecoding_diversity_zf(cf_t *y[MAX_PORTS], cf_t *ce[MAX_PORTS],
cf_t *x[MAX_LAYERS], int nof_ports, int nof_symbols) {
int i;
cf_t h0, h1, h2, h3, r0, r1, r2, r3;
float hh, hh02, hh13;
if (nof_ports == 2) {
/* TODO: Use VOLK here */
for (i=0;i<nof_symbols/2;i++) {
h0 = ce[0][2*i];
h1 = ce[1][2*i];
hh = crealf(h0)*crealf(h0)+cimagf(h0)*cimagf(h0)+
crealf(h1)*crealf(h1)+cimagf(h1)*cimagf(h1);
r0 = y[0][2*i];
r1 = y[0][2*i+1];
x[0][i] = (conjf(h0)*r0 + h1*conjf(r1))/hh * sqrt(2);
x[1][i] = (-h1*conj(r0) + conj(h0)*r1)/hh * sqrt(2);
}
return i;
} else if (nof_ports == 4) {
int m_ap = (nof_symbols%4)?((nof_symbols-2)/4):nof_symbols/4;
for (i=0;i<m_ap;i++) {
h0 = ce[0][4*i];
h1 = ce[1][4*i+2];
h2 = ce[2][4*i];
h3 = ce[3][4*i+2];
hh02 = crealf(h0)*crealf(h0)+cimagf(h0)*cimagf(h0)
+ crealf(h2)*crealf(h2)+cimagf(h2)*cimagf(h2);
hh13 = crealf(h1)*crealf(h1)+cimagf(h1)*cimagf(h1)
+ crealf(h3)*crealf(h3)+cimagf(h3)*cimagf(h3);
r0 = y[0][4*i];
r1 = y[0][4*i+1];
r2 = y[0][4*i+2];
r3 = y[0][4*i+3];
x[0][i] = (conjf(h0)*r0 + h2*conjf(r1))/hh02 * sqrt(2);
x[1][i] = (-h2*conjf(r0) + conjf(h0)*r1)/hh02 * sqrt(2);
x[2][i] = (conjf(h1)*r2 + h3*conjf(r3))/hh13 * sqrt(2);
x[3][i] = (-h3*conjf(r2) + conjf(h1)*r3)/hh13 * sqrt(2);
}
return i;
} else {
fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity\n");
return -1;
}
}
/* 36.211 v10.3.0 Section 6.3.4 */
int predecoding_type(cf_t *y[MAX_PORTS], cf_t *ce[MAX_PORTS],
cf_t *x[MAX_LAYERS], int nof_ports, int nof_layers, int nof_symbols, mimo_type_t type) {
if (nof_ports > MAX_PORTS) {
fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", MAX_PORTS, nof_ports);
return -1;
}
if (nof_layers > MAX_LAYERS) {
fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n", MAX_LAYERS, nof_layers);
return -1;
}
switch(type) {
case SINGLE_ANTENNA:
if (nof_ports == 1 && nof_layers == 1) {
return predecoding_single_zf(y[0], ce[0], x[0], nof_symbols);
} else{
fprintf(stderr, "Number of ports and layers must be 1 for transmission on single antenna ports\n");
return -1;
}
break;
case TX_DIVERSITY:
if (nof_ports == nof_layers) {
return predecoding_diversity_zf(y, ce, x, nof_ports, nof_symbols);
} else {
fprintf(stderr, "Error number of layers must equal number of ports in transmit diversity\n");
return -1;
}
break;
case SPATIAL_MULTIPLEX:
fprintf(stderr, "Spatial multiplexing not supported\n");
return -1;
}
return 0;
}