mirror of https://github.com/pvnis/srsRAN_4G.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1762 lines
49 KiB
C++
1762 lines
49 KiB
C++
/**
|
|
*
|
|
* \section COPYRIGHT
|
|
*
|
|
* Copyright 2013-2020 Software Radio Systems Limited
|
|
*
|
|
* By using this file, you agree to the terms and conditions set
|
|
* forth in the LICENSE file which can be found at the top level of
|
|
* the distribution.
|
|
*
|
|
*/
|
|
|
|
#include "srslte/common/log_filter.h"
|
|
#include "srslte/common/rlc_pcap.h"
|
|
#include "srslte/common/test_common.h"
|
|
#include "srslte/common/threads.h"
|
|
#include "srslte/upper/rlc_am_lte.h"
|
|
#include <assert.h>
|
|
#include <iostream>
|
|
#define NBUFS 5
|
|
#define HAVE_PCAP 0
|
|
#define SDU_SIZE 500
|
|
|
|
using namespace srsue;
|
|
using namespace srslte;
|
|
|
|
srslte::log_ref rrc_log1("RLC_AM_1");
|
|
srslte::log_ref rrc_log2("RLC_AM_2");
|
|
|
|
bool rx_is_tx(const rlc_bearer_metrics_t& rlc1_metrics, const rlc_bearer_metrics_t& rlc2_metrics)
|
|
{
|
|
if (rlc1_metrics.num_tx_pdu_bytes != rlc2_metrics.num_rx_pdu_bytes) {
|
|
return false;
|
|
}
|
|
|
|
if (rlc2_metrics.num_tx_pdu_bytes != rlc1_metrics.num_rx_pdu_bytes) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class rlc_am_tester : public pdcp_interface_rlc, public rrc_interface_rlc
|
|
{
|
|
public:
|
|
rlc_am_tester(rlc_pcap* pcap_ = NULL)
|
|
{
|
|
n_sdus = 0;
|
|
pcap = pcap_;
|
|
}
|
|
|
|
// PDCP interface
|
|
void write_pdu(uint32_t lcid, unique_byte_buffer_t sdu)
|
|
{
|
|
assert(lcid == 1);
|
|
sdus[n_sdus++] = std::move(sdu);
|
|
}
|
|
void write_pdu_bcch_bch(unique_byte_buffer_t sdu) {}
|
|
void write_pdu_bcch_dlsch(unique_byte_buffer_t sdu) {}
|
|
void write_pdu_pcch(unique_byte_buffer_t sdu) {}
|
|
void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {}
|
|
|
|
// RRC interface
|
|
void max_retx_attempted() {}
|
|
std::string get_rb_name(uint32_t lcid) { return std::string(""); }
|
|
|
|
unique_byte_buffer_t sdus[10];
|
|
int n_sdus;
|
|
rlc_pcap* pcap;
|
|
};
|
|
|
|
class ul_writer : public thread
|
|
{
|
|
public:
|
|
ul_writer(rlc_am_lte* rlc_) : rlc(rlc_), running(false), thread("UL_WRITER") {}
|
|
~ul_writer() { stop(); }
|
|
void stop()
|
|
{
|
|
running = false;
|
|
int cnt = 0;
|
|
while (running && cnt < 100) {
|
|
usleep(10000);
|
|
cnt++;
|
|
}
|
|
wait_thread_finish();
|
|
}
|
|
|
|
private:
|
|
void run_thread()
|
|
{
|
|
int sn = 0;
|
|
running = true;
|
|
while (running) {
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t pdu = srslte::allocate_unique_buffer(*pool, "rlc_tester::run_thread", true);
|
|
if (!pdu) {
|
|
printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n");
|
|
// backoff for a bit
|
|
usleep(1000);
|
|
continue;
|
|
}
|
|
for (uint32_t i = 0; i < SDU_SIZE; i++) {
|
|
pdu->msg[i] = sn;
|
|
}
|
|
sn++;
|
|
pdu->N_bytes = SDU_SIZE;
|
|
rlc->write_sdu(std::move(pdu));
|
|
}
|
|
running = false;
|
|
}
|
|
|
|
rlc_am_lte* rlc;
|
|
bool running;
|
|
};
|
|
|
|
void basic_test_tx(rlc_am_lte* rlc, byte_buffer_t pdu_bufs[NBUFS])
|
|
{
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
|
|
rlc->write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(13 == rlc->get_buffer_state()); // 2 Bytes for fixed header + 6 for LIs + 5 for payload
|
|
|
|
// Read 5 PDUs from RLC1 (1 byte each)
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
uint32_t len = rlc->read_pdu(pdu_bufs[i].msg, 3); // 2 bytes for header + 1 byte payload
|
|
pdu_bufs[i].N_bytes = len;
|
|
assert(3 == len);
|
|
}
|
|
|
|
assert(0 == rlc->get_buffer_state());
|
|
}
|
|
|
|
bool basic_test()
|
|
{
|
|
rlc_am_tester tester;
|
|
timer_handler timers(8);
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
// before configuring entity
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
basic_test_tx(&rlc1, pdu_bufs);
|
|
|
|
// Write 5 PDUs into RLC2
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
assert(2 == rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
int len = rlc2.read_pdu(status_buf.msg, 2);
|
|
status_buf.N_bytes = len;
|
|
|
|
assert(0 == rlc2.get_buffer_state());
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
assert(tester.sdus[i]->N_bytes == 1);
|
|
assert(*(tester.sdus[i]->msg) == i);
|
|
}
|
|
|
|
// Check statistics
|
|
TESTASSERT(rx_is_tx(rlc1.get_metrics(), rlc2.get_metrics()));
|
|
|
|
return SRSLTE_SUCCESS;
|
|
}
|
|
|
|
bool concat_test()
|
|
{
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(13 == rlc1.get_buffer_state()); // 2 Bytes for fixed header + 6 for LIs + 5 for payload
|
|
|
|
// Read 1 PDUs from RLC1 containing all 5 SDUs
|
|
byte_buffer_t pdu_buf;
|
|
int len = rlc1.read_pdu(pdu_buf.msg, 13); // 8 bytes for header + payload
|
|
pdu_buf.N_bytes = len;
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDU into RLC2
|
|
rlc2.write_pdu(pdu_buf.msg, pdu_buf.N_bytes);
|
|
|
|
// No status report as we haven't crossed polling thresholds
|
|
|
|
assert(tester.n_sdus == 5);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
assert(tester.sdus[i]->N_bytes == 1);
|
|
assert(*(tester.sdus[i]->msg) == i);
|
|
}
|
|
|
|
// Check statistics
|
|
TESTASSERT(rx_is_tx(rlc1.get_metrics(), rlc2.get_metrics()));
|
|
|
|
return SRSLTE_SUCCESS;
|
|
}
|
|
|
|
bool segment_test(bool in_seq_rx)
|
|
{
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (int j = 0; j < 10; j++)
|
|
sdu_bufs[i]->msg[j] = j;
|
|
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(58 == rlc1.get_buffer_state()); // 2 bytes for header + 6 bytes for LI + 50 bytes for payload
|
|
|
|
// Read PDUs from RLC1 (force segmentation)
|
|
byte_buffer_t pdu_bufs[20];
|
|
int n_pdus = 0;
|
|
while (rlc1.get_buffer_state() > 0) {
|
|
len = rlc1.read_pdu(pdu_bufs[n_pdus].msg, 10); // 2 header + payload
|
|
pdu_bufs[n_pdus++].N_bytes = len;
|
|
}
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDUs into RLC2
|
|
if (in_seq_rx) {
|
|
// deliver PDUs in order
|
|
for (int i = 0; i < n_pdus; ++i) {
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
} else {
|
|
// deliver PDUs in reverse order
|
|
for (int i = n_pdus - 1; i >= 0; --i) {
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
}
|
|
|
|
// Receiver will only generate status PDU if they arrive in order
|
|
// If SN=7 arrives first, but the Rx expects SN=0, status reporting will be delayed, see TS 36.322 v10 Section 5.2.3
|
|
if (in_seq_rx) {
|
|
assert(2 == rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
status_buf.N_bytes = len;
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
}
|
|
|
|
assert(0 == rlc2.get_buffer_state());
|
|
|
|
assert(tester.n_sdus == 5);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
assert(tester.sdus[i]->N_bytes == 10);
|
|
for (int j = 0; j < 10; j++)
|
|
assert(tester.sdus[i]->msg[j] == j);
|
|
}
|
|
|
|
// Check statistics
|
|
TESTASSERT(rx_is_tx(rlc1.get_metrics(), rlc2.get_metrics()));
|
|
|
|
return SRSLTE_SUCCESS;
|
|
}
|
|
|
|
bool retx_test()
|
|
{
|
|
rlc_am_tester tester;
|
|
timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(13 == rlc1.get_buffer_state());
|
|
|
|
// Read 5 PDUs from RLC1 (1 byte each)
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
len = rlc1.read_pdu(pdu_bufs[i].msg, 3); // 2 byte header + 1 byte payload
|
|
pdu_bufs[i].N_bytes = len;
|
|
}
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDUs into RLC2 (skip SN 1)
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
if (i != 1)
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
uint32_t buffer_state = rlc2.get_buffer_state();
|
|
assert(4 == buffer_state);
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
len = rlc2.read_pdu(status_buf.msg, buffer_state); // provide exactly the reported buffer state
|
|
status_buf.N_bytes = len;
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
assert(3 == rlc1.get_buffer_state()); // 2 byte header + 1 byte payload
|
|
|
|
// Read the retx PDU from RLC1
|
|
byte_buffer_t retx;
|
|
len = rlc1.read_pdu(retx.msg, 3); // 2 byte header + 1 byte payload
|
|
retx.N_bytes = len;
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx.msg, retx.N_bytes);
|
|
|
|
assert(tester.n_sdus == 5);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != 1)
|
|
return -1;
|
|
if (*(tester.sdus[i]->msg) != i)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Purpose: test correct retx of lost segment and pollRetx timer expiration
|
|
bool segment_retx_test()
|
|
{
|
|
rlc_am_tester tester;
|
|
timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push SDU(s) into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
const uint32_t nof_sdus = 1; // just one SDU to make sure the transmitter sets polling bit
|
|
unique_byte_buffer_t sdu_bufs[nof_sdus];
|
|
|
|
for (uint32_t i = 0; i < nof_sdus; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 1 byte
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
// Read 2 PDUs from RLC1
|
|
const uint32_t nof_pdus = 2;
|
|
byte_buffer_t pdu_bufs[nof_pdus];
|
|
for (uint32_t i = 0; i < nof_pdus; i++) {
|
|
len = rlc1.read_pdu(pdu_bufs[i].msg, 7); // 2 byte header
|
|
pdu_bufs[i].N_bytes = len;
|
|
}
|
|
|
|
TESTASSERT(rlc1.get_buffer_state() == 0);
|
|
|
|
// Step timers until poll Retx timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
uint32_t buffer_state = rlc1.get_buffer_state();
|
|
TESTASSERT(buffer_state == 7);
|
|
|
|
// Read retx PDU from RLC1
|
|
byte_buffer_t retx_pdu;
|
|
len = rlc1.read_pdu(retx_pdu.msg, buffer_state); // provide exactly the reported buffer state
|
|
retx_pdu.N_bytes = len;
|
|
|
|
// Write retx segment to RLC2
|
|
rlc2.write_pdu(retx_pdu.msg, retx_pdu.N_bytes);
|
|
|
|
buffer_state = rlc2.get_buffer_state(); // Status PDU
|
|
TESTASSERT(buffer_state == 2);
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
status_buf.N_bytes = len;
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
// Step timers again until poll Retx timeout expires
|
|
cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
// read buffer state from RLC1 again to see if it has rescheduled SN=1 for retx
|
|
buffer_state = rlc1.get_buffer_state(); // Status PDU
|
|
TESTASSERT(buffer_state == 7);
|
|
|
|
// Read 2nd retx PDU from RLC1
|
|
byte_buffer_t retx_pdu2;
|
|
len = rlc1.read_pdu(retx_pdu2.msg, buffer_state); // provide exactly the reported buffer state
|
|
retx_pdu2.N_bytes = len;
|
|
|
|
// Write retx segment to RLC2
|
|
rlc2.write_pdu(retx_pdu2.msg, retx_pdu2.N_bytes);
|
|
|
|
// read Status PDU from RLC2 again
|
|
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
status_buf.N_bytes = len;
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
TESTASSERT(tester.n_sdus == nof_sdus);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != 10) {
|
|
return SRSLTE_ERROR;
|
|
}
|
|
if (*(tester.sdus[i]->msg) != i) {
|
|
return SRSLTE_ERROR;
|
|
}
|
|
}
|
|
|
|
return SRSLTE_SUCCESS;
|
|
}
|
|
|
|
bool resegment_test_1()
|
|
{
|
|
// SDUs: | 10 | 10 | 10 | 10 | 10 |
|
|
// PDUs: | 10 | 10 | 10 | 10 | 10 |
|
|
// Retx PDU segments: | 5 | 5|
|
|
|
|
rlc_am_tester tester;
|
|
timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (int j = 0; j < 10; j++)
|
|
sdu_bufs[i]->msg[j] = j;
|
|
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(58 == rlc1.get_buffer_state()); // 2 bytes for fixed header, 6 bytes for LIs, 50 bytes for data
|
|
|
|
// Read 5 PDUs from RLC1 (10 bytes each)
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
len = rlc1.read_pdu(pdu_bufs[i].msg, 12); // 12 bytes for header + payload
|
|
pdu_bufs[i].N_bytes = len;
|
|
}
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDUs into RLC2 (skip SN 1)
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
if (i != 1)
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
assert(4 == rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
status_buf.N_bytes = len;
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
assert(12 == rlc1.get_buffer_state()); // 2 byte header + 10 data
|
|
|
|
// Read the retx PDU from RLC1 and force resegmentation
|
|
byte_buffer_t retx1;
|
|
len = rlc1.read_pdu(retx1.msg, 9); // 4 byte header + 5 data
|
|
retx1.N_bytes = len;
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
|
|
|
|
assert(9 == rlc1.get_buffer_state());
|
|
|
|
// Read the remaining segment
|
|
byte_buffer_t retx2;
|
|
len = rlc1.read_pdu(retx2.msg, 9); // 4 byte header + 5 data
|
|
retx2.N_bytes = len;
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
|
|
|
|
assert(tester.n_sdus == 5);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != 10)
|
|
return -1;
|
|
for (int j = 0; j < 10; j++)
|
|
if (tester.sdus[i]->msg[j] != j)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool resegment_test_2()
|
|
{
|
|
|
|
// SDUs: | 10 | 10 | 10 | 10 | 10 |
|
|
// PDUs: | 5 | 10 | 20 | 10 | 5 |
|
|
// Retx PDU segments: | 10 | 10 |
|
|
|
|
rlc_am_tester tester;
|
|
timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (int j = 0; j < 10; j++)
|
|
sdu_bufs[i]->msg[j] = j;
|
|
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(58 == rlc1.get_buffer_state());
|
|
|
|
// Read 5 PDUs from RLC1 (5 bytes, 10 bytes, 20 bytes, 10 bytes, 5 bytes)
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
|
|
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 14); // 4 byte header + 10 byte payload
|
|
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 25); // 5 byte header + 20 byte payload
|
|
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 14); // 4 byte header + 10 byte payload
|
|
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 7); // 2 byte header + 5 byte payload
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDUs into RLC2 (skip SN 2)
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
if (i != 2)
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
assert(4 == rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
assert(25 == rlc1.get_buffer_state()); // 4 byte header + 20 data
|
|
|
|
// Read the retx PDU from RLC1 and force resegmentation
|
|
byte_buffer_t retx1;
|
|
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 16); // 6 byte header + 10 data
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
|
|
|
|
assert(18 == rlc1.get_buffer_state());
|
|
|
|
// Read the remaining segment
|
|
byte_buffer_t retx2;
|
|
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 18); // 6 byte header + 12 data
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
|
|
|
|
assert(tester.n_sdus == 5);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != 10)
|
|
return -1;
|
|
for (int j = 0; j < 10; j++)
|
|
if (tester.sdus[i]->msg[j] != j)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool resegment_test_3()
|
|
{
|
|
|
|
// SDUs: | 10 | 10 | 10 | 10 | 10 |
|
|
// PDUs: | 5 | 5| 20 | 10 | 10 |
|
|
// Retx PDU segments: | 10 | 10 |
|
|
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (int j = 0; j < 10; j++)
|
|
sdu_bufs[i]->msg[j] = j;
|
|
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(58 == rlc1.get_buffer_state());
|
|
|
|
// Read 5 PDUs from RLC1 (5 bytes, 5 bytes, 20 bytes, 10 bytes, 10 bytes)
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
|
|
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 7); // 2 byte header + 5 byte payload
|
|
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 24); // 4 byte header + 20 byte payload
|
|
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 12); // 2 byte header + 10 byte payload
|
|
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 12); // 2 byte header + 10 byte payload
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDUs into RLC2 (skip SN 2)
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
if (i != 2)
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
assert(4 == rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
// Read the retx PDU from RLC1 and force resegmentation
|
|
byte_buffer_t retx1;
|
|
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 16); // 6 byte header + 10 data
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
|
|
|
|
// Read the remaining segment
|
|
byte_buffer_t retx2;
|
|
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 16); // 6 byte header + 10 data
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
|
|
|
|
assert(tester.n_sdus == 5);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != 10)
|
|
return -1;
|
|
for (int j = 0; j < 10; j++)
|
|
if (tester.sdus[i]->msg[j] != j)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool resegment_test_4()
|
|
{
|
|
// SDUs: | 10 | 10 | 10 | 10 | 10 |
|
|
// PDUs: | 5 | 5| 30 | 5 | 5|
|
|
// Retx PDU segments: | 15 | 15 |
|
|
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (int j = 0; j < 10; j++)
|
|
sdu_bufs[i]->msg[j] = j;
|
|
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(58 == rlc1.get_buffer_state());
|
|
|
|
// Read 5 PDUs from RLC1 (5 bytes, 5 bytes, 30 bytes, 5 bytes, 5 bytes)
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 7); // 2 byte header + 5 byte payload
|
|
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 7); // 2 byte header + 5 byte payload
|
|
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 35); // 5 byte header + 30 byte payload
|
|
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 7); // 2 byte header + 5 byte payload
|
|
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 7); // 2 byte header + 5 byte payload
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDUs into RLC2 (skip SN 2)
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
if (i != 2)
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
assert(4 == rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
// Read the retx PDU from RLC1 and force resegmentation
|
|
byte_buffer_t retx1;
|
|
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 21); // 6 byte header + 15 data
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
|
|
|
|
assert(23 == rlc1.get_buffer_state());
|
|
|
|
// Read the remaining segment
|
|
byte_buffer_t retx2;
|
|
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 23); // 6 byte header + 18 data
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
|
|
|
|
assert(tester.n_sdus == 5);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != 10)
|
|
return -1;
|
|
for (int j = 0; j < 10; j++)
|
|
if (tester.sdus[i]->msg[j] != j)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool resegment_test_5()
|
|
{
|
|
// SDUs: | 10 | 10 | 10 | 10 | 10 |
|
|
// PDUs: |2|3| 40 |3|2|
|
|
// Retx PDU segments: | 20 | 20 |
|
|
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (int j = 0; j < 10; j++)
|
|
sdu_bufs[i]->msg[j] = j;
|
|
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(58 == rlc1.get_buffer_state());
|
|
|
|
// Read 5 PDUs from RLC1 (2 bytes, 3 bytes, 40 bytes, 3 bytes, 2 bytes)
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
pdu_bufs[0].N_bytes = rlc1.read_pdu(pdu_bufs[0].msg, 4); // 2 byte header + 2 byte payload
|
|
pdu_bufs[1].N_bytes = rlc1.read_pdu(pdu_bufs[1].msg, 5); // 2 byte header + 3 byte payload
|
|
pdu_bufs[2].N_bytes = rlc1.read_pdu(pdu_bufs[2].msg, 48); // 8 byte header + 40 byte payload
|
|
pdu_bufs[3].N_bytes = rlc1.read_pdu(pdu_bufs[3].msg, 5); // 2 byte header + 3 byte payload
|
|
pdu_bufs[4].N_bytes = rlc1.read_pdu(pdu_bufs[4].msg, 4); // 2 byte header + 2 byte payload
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDUs into RLC2 (skip SN 2)
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
if (i != 2)
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
assert(4 == rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
// Read the retx PDU from RLC1 and force resegmentation
|
|
byte_buffer_t retx1;
|
|
retx1.N_bytes = rlc1.read_pdu(retx1.msg, 27); // 7 byte header + 20 data
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
|
|
|
|
assert(31 == rlc1.get_buffer_state());
|
|
|
|
// Read the remaining segment
|
|
byte_buffer_t retx2;
|
|
retx2.N_bytes = rlc1.read_pdu(retx2.msg, 34); // 7 byte header + 24 data
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
|
|
|
|
assert(tester.n_sdus == 5);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != 10)
|
|
return -1;
|
|
for (int j = 0; j < 10; j++)
|
|
if (tester.sdus[i]->msg[j] != j)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool resegment_test_6()
|
|
{
|
|
// SDUs: |10|10|10| 54 | 54 | 54 | 54 | 54 | 54 |
|
|
// PDUs: |10|10|10| 270 | 54 |
|
|
// Retx PDU segments: | 120 | 150 |
|
|
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[9];
|
|
for (int i = 0; i < 3; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (int j = 0; j < 10; j++)
|
|
sdu_bufs[i]->msg[j] = j;
|
|
sdu_bufs[i]->N_bytes = 10; // Give each buffer a size of 10 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
for (int i = 3; i < 9; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (int j = 0; j < 54; j++)
|
|
sdu_bufs[i]->msg[j] = j;
|
|
sdu_bufs[i]->N_bytes = 54;
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(368 == rlc1.get_buffer_state());
|
|
|
|
// Read PDUs from RLC1 (10, 10, 10, 270, 54)
|
|
byte_buffer_t pdu_bufs[5];
|
|
for (int i = 0; i < 3; i++) {
|
|
len = rlc1.read_pdu(pdu_bufs[i].msg, 12);
|
|
pdu_bufs[i].N_bytes = len;
|
|
}
|
|
len = rlc1.read_pdu(pdu_bufs[3].msg, 278);
|
|
pdu_bufs[3].N_bytes = len;
|
|
len = rlc1.read_pdu(pdu_bufs[4].msg, 56);
|
|
pdu_bufs[4].N_bytes = len;
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Write PDUs into RLC2 (skip SN 3)
|
|
for (int i = 0; i < 5; i++) {
|
|
if (i != 3)
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
assert(4 == rlc2.get_buffer_state());
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
len = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
status_buf.N_bytes = len;
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
assert(278 == rlc1.get_buffer_state());
|
|
|
|
// Read the retx PDU from RLC1 and force resegmentation
|
|
byte_buffer_t retx1;
|
|
len = rlc1.read_pdu(retx1.msg, 129);
|
|
retx1.N_bytes = len;
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx1.msg, retx1.N_bytes);
|
|
|
|
assert(159 == rlc1.get_buffer_state());
|
|
|
|
// Read the remaining segment
|
|
byte_buffer_t retx2;
|
|
len = rlc1.read_pdu(retx2.msg, 162);
|
|
retx2.N_bytes = len;
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx2.msg, retx2.N_bytes);
|
|
|
|
assert(tester.n_sdus == 9);
|
|
for (int i = 0; i < 3; i++) {
|
|
assert(tester.sdus[i]->N_bytes == 10);
|
|
for (int j = 0; j < 10; j++)
|
|
assert(tester.sdus[i]->msg[j] == j);
|
|
}
|
|
for (int i = 3; i < 9; i++) {
|
|
if (i >= tester.n_sdus)
|
|
return -1;
|
|
if (tester.sdus[i]->N_bytes != 54)
|
|
return -1;
|
|
for (int j = 0; j < 54; j++) {
|
|
if (tester.sdus[i]->msg[j] != j)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Retransmission of PDU segments of the same size
|
|
bool resegment_test_7()
|
|
{
|
|
// SDUs: | 30 | 30 |
|
|
// PDUs: | 13 | 13 | 11 | 13 | 10 |
|
|
// Rxed PDUs | 13 | 13 | | 13 | 10 |
|
|
// Retx PDU segments: | 4 | 7 |
|
|
// Retx PDU segments: |3|3]3|2|
|
|
const uint32_t N_SDU_BUFS = 2;
|
|
const uint32_t N_PDU_BUFS = 5;
|
|
const uint32_t sdu_size = 30;
|
|
|
|
#if HAVE_PCAP
|
|
rlc_pcap pcap;
|
|
pcap.open("rlc_am_test7.pcap", 0);
|
|
rlc_am_tester tester(&pcap);
|
|
#else
|
|
rlc_am_tester tester(NULL);
|
|
#endif
|
|
srslte::timer_handler timers(8);
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 2 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[N_SDU_BUFS];
|
|
for (uint32_t i = 0; i < N_SDU_BUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (uint32_t j = 0; j < sdu_size; j++) {
|
|
sdu_bufs[i]->msg[j] = i;
|
|
}
|
|
sdu_bufs[i]->N_bytes = sdu_size; // Give each buffer a size of 15 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(64 == rlc1.get_buffer_state());
|
|
|
|
// Read PDUs from RLC1 (15 bytes each)
|
|
byte_buffer_t pdu_bufs[N_PDU_BUFS];
|
|
for (uint32_t i = 0; i < N_PDU_BUFS; i++) {
|
|
pdu_bufs[i].N_bytes = rlc1.read_pdu(pdu_bufs[i].msg, 15); // 2 bytes for header + 12 B payload
|
|
assert(pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
// Step timers until poll_retx timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
// RLC should try to retx a random PDU because it needs to request a status from the receiver
|
|
assert(0 != rlc1.get_buffer_state());
|
|
|
|
// Skip PDU with SN 2
|
|
for (uint32_t i = 0; i < N_PDU_BUFS; i++) {
|
|
if (i != 2) {
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_dl_am_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
// RLC should try to retransmit a random PDU because it needs to re-request a status PDU from the receiver
|
|
assert(0 != rlc1.get_buffer_state());
|
|
|
|
// first round of retx, forcing resegmentation
|
|
byte_buffer_t retx[4];
|
|
for (uint32_t i = 0; i < 4; i++) {
|
|
assert(0 != rlc1.get_buffer_state());
|
|
retx[i].N_bytes = rlc1.read_pdu(retx[i].msg, 7);
|
|
assert(retx[i].N_bytes);
|
|
|
|
// Write the last two segments to RLC2
|
|
if (i > 1) {
|
|
rlc2.write_pdu(retx[i].msg, retx[i].N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Read status PDU from RLC2
|
|
assert(rlc2.get_buffer_state());
|
|
byte_buffer_t status_buf;
|
|
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes);
|
|
#endif
|
|
|
|
assert(15 == rlc1.get_buffer_state());
|
|
|
|
// second round of retx, forcing resegmentation
|
|
byte_buffer_t retx2[4];
|
|
for (uint32_t i = 0; i < 4; i++) {
|
|
assert(rlc1.get_buffer_state() != 0);
|
|
retx2[i].N_bytes = rlc1.read_pdu(retx2[i].msg, 9);
|
|
assert(retx2[i].N_bytes != 0);
|
|
|
|
rlc2.write_pdu(retx2[i].msg, retx2[i].N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes);
|
|
#endif
|
|
}
|
|
|
|
// check buffer states
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Step timers until poll_retx timeout expires
|
|
cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
// Read status PDU from RLC2
|
|
assert(rlc2.get_buffer_state());
|
|
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes);
|
|
#endif
|
|
|
|
// check status again
|
|
assert(0 == rlc1.get_buffer_state());
|
|
assert(0 == rlc2.get_buffer_state());
|
|
|
|
// Check number of SDUs and their content
|
|
assert(tester.n_sdus == N_SDU_BUFS);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != sdu_size)
|
|
return -1;
|
|
for (uint32_t j = 0; j < N_SDU_BUFS; j++) {
|
|
if (tester.sdus[i]->msg[j] != i)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#if HAVE_PCAP
|
|
pcap.close();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Retransmission of PDU segments with different size
|
|
bool resegment_test_8()
|
|
{
|
|
// SDUs: | 30 | 30 |
|
|
// PDUs: | 15 | 15 | 15 | 15 | 15 |
|
|
// Rxed PDUs | 15 | | 15 | 15 |
|
|
// Retx PDU segments: | 7 | 7 | 7 | 7 |
|
|
// Retx PDU segments: | 6 | 6 ] 6 | 6 | 6 | 6 | 6 | 6 |
|
|
const uint32_t N_SDU_BUFS = 2;
|
|
const uint32_t N_PDU_BUFS = 5;
|
|
const uint32_t sdu_size = 30;
|
|
|
|
#if HAVE_PCAP
|
|
rlc_pcap pcap;
|
|
pcap.open("rlc_am_test8.pcap", 0);
|
|
rlc_am_tester tester(&pcap);
|
|
#else
|
|
rlc_am_tester tester(NULL);
|
|
#endif
|
|
srslte::timer_handler timers(8);
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 2 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[N_SDU_BUFS];
|
|
for (uint32_t i = 0; i < N_SDU_BUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
for (uint32_t j = 0; j < sdu_size; j++) {
|
|
sdu_bufs[i]->msg[j] = i;
|
|
}
|
|
sdu_bufs[i]->N_bytes = sdu_size; // Give each buffer a size of 15 bytes
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(64 == rlc1.get_buffer_state());
|
|
|
|
// Read PDUs from RLC1 (15 bytes each)
|
|
byte_buffer_t pdu_bufs[N_PDU_BUFS];
|
|
for (uint32_t i = 0; i < N_PDU_BUFS; i++) {
|
|
pdu_bufs[i].N_bytes = rlc1.read_pdu(pdu_bufs[i].msg, 15); // 12 bytes for header + payload
|
|
assert(pdu_bufs[i].N_bytes);
|
|
}
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Skip PDU one and two
|
|
for (uint32_t i = 0; i < N_PDU_BUFS; i++) {
|
|
if (i < 1 || i > 2) {
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_dl_am_ccch(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
// what PDU to retransmit is random but it must not be zero
|
|
assert(0 != rlc1.get_buffer_state());
|
|
|
|
// first round of retx, forcing resegmentation
|
|
byte_buffer_t retx[4];
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
assert(rlc1.get_buffer_state());
|
|
retx[i].N_bytes = rlc1.read_pdu(retx[i].msg, 8);
|
|
assert(retx[i].N_bytes);
|
|
|
|
// Write the last two segments to RLC2
|
|
if (i > 1) {
|
|
rlc2.write_pdu(retx[i].msg, retx[i].N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
cnt = 7;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
// Read status PDU from RLC2
|
|
assert(rlc2.get_buffer_state());
|
|
byte_buffer_t status_buf;
|
|
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes);
|
|
#endif
|
|
|
|
assert(15 == rlc1.get_buffer_state());
|
|
|
|
// second round of retx, reduce grant size to force different segment sizes
|
|
byte_buffer_t retx2[20];
|
|
for (uint32_t i = 0; i < 7; i++) {
|
|
assert(rlc1.get_buffer_state() != 0);
|
|
retx2[i].N_bytes = rlc1.read_pdu(retx2[i].msg, 9);
|
|
assert(retx2[i].N_bytes != 0);
|
|
rlc2.write_pdu(retx2[i].msg, retx2[i].N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_dl_am_ccch(retx[i].msg, retx[i].N_bytes);
|
|
#endif
|
|
}
|
|
|
|
// get BSR from RLC2
|
|
status_buf.N_bytes = rlc2.read_pdu(status_buf.msg, 10); // 10 bytes is enough to hold the status
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
#if HAVE_PCAP
|
|
pcap.write_ul_am_ccch(status_buf.msg, status_buf.N_bytes);
|
|
#endif
|
|
|
|
// check buffer states
|
|
if (rlc1.get_buffer_state() != 0) {
|
|
return -1;
|
|
};
|
|
if (rlc2.get_buffer_state() != 0) {
|
|
return -1;
|
|
};
|
|
|
|
// Check number of SDUs and their content
|
|
assert(tester.n_sdus == N_SDU_BUFS);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != sdu_size)
|
|
return -1;
|
|
for (uint32_t j = 0; j < N_SDU_BUFS; j++) {
|
|
if (tester.sdus[i]->msg[j] != i)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#if HAVE_PCAP
|
|
pcap.close();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool reset_test()
|
|
{
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 1 SDU of size 10 into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_buf = srslte::allocate_unique_buffer(*pool, true);
|
|
sdu_buf->msg[0] = 1; // Write the index into the buffer
|
|
sdu_buf->N_bytes = 100;
|
|
rlc1.write_sdu(std::move(sdu_buf));
|
|
|
|
// read 1 PDU from RLC1 and force segmentation
|
|
byte_buffer_t pdu_bufs;
|
|
len = rlc1.read_pdu(pdu_bufs.msg, 4);
|
|
pdu_bufs.N_bytes = len;
|
|
|
|
// reset RLC1
|
|
rlc1.stop();
|
|
|
|
// read another PDU segment from RLC1
|
|
len = rlc1.read_pdu(pdu_bufs.msg, 4);
|
|
pdu_bufs.N_bytes = len;
|
|
|
|
// now empty RLC buffer
|
|
len = rlc1.read_pdu(pdu_bufs.msg, 100);
|
|
pdu_bufs.N_bytes = len;
|
|
|
|
if (0 != rlc1.get_buffer_state()) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool resume_test()
|
|
{
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 1 SDU of size 10 into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_buf = srslte::allocate_unique_buffer(*pool, true);
|
|
sdu_buf->msg[0] = 1; // Write the index into the buffer
|
|
sdu_buf->N_bytes = 100;
|
|
rlc1.write_sdu(std::move(sdu_buf));
|
|
|
|
// read 1 PDU from RLC1 and force segmentation
|
|
byte_buffer_t pdu_bufs;
|
|
len = rlc1.read_pdu(pdu_bufs.msg, 4);
|
|
pdu_bufs.N_bytes = len;
|
|
|
|
// reestablish RLC1
|
|
rlc1.reestablish();
|
|
|
|
// resume RLC1
|
|
rlc1.resume();
|
|
|
|
// Buffer should be zero
|
|
if (0 != rlc1.get_buffer_state()) {
|
|
return -1;
|
|
}
|
|
|
|
// Do basic test
|
|
byte_buffer_t pdu_bufs_tx[NBUFS];
|
|
basic_test_tx(&rlc1, pdu_bufs_tx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool stop_test()
|
|
{
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// start thread reading
|
|
ul_writer writer(&rlc1);
|
|
writer.start(-2);
|
|
|
|
// let writer thread block on tx_queue
|
|
usleep(1e6);
|
|
|
|
// stop RLC1
|
|
rlc1.stop();
|
|
|
|
return 0;
|
|
}
|
|
|
|
// This test checks if status PDUs are generated even though the grant size may not
|
|
// be enough to fit all SNs that would need to be NACKed
|
|
bool status_pdu_test()
|
|
{
|
|
rlc_am_tester tester;
|
|
srslte::timer_handler timers(8);
|
|
int len = 0;
|
|
|
|
rlc_am_lte rlc1(rrc_log1, 1, &tester, &tester, &timers);
|
|
rlc_am_lte rlc2(rrc_log2, 1, &tester, &tester, &timers);
|
|
|
|
if (not rlc1.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
if (not rlc2.configure(rlc_config_t::default_rlc_am_config())) {
|
|
return -1;
|
|
}
|
|
|
|
// Push 5 SDUs into RLC1
|
|
byte_buffer_pool* pool = byte_buffer_pool::get_instance();
|
|
unique_byte_buffer_t sdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true);
|
|
sdu_bufs[i]->msg[0] = i; // Write the index into the buffer
|
|
sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte
|
|
rlc1.write_sdu(std::move(sdu_bufs[i]));
|
|
}
|
|
|
|
assert(13 == rlc1.get_buffer_state());
|
|
|
|
// Read 5 PDUs from RLC1 (1 byte each)
|
|
byte_buffer_t pdu_bufs[NBUFS];
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
len = rlc1.read_pdu(pdu_bufs[i].msg, 4); // 2 byte header + 1 byte payload
|
|
pdu_bufs[i].N_bytes = len;
|
|
}
|
|
|
|
assert(0 == rlc1.get_buffer_state());
|
|
|
|
// Only pass last PDUs to RLC2
|
|
for (int i = 0; i < NBUFS; i++) {
|
|
if (i == 4) {
|
|
rlc2.write_pdu(pdu_bufs[i].msg, pdu_bufs[i].N_bytes);
|
|
}
|
|
}
|
|
|
|
// Step timers until reordering timeout expires
|
|
int cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
uint32_t buffer_state = rlc2.get_buffer_state();
|
|
assert(8 == buffer_state);
|
|
|
|
// Read status PDU from RLC2
|
|
byte_buffer_t status_buf;
|
|
len = rlc2.read_pdu(status_buf.msg, 5); // provide only small grant
|
|
status_buf.N_bytes = len;
|
|
|
|
assert(status_buf.N_bytes != 0);
|
|
|
|
// check status PDU doesn't contain ACK_SN in NACK list
|
|
rlc_status_pdu_t status_pdu = {};
|
|
rlc_am_read_status_pdu(status_buf.msg, status_buf.N_bytes, &status_pdu);
|
|
if (rlc_am_is_valid_status_pdu(status_pdu) == false) {
|
|
return -1;
|
|
}
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
assert(3 == rlc1.get_buffer_state()); // 2 byte header + 1 byte payload
|
|
|
|
// Read the retx PDU from RLC1
|
|
byte_buffer_t retx;
|
|
len = rlc1.read_pdu(retx.msg, 10);
|
|
retx.N_bytes = len;
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx.msg, retx.N_bytes);
|
|
|
|
// Step timers until reordering timeout expires
|
|
cnt = 5;
|
|
while (cnt--) {
|
|
timers.step_all();
|
|
}
|
|
|
|
// get buffer state and status PDU again
|
|
status_buf.clear();
|
|
len = rlc2.read_pdu(status_buf.msg, 10); // big enough grant to fit full status PDU
|
|
status_buf.N_bytes = len;
|
|
assert(status_buf.N_bytes != 0);
|
|
|
|
// Write status PDU to RLC1
|
|
rlc1.write_pdu(status_buf.msg, status_buf.N_bytes);
|
|
|
|
// retransmission of remaining PDUs
|
|
for (int i = 0; i < 3; i++) {
|
|
retx.clear();
|
|
len = rlc1.read_pdu(retx.msg, 3);
|
|
retx.N_bytes = len;
|
|
|
|
// Write the retx PDU to RLC2
|
|
rlc2.write_pdu(retx.msg, retx.N_bytes);
|
|
}
|
|
|
|
assert(tester.n_sdus == NBUFS);
|
|
for (int i = 0; i < tester.n_sdus; i++) {
|
|
if (tester.sdus[i]->N_bytes != 1)
|
|
return -1;
|
|
if (*(tester.sdus[i]->msg) != i)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
rrc_log1->set_level(srslte::LOG_LEVEL_DEBUG);
|
|
rrc_log2->set_level(srslte::LOG_LEVEL_DEBUG);
|
|
rrc_log1->set_hex_limit(-1);
|
|
rrc_log2->set_hex_limit(-1);
|
|
|
|
if (basic_test()) {
|
|
printf("basic_test failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (concat_test()) {
|
|
printf("concat_test failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (segment_test(true)) {
|
|
printf("segment_test with in-order PDU reception failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (segment_test(false)) {
|
|
printf("segment_test with out-of-order PDU reception failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (retx_test()) {
|
|
printf("retx_test failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (segment_retx_test()) {
|
|
printf("segment_retx_test failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (resegment_test_1()) {
|
|
printf("resegment_test_1 failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (resegment_test_2()) {
|
|
printf("resegment_test_2 failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (resegment_test_3()) {
|
|
printf("resegment_test_3 failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (resegment_test_4()) {
|
|
printf("resegment_test_4 failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (resegment_test_5()) {
|
|
printf("resegment_test_5 failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (resegment_test_6()) {
|
|
printf("resegment_test_6 failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
rrc_log1->set_hex_limit(100);
|
|
rrc_log2->set_hex_limit(100);
|
|
if (resegment_test_7()) {
|
|
printf("resegment_test_7 failed\n");
|
|
exit(-1);
|
|
}
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (resegment_test_8()) {
|
|
printf("resegment_test_8 failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
rrc_log1->set_hex_limit(-1);
|
|
rrc_log2->set_hex_limit(-1);
|
|
|
|
if (reset_test()) {
|
|
printf("reset_test failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (stop_test()) {
|
|
printf("stop_test failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (resume_test()) {
|
|
printf("resume_test failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
if (status_pdu_test()) {
|
|
printf("status_pdu_test failed\n");
|
|
exit(-1);
|
|
};
|
|
byte_buffer_pool::get_instance()->cleanup();
|
|
|
|
return 0;
|
|
}
|