You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srsRAN_4G/srsenb/test/mac/scheduler_test_common.cc

571 lines
20 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "scheduler_test_common.h"
#include "srsenb/hdr/stack/mac/scheduler.h"
#include "srsenb/hdr/stack/upper/common_enb.h"
#include "srslte/mac/pdu.h"
#include "sched_common_test_suite.h"
#include "sched_ue_ded_test_suite.h"
#include "srslte/common/test_common.h"
using namespace srsenb;
/***************************
* Random Utils
**************************/
std::default_random_engine rand_gen;
float ::srsenb::randf()
{
static std::uniform_real_distribution<float> unif_dist(0, 1.0);
return unif_dist(rand_gen);
}
void ::srsenb::set_randseed(uint64_t seed)
{
rand_gen = std::default_random_engine(seed);
}
std::default_random_engine& ::srsenb::get_rand_gen()
{
return rand_gen;
}
/***********************
* User State Tester
***********************/
ue_ctxt_test::ue_ctxt_test(uint16_t rnti_,
srslte::tti_point prach_tti_,
const ue_ctxt_test_cfg& cfg_,
ue_sim& ue_ctxt_) :
sim_cfg(cfg_),
rnti(rnti_),
current_tti_rx(prach_tti_),
ue_ctxt(&ue_ctxt_)
{
set_cfg(cfg_.ue_cfg);
}
int ue_ctxt_test::set_cfg(const sched::ue_cfg_t& ue_cfg_)
{
for (uint32_t ue_cc_idx = 0; ue_cc_idx < ue_cfg_.supported_cc_list.size(); ++ue_cc_idx) {
const auto& cc = ue_cfg_.supported_cc_list[ue_cc_idx];
if (ue_cc_idx >= active_ccs.size()) {
// new cell
active_ccs.emplace_back();
active_ccs.back().ue_cc_idx = active_ccs.size() - 1;
active_ccs.back().enb_cc_idx = cc.enb_cc_idx;
} else {
CONDERROR(cc.enb_cc_idx != active_ccs[ue_cc_idx].enb_cc_idx, "changing ccs not supported\n");
}
}
user_cfg = ue_cfg_;
return SRSLTE_SUCCESS;
}
ue_ctxt_test::cc_ue_ctxt_test* ue_ctxt_test::get_cc_state(uint32_t enb_cc_idx)
{
auto it = std::find_if(active_ccs.begin(), active_ccs.end(), [enb_cc_idx](const cc_ue_ctxt_test& c) {
return c.enb_cc_idx == enb_cc_idx;
});
return it == active_ccs.end() ? nullptr : &(*it);
}
int ue_ctxt_test::new_tti(sched* sched_ptr, srslte::tti_point tti_rx)
{
current_tti_rx = tti_rx;
TESTASSERT(fwd_pending_acks(sched_ptr) == SRSLTE_SUCCESS);
if (sim_cfg.periodic_cqi and (tti_rx.to_uint() % sim_cfg.cqi_Npd) == sim_cfg.cqi_Noffset) {
for (auto& cc : active_ccs) {
sched_ptr->dl_cqi_info(
tti_rx.to_uint(), rnti, cc.enb_cc_idx, std::uniform_int_distribution<uint32_t>{5, 24}(get_rand_gen()));
sched_ptr->ul_cqi_info(
tti_rx.to_uint(), rnti, cc.enb_cc_idx, std::uniform_int_distribution<uint32_t>{5, 24}(get_rand_gen()), 0);
}
}
return SRSLTE_SUCCESS;
}
int ue_ctxt_test::fwd_pending_acks(sched* sched_ptr)
{
/* Ack DL HARQs */
// Checks:
// - Pending DL ACK {cc_idx,rnti,tb} exist in scheduler harqs
// - Pending DL ACK tti_ack correspond to the expected based on tti_tx_dl
while (not pending_dl_acks.empty()) {
auto& p = pending_dl_acks.top();
if (p.tti_ack > current_tti_rx) {
break;
}
auto& h = ue_ctxt->get_ctxt().cc_list[p.ue_cc_idx].dl_harqs[p.pid];
CONDERROR(not h.active, "The ACKed DL Harq pid=%d is not active\n", h.pid);
CONDERROR(to_tx_dl(h.last_tti_rx) + FDD_HARQ_DELAY_DL_MS != p.tti_ack, "dl ack hasn't arrived when expected\n");
CONDERROR(sched_ptr->dl_ack_info(current_tti_rx.to_uint(), rnti, p.cc_idx, p.tb, p.ack) <= 0,
"The ACKed DL Harq pid=%d does not exist.\n",
p.pid);
if (p.ack) {
log_h->info("DL ACK tti=%u rnti=0x%x pid=%d\n", current_tti_rx.to_uint(), rnti, p.pid);
}
if (p.ack or ue_ctxt->get_ctxt().is_last_dl_retx(p.ue_cc_idx, p.pid)) {
h.active = false;
}
pending_dl_acks.pop();
}
/* Ack UL HARQs */
while (not pending_ul_acks.empty()) {
auto& p = pending_ul_acks.top();
if (p.tti_ack > current_tti_rx) {
break;
}
auto& h = ue_ctxt->get_ctxt().cc_list[p.ue_cc_idx].ul_harqs[p.pid];
CONDERROR(not h.active, "The ACKed UL Harq pid=%d is not active\n", h.pid);
CONDERROR(to_tx_ul(h.last_tti_rx) != p.tti_ack, "UL CRC wasn't set when expected\n");
CONDERROR(sched_ptr->ul_crc_info(current_tti_rx.to_uint(), rnti, p.cc_idx, p.ack) != SRSLTE_SUCCESS,
"Failed UL ACK\n");
if (p.ack) {
log_h->info("UL ACK tti=%u rnti=0x%x pid=%d\n", current_tti_rx.to_uint(), rnti, p.pid);
}
pending_ul_acks.pop();
}
return SRSLTE_SUCCESS;
}
int ue_ctxt_test::test_sched_result(uint32_t enb_cc_idx,
const sched::dl_sched_res_t& dl_result,
const sched::ul_sched_res_t& ul_result)
{
cc_result result{enb_cc_idx, &dl_result, &ul_result};
TESTASSERT(test_scell_activation(result) == SRSLTE_SUCCESS);
TESTASSERT(schedule_acks(result) == SRSLTE_SUCCESS);
return SRSLTE_SUCCESS;
}
/**
* Tests whether the SCells are correctly activated. Individual tests:
* - no DL and UL allocations in inactive carriers
*/
int ue_ctxt_test::test_scell_activation(cc_result result)
{
auto cc_it =
std::find_if(user_cfg.supported_cc_list.begin(),
user_cfg.supported_cc_list.end(),
[&result](const sched::ue_cfg_t::cc_cfg_t& cc) { return cc.enb_cc_idx == result.enb_cc_idx; });
if (cc_it == user_cfg.supported_cc_list.end() or not cc_it->active) {
// cell not active. Ensure data allocations are not made
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
CONDERROR(result.dl_result->data[i].dci.rnti == rnti, "Allocated user in inactive carrier\n");
}
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
CONDERROR(result.ul_result->pusch[i].dci.rnti == rnti, "Allocated user in inactive carrier\n");
}
} else {
uint32_t ue_cc_idx = std::distance(user_cfg.supported_cc_list.begin(), cc_it);
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
if (result.dl_result->data[i].dci.rnti == rnti) {
CONDERROR(result.dl_result->data[i].dci.ue_cc_idx != ue_cc_idx, "User cell index was incorrectly set\n");
}
}
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
if (result.ul_result->pusch[i].dci.rnti == rnti) {
CONDERROR(result.ul_result->pusch[i].dci.ue_cc_idx != ue_cc_idx, "The user cell index was incorrectly set\n");
}
}
}
return SRSLTE_SUCCESS;
}
int ue_ctxt_test::schedule_acks(cc_result result)
{
auto* cc = get_cc_state(result.enb_cc_idx);
if (cc == nullptr) {
return SRSLTE_SUCCESS;
}
/* Schedule DL ACKs */
for (uint32_t i = 0; i < result.dl_result->nof_data_elems; ++i) {
const auto& data = result.dl_result->data[i];
if (data.dci.rnti != rnti) {
continue;
}
pending_ack_t ack_data;
ack_data.tti_ack = to_tx_dl_ack(current_tti_rx);
ack_data.cc_idx = result.enb_cc_idx;
ack_data.tb = 0;
ack_data.pid = data.dci.pid;
ack_data.ue_cc_idx = data.dci.ue_cc_idx;
uint32_t nof_retx = sched_utils::get_nof_retx(data.dci.tb[0].rv); // 0..3
ack_data.ack = randf() < sim_cfg.prob_dl_ack_mask[nof_retx % sim_cfg.prob_dl_ack_mask.size()];
pending_dl_acks.push(ack_data);
}
/* Schedule UL ACKs */
for (uint32_t i = 0; i < result.ul_result->nof_dci_elems; ++i) {
const auto& pusch = result.ul_result->pusch[i];
if (pusch.dci.rnti != rnti) {
continue;
}
pending_ack_t ack_data;
ack_data.tti_ack = to_tx_ul(current_tti_rx);
ack_data.cc_idx = result.enb_cc_idx;
ack_data.ue_cc_idx = pusch.dci.ue_cc_idx;
ack_data.tb = 0;
ack_data.pid = to_tx_ul(current_tti_rx).to_uint() % (FDD_HARQ_DELAY_DL_MS + FDD_HARQ_DELAY_UL_MS);
uint32_t nof_retx = sched_utils::get_nof_retx(pusch.dci.tb.rv); // 0..3
ack_data.ack = randf() < sim_cfg.prob_ul_ack_mask[nof_retx % sim_cfg.prob_ul_ack_mask.size()];
pending_ul_acks.push(ack_data);
}
return SRSLTE_SUCCESS;
}
void user_state_sched_tester::new_tti(sched* sched_ptr, uint32_t tti_rx)
{
tic++;
for (auto& u : users) {
u.second.new_tti(sched_ptr, srslte::tti_point{tti_rx});
}
}
int user_state_sched_tester::add_user(uint16_t rnti, uint32_t preamble_idx, const ue_ctxt_test_cfg& cfg_)
{
CONDERROR(!srslte_prach_tti_opportunity_config_fdd(
cell_params[cfg_.ue_cfg.supported_cc_list[0].enb_cc_idx].prach_config, tic.to_uint(), -1),
"New user added in a non-PRACH TTI\n");
TESTASSERT(users.count(rnti) == 0);
sim_users.add_user(rnti, generate_rach_ue_cfg(cfg_.ue_cfg), tic, preamble_idx);
ue_ctxt_test ue{rnti, tic, cfg_, sim_users.at(rnti)};
users.insert(std::make_pair(rnti, ue));
return SRSLTE_SUCCESS;
}
int user_state_sched_tester::user_reconf(uint16_t rnti, const srsenb::sched_interface::ue_cfg_t& ue_cfg)
{
TESTASSERT(users.count(rnti) > 0);
users.at(rnti).set_cfg(ue_cfg);
sim_users.ue_recfg(rnti, ue_cfg);
return SRSLTE_SUCCESS;
}
int user_state_sched_tester::bearer_cfg(uint16_t rnti,
uint32_t lcid,
const srsenb::sched_interface::ue_bearer_cfg_t& bearer_cfg)
{
auto it = users.find(rnti);
TESTASSERT(it != users.end());
it->second.user_cfg.ue_bearers[lcid] = bearer_cfg;
users.at(rnti).drb_cfg_flag = false;
for (uint32_t i = 2; i < it->second.user_cfg.ue_bearers.size(); ++i) {
if (it->second.user_cfg.ue_bearers[i].direction != sched_interface::ue_bearer_cfg_t::IDLE) {
users.at(rnti).drb_cfg_flag = true;
}
}
return SRSLTE_SUCCESS;
}
void user_state_sched_tester::rem_user(uint16_t rnti)
{
users.erase(rnti);
sim_users.rem_user(rnti);
}
int user_state_sched_tester::test_all(const sf_output_res_t& sf_out)
{
// Perform UE-dedicated sched result tests
sim_enb_ctxt_t enb_ctxt;
enb_ctxt.cell_params = &cell_params;
enb_ctxt.ue_db = sim_users.get_ues_ctxt();
TESTASSERT(test_all_ues(enb_ctxt, sf_out) == SRSLTE_SUCCESS);
// Update Simulated UEs state
sim_users.update(sf_out);
for (uint32_t enb_cc_idx = 0; enb_cc_idx < enb_ctxt.cell_params->size(); ++enb_cc_idx) {
for (auto& u : users) {
TESTASSERT(u.second.test_sched_result(
enb_cc_idx, sf_out.dl_cc_result[enb_cc_idx], sf_out.ul_cc_result[enb_cc_idx]) == SRSLTE_SUCCESS);
}
}
return SRSLTE_SUCCESS;
}
/***********************
* Sim Stats Storage
**********************/
void sched_result_stats::process_results(const tti_params_t& tti_params,
const std::vector<sched_interface::dl_sched_res_t>& dl_result,
const std::vector<sched_interface::ul_sched_res_t>& ul_result)
{
for (uint32_t ccidx = 0; ccidx < dl_result.size(); ++ccidx) {
for (uint32_t i = 0; i < dl_result[ccidx].nof_data_elems; ++i) {
user_stats* user = get_user(dl_result[ccidx].data[i].dci.rnti);
user->tot_dl_sched_data[ccidx] += dl_result[ccidx].data[i].tbs[0];
user->tot_dl_sched_data[ccidx] += dl_result[ccidx].data[i].tbs[1];
}
for (uint32_t i = 0; i < ul_result[ccidx].nof_dci_elems; ++i) {
user_stats* user = get_user(ul_result[ccidx].pusch[i].dci.rnti);
user->tot_ul_sched_data[ccidx] += ul_result[ccidx].pusch[i].tbs;
}
}
}
sched_result_stats::user_stats* sched_result_stats::get_user(uint16_t rnti)
{
if (users.count(rnti) != 0) {
return &users[rnti];
}
users[rnti].rnti = rnti;
users[rnti].tot_dl_sched_data.resize(cell_params.size(), 0);
users[rnti].tot_ul_sched_data.resize(cell_params.size(), 0);
return &users[rnti];
}
/***********************
* Common Sched Tester
**********************/
const sched::ue_cfg_t* common_sched_tester::get_current_ue_cfg(uint16_t rnti) const
{
return ue_tester->get_user_cfg(rnti);
}
int common_sched_tester::sim_cfg(sim_sched_args args)
{
sim_args0 = std::move(args);
sched::cell_cfg(sim_args0.cell_cfg); // call parent cfg
sched::set_sched_cfg(&sim_args0.sched_args);
ue_tester.reset(new user_state_sched_tester{sim_args0.cell_cfg});
sched_stats.reset(new sched_result_stats{sim_args0.cell_cfg});
tester_log = sim_args0.sim_log;
return SRSLTE_SUCCESS;
}
int common_sched_tester::add_user(uint16_t rnti, const ue_ctxt_test_cfg& ue_cfg_)
{
CONDERROR(ue_cfg(rnti, generate_rach_ue_cfg(ue_cfg_.ue_cfg)) != SRSLTE_SUCCESS,
"Configuring new user rnti=0x%x to sched\n",
rnti);
// CONDERROR(!srslte_prach_tti_opportunity_config_fdd(
// sched_cell_params[CARRIER_IDX].cfg.prach_config, tti_info.tti_params.tti_rx, -1),
// "New user added in a non-PRACH TTI\n");
dl_sched_rar_info_t rar_info = {};
rar_info.prach_tti = tti_info.tti_params.tti_rx;
rar_info.temp_crnti = rnti;
rar_info.msg3_size = 7;
rar_info.preamble_idx = tti_info.nof_prachs++;
uint32_t pcell_idx = ue_cfg_.ue_cfg.supported_cc_list[0].enb_cc_idx;
dl_rach_info(pcell_idx, rar_info);
ue_tester->add_user(rnti, rar_info.preamble_idx, ue_cfg_);
tester_log->info("Adding user rnti=0x%x\n", rnti);
return SRSLTE_SUCCESS;
}
int common_sched_tester::reconf_user(uint16_t rnti, const sched_interface::ue_cfg_t& ue_cfg_)
{
CONDERROR(not ue_tester->user_exists(rnti), "User must already exist to be configured\n");
CONDERROR(ue_cfg(rnti, ue_cfg_) != SRSLTE_SUCCESS, "Configuring new user rnti=0x%x to sched\n", rnti);
ue_tester->user_reconf(rnti, ue_cfg_);
return SRSLTE_SUCCESS;
}
void common_sched_tester::rem_user(uint16_t rnti)
{
tester_log->info("Removing user rnti=0x%x\n", rnti);
sched::ue_rem(rnti);
ue_tester->rem_user(rnti);
}
void common_sched_tester::new_test_tti()
{
if (not tic.is_valid()) {
tic = srslte::tti_point{sim_args0.start_tti};
} else {
tic++;
}
tti_info.tti_params = tti_params_t{tic.to_uint()};
tti_info.nof_prachs = 0;
tti_info.dl_sched_result.clear();
tti_info.ul_sched_result.clear();
tti_info.dl_sched_result.resize(sched_cell_params.size());
tti_info.ul_sched_result.resize(sched_cell_params.size());
tester_log->step(tti_info.tti_params.tti_rx);
}
int common_sched_tester::process_results()
{
// Perform common eNB result tests
sf_output_res_t sf_out{sched_cell_params,
srslte::tti_point{tti_info.tti_params.tti_rx},
tti_info.ul_sched_result,
tti_info.dl_sched_result};
TESTASSERT(test_all_common(sf_out) == SRSLTE_SUCCESS);
TESTASSERT(ue_tester->test_all(sf_out) == SRSLTE_SUCCESS);
sched_stats->process_results(tti_info.tti_params, tti_info.dl_sched_result, tti_info.ul_sched_result);
return SRSLTE_SUCCESS;
}
int common_sched_tester::process_tti_events(const tti_ev& tti_ev)
{
for (const tti_ev::user_cfg_ev& ue_ev : tti_ev.user_updates) {
// There is a new configuration
if (ue_ev.ue_sim_cfg != nullptr) {
if (not ue_tester->user_exists(ue_ev.rnti)) {
// new user
TESTASSERT(add_user(ue_ev.rnti, *ue_ev.ue_sim_cfg) == SRSLTE_SUCCESS);
} else {
// reconfiguration
TESTASSERT(reconf_user(ue_ev.rnti, ue_ev.ue_sim_cfg->ue_cfg) == SRSLTE_SUCCESS);
}
}
// There is a user to remove
if (ue_ev.rem_user) {
rem_user(ue_ev.rnti);
}
// configure bearers
if (ue_ev.bearer_cfg != nullptr) {
CONDERROR(not ue_tester->user_exists(ue_ev.rnti), "User rnti=0x%x does not exist\n", ue_ev.rnti);
// TODO: Instantiate more bearers
bearer_ue_cfg(ue_ev.rnti, 0, ue_ev.bearer_cfg.get());
}
const ue_ctxt_test* user = ue_tester->get_user_ctxt(ue_ev.rnti);
if (user != nullptr) {
const auto& ue_sim_ctxt = user->ue_ctxt->get_ctxt();
if (not ue_sim_ctxt.msg4_tti_rx.is_valid() and ue_sim_ctxt.msg3_tti_rx.is_valid() and
to_tx_ul(ue_sim_ctxt.msg3_tti_rx) <= tic) {
// Msg3 has been received but Msg4 has not been yet transmitted
// Setup default UE config
reconf_user(user->rnti, generate_setup_ue_cfg(sim_args0.default_ue_sim_cfg.ue_cfg));
// Schedule RRC Setup and ConRes CE
uint32_t pending_dl_new_data = ue_db[ue_ev.rnti].get_pending_dl_new_data();
if (pending_dl_new_data == 0) {
uint32_t lcid = RB_ID_SRB0; // Use SRB0 to schedule Msg4
dl_rlc_buffer_state(ue_ev.rnti, lcid, 50, 0);
dl_mac_buffer_state(ue_ev.rnti, (uint32_t)srslte::dl_sch_lcid::CON_RES_ID);
} else {
// Let SRB0 Msg4 get fully transmitted
}
}
}
// push UL SRs and DL packets
if (ue_ev.buffer_ev != nullptr) {
CONDERROR(user == nullptr, "TESTER ERROR: Trying to schedule data for user that does not exist\n");
const auto& ue_sim_ctxt = user->ue_ctxt->get_ctxt();
if (ue_ev.buffer_ev->dl_data > 0 and ue_sim_ctxt.msg4_tti_rx.is_valid()) {
// If Msg4 has already been tx and there DL data to transmit
uint32_t lcid = RB_ID_DRB1;
uint32_t pending_dl_new_data = ue_db[ue_ev.rnti].get_pending_dl_new_data();
if (user->drb_cfg_flag or pending_dl_new_data == 0) {
// If RRCSetup finished
if (not user->drb_cfg_flag) {
reconf_user(user->rnti, sim_args0.default_ue_sim_cfg.ue_cfg);
// setup lcid==drb1 bearer
sched::ue_bearer_cfg_t cfg = {};
cfg.direction = ue_bearer_cfg_t::BOTH;
cfg.group = 1;
ue_tester->bearer_cfg(ue_ev.rnti, lcid, cfg);
bearer_ue_cfg(ue_ev.rnti, lcid, &cfg);
}
// DRB is set. Update DL buffer
uint32_t tot_dl_data = pending_dl_new_data + ue_ev.buffer_ev->dl_data; // TODO: derive pending based on rx
dl_rlc_buffer_state(ue_ev.rnti, lcid, tot_dl_data, 0); // TODO: Check retx_queue
} else {
// Let SRB0 get emptied
}
}
if (ue_ev.buffer_ev->sr_data > 0 and user->drb_cfg_flag) {
uint32_t tot_ul_data =
ue_db[ue_ev.rnti].get_pending_ul_new_data(tti_info.tti_params.tti_tx_ul, -1) + ue_ev.buffer_ev->sr_data;
uint32_t lcg = 1;
ul_bsr(ue_ev.rnti, lcg, tot_ul_data);
}
}
}
return SRSLTE_SUCCESS;
}
int common_sched_tester::run_tti(const tti_ev& tti_events)
{
new_test_tti();
tester_log->info("---- tti=%u | nof_ues=%zd ----\n", tic.to_uint(), ue_db.size());
ue_tester->new_tti(this, tti_info.tti_params.tti_rx);
process_tti_events(tti_events);
before_sched();
// Call scheduler for all carriers
tti_info.dl_sched_result.resize(sched_cell_params.size());
for (uint32_t i = 0; i < sched_cell_params.size(); ++i) {
dl_sched(tti_info.tti_params.tti_tx_dl, i, tti_info.dl_sched_result[i]);
}
tti_info.ul_sched_result.resize(sched_cell_params.size());
for (uint32_t i = 0; i < sched_cell_params.size(); ++i) {
ul_sched(tti_info.tti_params.tti_tx_ul, i, tti_info.ul_sched_result[i]);
}
process_results();
tti_count++;
return SRSLTE_SUCCESS;
}
int common_sched_tester::test_next_ttis(const std::vector<tti_ev>& tti_events)
{
while (tti_count < tti_events.size()) {
TESTASSERT(run_tti(tti_events[tti_count]) == SRSLTE_SUCCESS);
}
return SRSLTE_SUCCESS;
}