You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

394 lines
11 KiB
C++

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2014 The srsLTE Developers. See the
* COPYRIGHT file at the top-level directory of this distribution.
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* A copy of the GNU Lesser General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <uhd/usrp/multi_usrp.hpp>
#include <iostream>
#include <complex>
#include <cstdio>
#include <uhd/utils/msg.hpp>
#include <sys/time.h>
#include "cuhd_handler.hpp"
#include "srslte/cuhd/cuhd.h"
#define METADATA_VERBOSE
//#define HIDE_MESSAGES
void my_handler(uhd::msg::type_t type, const std::string & msg)
{
//handle the message...
}
typedef _Complex float complex_t;
#define SAMPLE_SZ sizeof(complex_t)
bool isLocked(void *h)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
std::vector < std::string > mb_sensors =
handler->usrp->get_mboard_sensor_names();
std::vector < std::string > rx_sensors =
handler->usrp->get_rx_sensor_names(0);
if (std::find(rx_sensors.begin(), rx_sensors.end(), "lo_locked") !=
rx_sensors.end()) {
return handler->usrp->get_rx_sensor("lo_locked", 0).to_bool();
} else if (std::find(mb_sensors.begin(), mb_sensors.end(), "ref_locked") !=
mb_sensors.end()) {
return handler->usrp->get_mboard_sensor("ref_locked", 0).to_bool();
} else {
usleep(500);
return true;
}
}
bool cuhd_rx_wait_lo_locked(void *h)
{
double report = 0.0;
while (isLocked(h) && report < 3000.0) {
report += 0.1;
usleep(1000);
}
return isLocked(h);
}
int cuhd_start_rx_stream(void *h)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
cmd.time_spec = handler->usrp->get_time_now();
cmd.stream_now = true;
handler->usrp->issue_stream_cmd(cmd);
return 0;
}
int cuhd_stop_rx_stream(void *h)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
cmd.time_spec = handler->usrp->get_time_now();
cmd.stream_now = true;
handler->usrp->issue_stream_cmd(cmd);
return 0;
}
void cuhd_flush_buffer(void *h)
{
int n;
_Complex float tmp[1024];
do {
n = cuhd_recv(h, tmp, 1024, 0);
} while (n > 0);
}
int cuhd_start_rx_stream_nsamples(void *h, uint32_t nsamples)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE);
cmd.time_spec = handler->usrp->get_time_now();
cmd.stream_now = true;
cmd.num_samps = nsamples;
handler->usrp->issue_stream_cmd(cmd);
return 0;
}
double cuhd_set_rx_gain_th(void *h, double gain)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
// round to avoid histeresis
gain = handler->rx_gain_range.clip(gain);
pthread_mutex_lock(&handler->mutex);
handler->new_rx_gain = gain;
pthread_cond_signal(&handler->cond);
pthread_mutex_unlock(&handler->mutex);
return gain;
}
/* This thread listens for set_rx_gain commands to the USRP */
static void* thread_gain_fcn(void *h) {
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
while(1) {
pthread_mutex_lock(&handler->mutex);
while(handler->cur_rx_gain == handler->new_rx_gain) {
pthread_cond_wait(&handler->cond, &handler->mutex);
}
handler->cur_rx_gain = handler->new_rx_gain;
pthread_mutex_unlock(&handler->mutex);
cuhd_set_rx_gain(h, handler->cur_rx_gain);
//printf("Set gain %.2f\n", handler->cur_rx_gain);
}
}
int cuhd_open_(char *args, void **h, bool create_thread_gain)
{
cuhd_handler *handler = new cuhd_handler();
std::string _args = std::string(args);
handler->usrp = uhd::usrp::multi_usrp::make(_args + ", master_clock_rate=30720000, num_recv_frames=512");
// handler->usrp = uhd::usrp::multi_usrp::make(_args + ", master_clock_rate=50000000" + ", num_recv_frames=512");
handler->usrp->set_clock_source("internal");
#ifdef HIDE_MESSAGES
uhd::msg::register_handler(my_handler);
#endif
std::string otw, cpu;
otw = "sc16";
cpu = "fc32";
uhd::stream_args_t stream_args(cpu, otw);
handler->rx_stream = handler->usrp->get_rx_stream(stream_args);
handler->tx_stream = handler->usrp->get_tx_stream(stream_args);
handler->rx_gain_range = handler->usrp->get_rx_gain_range();
*h = handler;
if (create_thread_gain) {
if (pthread_mutex_init(&handler->mutex, NULL)) {
return -1;
}
if (pthread_cond_init(&handler->cond, NULL)) {
return -1;
}
if (pthread_create(&handler->thread_gain, NULL, thread_gain_fcn, *h)) {
perror("pthread_create");
return -1;
}
}
return 0;
}
int cuhd_open(char *args, void **h) {
return cuhd_open_(args, h, false);
}
int cuhd_open_th(char *args, void **h) {
return cuhd_open_(args, h, true);
}
int cuhd_close(void *h)
{
cuhd_stop_rx_stream(h);
/** Something else to close the USRP?? */
return 0;
}
double cuhd_set_rx_srate(void *h, double freq)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
handler->usrp->set_rx_rate(freq);
return freq;
}
double cuhd_set_rx_gain(void *h, double gain)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
handler->usrp->set_rx_gain(gain);
return handler->usrp->get_rx_gain();
}
double cuhd_get_rx_gain(void *h)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
return handler->usrp->get_rx_gain();
}
double cuhd_set_rx_freq(void *h, double freq)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
handler->usrp->set_rx_freq(freq);
return freq;
}
double cuhd_set_rx_freq_offset(void *h, double freq, double off) {
cuhd_handler* handler = static_cast<cuhd_handler*>(h);
handler->usrp->set_rx_freq(uhd::tune_request_t(freq, off));
return handler->usrp->get_rx_freq();
}
int cuhd_recv(void *h, void *data, uint32_t nsamples, bool blocking)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
uhd::rx_metadata_t md;
uint32_t nof_packets = 0;
if (blocking) {
int n = 0, p;
complex_t *data_c = (complex_t *) data;
do {
p = handler->rx_stream->recv(&data_c[n], nsamples - n, md);
if (p == -1) {
return -1;
}
n += p;
#ifdef METADATA_VERBOSE
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
std::cout << "\nError code: " << md.to_pp_string() << "\n\n";
}
#endif
nof_packets++;
} while (n < nsamples &&
md.error_code == uhd::rx_metadata_t::ERROR_CODE_NONE &&
nof_packets < 10);
return nsamples;
} else {
return handler->rx_stream->recv(data, nsamples, md, 0.0);
}
}
int cuhd_recv_with_time(void *h,
void *data,
uint32_t nsamples,
bool blocking,
time_t *secs,
double *frac_secs)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
uhd::rx_metadata_t md;
uint32_t nof_packets = 0;
int ret = -1;
if (blocking) {
int n = 0, p;
complex_t *data_c = (complex_t *) data;
do {
p = handler->rx_stream->recv(&data_c[n], nsamples - n, md);
if (p == -1) {
return -1;
}
n += p;
#ifdef METADATA_VERBOSE
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
std::cout << "\nError code: " << md.to_pp_string() << "\n\n";
}
#endif
nof_packets++;
} while (n < nsamples &&
md.error_code == uhd::rx_metadata_t::ERROR_CODE_NONE &&
nof_packets < 10);
ret = nsamples;
} else {
ret = handler->rx_stream->recv(data, nsamples, md, 0.0);
}
if (secs && frac_secs) {
*secs = md.time_spec.get_full_secs();
*frac_secs = md.time_spec.get_frac_secs();
}
return ret;
}
double cuhd_set_tx_gain(void *h, double gain)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
handler->usrp->set_tx_gain(gain);
return handler->usrp->get_tx_gain();
}
double cuhd_set_tx_srate(void *h, double freq)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
handler->usrp->set_tx_rate(freq);
return handler->usrp->get_tx_rate();
}
double cuhd_set_tx_freq(void *h, double freq)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
handler->usrp->set_tx_freq(freq);
return handler->usrp->get_tx_freq();
}
double cuhd_set_tx_freq_offset(void *h, double freq, double off) {
cuhd_handler* handler = static_cast<cuhd_handler*>(h);
handler->usrp->set_tx_freq(uhd::tune_request_t(freq, off));
return handler->usrp->get_tx_freq();
}
void cuhd_get_time(void *h, time_t *secs, double *frac_secs) {
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
uhd::time_spec_t now = handler->usrp->get_time_now();
if (secs) {
*secs = now.get_full_secs();
}
if (frac_secs) {
*frac_secs = now.get_frac_secs();
}
}
int cuhd_send(void *h, void *data, uint32_t nsamples, bool blocking)
{
cuhd_handler *handler = static_cast < cuhd_handler * >(h);
uhd::tx_metadata_t md;
if (blocking) {
int n = 0, p;
complex_t *data_c = (complex_t *) data;
do {
p = handler->tx_stream->send(&data_c[n], nsamples - n, md);
if (p == -1) {
return -1;
}
n += p;
} while (n < nsamples);
return nsamples;
} else {
return handler->tx_stream->send(data, nsamples, md, 0.0);
}
}
int cuhd_send_timed(void *h,
void *data,
int nsamples,
time_t secs,
double frac_secs)
{
return cuhd_send_timed2(h, data, nsamples, secs, frac_secs, true, true);
}
int cuhd_send_timed2(void *h,
void *data,
int nsamples,
time_t secs,
double frac_secs,
bool is_start_of_burst,
bool is_end_of_burst)
{
cuhd_handler* handler = static_cast<cuhd_handler*>(h);
uhd::tx_metadata_t md;
md.start_of_burst = is_start_of_burst;
md.end_of_burst = is_end_of_burst;
md.has_time_spec = true;
md.time_spec = uhd::time_spec_t(secs, frac_secs);
return handler->tx_stream->send(data, nsamples, md);
}