You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

956 lines
32 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_TTCN3_SYSSIM_H
#define SRSUE_TTCN3_SYSSIM_H
#include "dut_utils.h"
#include "srslte/common/netsource_handler.h"
#include "srslte/common/pdu_queue.h"
#include "srslte/common/threads.h"
#include "srslte/upper/pdcp.h"
#include "srslte/upper/rlc.h"
#include "ttcn3_ip_ctrl_interface.h"
#include "ttcn3_ip_sock_interface.h"
#include "ttcn3_srb_interface.h"
#include "ttcn3_sys_interface.h"
#include "ttcn3_ue.h"
#include "ttcn3_ut_interface.h"
#include <srslte/interfaces/ue_interfaces.h>
#define TTCN3_CRNTI (0x1001)
class ttcn3_syssim : public thread,
public syssim_interface_phy,
public ss_ut_interface,
public ss_sys_interface,
public ss_srb_interface,
public rrc_interface_rlc,
public rlc_interface_pdcp,
public rrc_interface_pdcp,
public srslte::pdu_queue::process_callback
{
public:
ttcn3_syssim(srslte::logger_file* logger_file_) :
mac_msg_ul(20, &ss_mac_log),
mac_msg_dl(20, &ss_mac_log),
timers(8),
pdus(128),
logger(logger_file_),
logger_file(logger_file_),
pool(byte_buffer_pool::get_instance()),
thread("TTCN3_SYSSIM"),
rlc(&ss_rlc_log),
pdcp(&ss_pdcp_log){};
~ttcn3_syssim(){};
void init(const all_args_t& args_)
{
std::lock_guard<std::mutex> lock(mutex);
args = args_;
// Make sure to get SS logging as well
if (args.log.filename == "stdout") {
logger = &logger_stdout;
}
// init and configure logging
log.init("SS ", logger);
ut_log.init("UT ", logger);
sys_log.init("SYS ", logger);
ip_sock_log.init("IP_S", logger);
ip_ctrl_log.init("IP_C", logger);
srb_log.init("SRB ", logger);
ss_mac_log.init("SS-MAC", logger);
ss_rlc_log.init("SS-RLC", logger);
ss_pdcp_log.init("SS-PDCP", logger);
log.set_level(args.log.all_level);
ut_log.set_level(args.log.all_level);
sys_log.set_level(args.log.all_level);
ip_sock_log.set_level(args.log.all_level);
ip_ctrl_log.set_level(args.log.all_level);
srb_log.set_level(args.log.all_level);
ss_mac_log.set_level(args.log.all_level);
ss_rlc_log.set_level(args.log.all_level);
ss_pdcp_log.set_level(args.log.all_level);
log.set_hex_limit(args.log.all_hex_limit);
ut_log.set_hex_limit(args.log.all_hex_limit);
sys_log.set_hex_limit(args.log.all_hex_limit);
ip_sock_log.set_hex_limit(args.log.all_hex_limit);
ip_ctrl_log.set_hex_limit(args.log.all_hex_limit);
srb_log.set_hex_limit(args.log.all_hex_limit);
ss_mac_log.set_hex_limit(args.log.all_hex_limit);
ss_rlc_log.set_hex_limit(args.log.all_hex_limit);
ss_pdcp_log.set_hex_limit(args.log.all_hex_limit);
// init system interfaces to tester
ut.init(this, &ut_log, "0.0.0.0", 2222);
sys.init(this, &sys_log, "0.0.0.0", 2223);
ip_sock.init(&ip_sock_log, "0.0.0.0", 2224);
ip_ctrl.init(&ip_ctrl_log, "0.0.0.0", 2225);
srb.init(this, &srb_log, "0.0.0.0", 2226);
ut.start(-2);
sys.start(-2);
ip_sock.start(-2);
ip_ctrl.start(-2);
srb.start(-2);
pdus.init(this, &log);
rlc.init(&pdcp, this, &timers, 0 /* RB_ID_SRB0 */);
pdcp.init(&rlc, this, nullptr);
}
void stop()
{
std::lock_guard<std::mutex> lock(mutex);
running = false;
if (ue != NULL) {
ue->stop();
}
// Stopping system interface
ut.stop();
sys.stop();
ip_sock.stop();
ip_ctrl.stop();
srb.stop();
}
// Internal function called with acquired lock
void reset()
{
rlc.reset();
pdcp.reset();
cells.clear();
pcell_idx = -1;
}
// Called from UT before starting testcase
void tc_start(const char* name)
{
std::lock_guard<std::mutex> lock(mutex);
if (ue == nullptr) {
// strip testsuite name
std::string tc_name = get_tc_name(name);
// Make a copy of the UE args for this run
all_args_t local_args = args;
// set up logging
if (args.log.filename == "stdout") {
logger = &logger_stdout;
} else {
logger_file->init(get_filename_with_tc_name(local_args.log.filename, run_id, tc_name).c_str(), -1);
logger = logger_file;
}
log.info("Initializing UE ID=%d for TC=%s\n", run_id, tc_name.c_str());
log.console("Initializing UE ID=%d for TC=%s\n", run_id, tc_name.c_str());
// Patch UE config
local_args.stack.pcap.filename = get_filename_with_tc_name(args.stack.pcap.filename, run_id, tc_name);
local_args.stack.pcap.nas_filename = get_filename_with_tc_name(args.stack.pcap.nas_filename, run_id, tc_name);
// bring up UE
ue = std::unique_ptr<ttcn3_ue>(new ttcn3_ue());
if (ue->init(local_args, logger, this, tc_name)) {
ue->stop();
ue.reset(nullptr);
std::string err("Couldn't initialize UE.\n");
log.error("%s\n", err.c_str());
log.console("%s\n", err.c_str());
return;
}
// Start simulator thread
running = true;
start();
} else {
log.error("UE hasn't been deallocated properly because TC didn't finish correctly.\n");
log.console("UE hasn't been deallocated properly because TC didn't finish correctly.\n");
}
}
// Called from UT to terminate the testcase
void tc_end()
{
// ask periodic thread to stop before locking mutex
running = false;
std::lock_guard<std::mutex> lock(mutex);
if (ue != nullptr) {
log.info("Deinitializing UE ID=%d\n", run_id);
log.console("Deinitializing UE ID=%d\n", run_id);
ue->stop();
// wait until SS main thread has terminated before resetting UE
wait_thread_finish();
ue.reset();
// Reset SS' RLC and PDCP
reset();
logger_file->stop();
run_id++;
} else {
log.error("UE is not allocated. Nothing needs to be done.\n");
log.console("UE is not allocated. Nothing needs to be done.\n");
}
}
void power_off_ue()
{
// only return after new UE instance is up and running
}
// Called from outside
void switch_on_ue() { event_queue.push(UE_SWITCH_ON); }
void switch_off_ue() { event_queue.push(UE_SWITCH_OFF); }
void enable_data() { event_queue.push(ENABLE_DATA); }
void disable_data() { event_queue.push(DISABLE_DATA); }
// Called from PHY but always from the SS main thread with lock being hold
void prach_indication(uint32_t preamble_index_, const uint32_t& cell_id)
{
// verify that UE intends to send PRACH on current Pcell
if (cells[pcell_idx]->cell.id != cell_id) {
log.error(
"UE is attempting to PRACH on pci=%d while current Pcell is pci=%d\n", cell_id, cells[pcell_idx]->cell.id);
return;
}
// store TTI for providing UL grant for Msg3 transmission
prach_tti = tti;
prach_preamble_index = preamble_index_;
}
// Called from PHY but always from the SS main thread with lock being hold
void sr_req(uint32_t tti_tx)
{
log.info("Received SR from PHY\n");
sr_tti = tti_tx;
}
// Called from PHY but always from the SS main thread with lock being hold
void tx_pdu(const uint8_t* payload, const int len, const uint32_t tx_tti)
{
if (payload == NULL) {
ss_mac_log.error("Received NULL as PDU payload. Dropping.\n");
return;
}
// Parse MAC
mac_msg_ul.init_rx(len, true);
mac_msg_ul.parse_packet((uint8_t*)payload);
while (mac_msg_ul.next()) {
assert(mac_msg_ul.get());
if (mac_msg_ul.get()->is_sdu()) {
// Route logical channel
ss_mac_log.info_hex(mac_msg_ul.get()->get_sdu_ptr(),
mac_msg_ul.get()->get_payload_size(),
"PDU: rnti=0x%x, lcid=%d, %d bytes\n",
0xdead,
mac_msg_ul.get()->get_sdu_lcid(),
mac_msg_ul.get()->get_payload_size());
// Push PDU to our own RLC (needed to handle status reporting, etc. correctly
ss_mac_log.info_hex(mac_msg_ul.get()->get_sdu_ptr(),
mac_msg_ul.get()->get_payload_size(),
"Route PDU to LCID=%d (%d B)\n",
mac_msg_ul.get()->get_sdu_lcid(),
mac_msg_ul.get()->get_payload_size());
rlc.write_pdu(
mac_msg_ul.get()->get_sdu_lcid(), mac_msg_ul.get()->get_sdu_ptr(), mac_msg_ul.get()->get_payload_size());
// Save contention resolution if lcid == 0
if (mac_msg_ul.get()->get_sdu_lcid() == 0) {
int nbytes = srslte::sch_subh::MAC_CE_CONTRES_LEN;
if (mac_msg_ul.get()->get_payload_size() >= (uint32_t)nbytes) {
uint8_t* ue_cri_ptr = (uint8_t*)&conres_id;
uint8_t* pkt_ptr = mac_msg_ul.get()->get_sdu_ptr(); // Warning here: we want to include the
for (int i = 0; i < nbytes; i++) {
ue_cri_ptr[nbytes - i - 1] = pkt_ptr[i];
}
ss_mac_log.info_hex(ue_cri_ptr, nbytes, "Contention resolution ID:\n");
} else {
ss_mac_log.error("Received CCCH UL message of invalid size=%d bytes\n",
mac_msg_ul.get()->get_payload_size());
}
}
}
}
mac_msg_ul.reset();
/* Process CE after all SDUs because we need to update BSR after */
bool bsr_received = false;
while (mac_msg_ul.next()) {
assert(mac_msg_ul.get());
if (!mac_msg_ul.get()->is_sdu()) {
// Process MAC Control Element
bsr_received |= process_ce(mac_msg_ul.get());
}
}
}
// Internal function called from main thread
void send_rar(uint32_t preamble_index)
{
log.info("Sending RAR for RAPID=%d\n", preamble_index);
// Prepare RAR grant
uint8_t grant_buffer[64] = {};
srslte_dci_rar_grant_t rar_grant = {};
rar_grant.tpc_pusch = 3;
srslte_dci_rar_pack(&rar_grant, grant_buffer);
// Create MAC PDU and add RAR subheader
srslte::rar_pdu rar_pdu;
rar_buffer.clear();
const int rar_pdu_len = 64;
rar_pdu.init_tx(&rar_buffer, rar_pdu_len);
rar_pdu.set_backoff(11); // Backoff of 480ms to prevent UE from PRACHing too fast
if (rar_pdu.new_subh()) {
rar_pdu.get()->set_rapid(preamble_index);
rar_pdu.get()->set_ta_cmd(0);
rar_pdu.get()->set_temp_crnti(crnti);
rar_pdu.get()->set_sched_grant(grant_buffer);
}
rar_pdu.write_packet(rar_buffer.msg);
rar_buffer.N_bytes = rar_pdu_len;
// Prepare grant and pass all to MAC
mac_interface_phy_lte::mac_grant_dl_t dl_grant = {};
dl_grant.pid = get_pid(tti);
dl_grant.rnti = 0x1; // must be a valid RAR-RNTI
dl_grant.tb[0].tbs = rar_buffer.N_bytes;
dl_grant.tb[0].ndi = get_ndi_for_new_dl_tx(tti);
// send grant and pass payload to TB data (grant contains length)
ue->new_tb(dl_grant, rar_buffer.msg);
// reset last PRACH transmission tti
prach_tti = -1;
}
// Internal function called from main thread
void send_msg3_grant()
{
log.info("Sending Msg3 grant for C-RNTI=%d\n", crnti);
mac_interface_phy_lte::mac_grant_ul_t ul_grant = {};
ul_grant.tb.tbs = 32;
ul_grant.tb.ndi_present = true;
ul_grant.tb.ndi = get_ndi_for_new_ul_tx(tti);
ul_grant.rnti = crnti;
ul_grant.pid = get_pid(tti);
ue->new_grant_ul(ul_grant);
}
// Internal function called from main thread
void send_sr_ul_grant()
{
// Provide new UL grant to UE
mac_interface_phy_lte::mac_grant_ul_t ul_grant = {};
ul_grant.tb.tbs = 100; // FIXME: reasonable size?
ul_grant.tb.ndi_present = true;
ul_grant.tb.ndi = get_ndi_for_new_ul_tx(tti);
ul_grant.rnti = crnti;
ul_grant.pid = get_pid(tti);
ue->new_grant_ul(ul_grant);
sr_tti = -1;
}
// internal function called from tx_pdu (called from main thread)
bool process_ce(srslte::sch_subh* subh)
{
uint16_t rnti = dl_rnti;
uint32_t buff_size[4] = {0, 0, 0, 0};
float phr = 0;
int32_t idx = 0;
uint16_t old_rnti = 0;
bool is_bsr = false;
switch (subh->ce_type()) {
case srslte::sch_subh::PHR_REPORT:
phr = subh->get_phr();
ss_mac_log.info("CE: Received PHR from rnti=0x%x, value=%.0f\n", rnti, phr);
break;
case srslte::sch_subh::CRNTI:
old_rnti = subh->get_c_rnti();
ss_mac_log.info("CE: Received C-RNTI from temp_rnti=0x%x, rnti=0x%x\n", rnti, old_rnti);
break;
case srslte::sch_subh::TRUNC_BSR:
case srslte::sch_subh::SHORT_BSR:
idx = subh->get_bsr(buff_size);
if (idx == -1) {
ss_mac_log.error("Invalid Index Passed to lc groups\n");
break;
}
ss_mac_log.info("CE: Received %s BSR rnti=0x%x, lcg=%d, value=%d\n",
subh->ce_type() == srslte::sch_subh::SHORT_BSR ? "Short" : "Trunc",
rnti,
idx,
buff_size[idx]);
is_bsr = true;
break;
case srslte::sch_subh::LONG_BSR:
subh->get_bsr(buff_size);
is_bsr = true;
ss_mac_log.info("CE: Received Long BSR rnti=0x%x, value=%d,%d,%d,%d\n",
rnti,
buff_size[0],
buff_size[1],
buff_size[2],
buff_size[3]);
break;
case srslte::sch_subh::PADDING:
ss_mac_log.debug("CE: Received padding for rnti=0x%x\n", rnti);
break;
default:
ss_mac_log.error("CE: Invalid lcid=0x%x\n", subh->ce_type());
break;
}
return is_bsr;
}
uint32_t get_pid(const uint32_t tti_) { return tti_ % (2 * FDD_HARQ_DELAY_MS); }
bool get_ndi_for_new_ul_tx(const uint32_t tti_)
{
// toggle NDI to always create new Tx
const uint32_t pid = get_pid(tti_);
last_ul_ndi[pid] = !last_ul_ndi[pid];
log.info("UL-PID=%d NDI=%s\n", pid, last_ul_ndi[pid] ? "1" : "0");
return last_ul_ndi[pid];
}
bool get_ndi_for_new_dl_tx(const uint32_t tti_)
{
// toggle NDI to always create new Tx
const uint32_t pid = get_pid(tti_);
last_dl_ndi[pid] = !last_dl_ndi[pid];
log.info("DL-PID=%d NDI=%s\n", pid, last_dl_ndi[pid] ? "1" : "0");
return last_dl_ndi[pid];
}
void run_thread()
{
uint32_t sib_idx = 0;
while (running) {
{
std::lock_guard<std::mutex> lock(mutex);
tti = (tti + 1) % 10240;
log.debug("SYSSIM-TTI=%d\n", tti);
ue->set_current_tti(tti);
// process events, if any
while (not event_queue.empty()) {
ss_events_t ev = event_queue.wait_pop();
switch (ev) {
case UE_SWITCH_ON:
log.console("Switching on UE ID=%d\n", run_id);
ue->switch_on();
break;
case UE_SWITCH_OFF:
log.console("Switching off UE ID=%d\n", run_id);
ue->switch_off();
break;
case ENABLE_DATA:
log.console("Enabling data for UE ID=%d\n", run_id);
ue->enable_data();
break;
case DISABLE_DATA:
log.console("Disabling data for UE ID=%d\n", run_id);
ue->disable_data();
break;
}
}
dl_rnti = ue->get_dl_sched_rnti(tti);
if (SRSLTE_RNTI_ISSI(dl_rnti)) {
// deliver SIBs one after another
mac_interface_phy_lte::mac_grant_dl_t dl_grant = {};
dl_grant.pid = get_pid(tti);
dl_grant.rnti = dl_rnti;
dl_grant.tb[0].tbs = cells[pcell_idx]->sibs[sib_idx]->N_bytes;
dl_grant.tb[0].ndi = get_ndi_for_new_dl_tx(tti);
ue->new_tb(dl_grant, cells[pcell_idx]->sibs[sib_idx]->msg);
log.info("Delivered SIB%d for pcell_idx=%d\n", sib_idx, pcell_idx);
sib_idx = (sib_idx + 1) % cells[pcell_idx]->sibs.size();
} else if (SRSLTE_RNTI_ISRAR(dl_rnti)) {
if (prach_tti != -1) {
rar_tti = (prach_tti + 3) % 10240;
if (tti == rar_tti) {
send_rar(prach_preamble_index);
}
}
} else if (SRSLTE_RNTI_ISPA(dl_rnti)) {
log.debug("Searching for paging RNTI\n");
// PCH will be triggered from SYSSIM after receiving Paging
} else if (SRSLTE_RNTI_ISUSER(dl_rnti)) {
// check if this is for contention resolution after PRACH/RAR
if (dl_rnti == crnti) {
log.debug("Searching for C-RNTI=%d\n", crnti);
if (rar_tti != -1) {
msg3_tti = (rar_tti + 3) % 10240;
if (tti == msg3_tti) {
send_msg3_grant();
rar_tti = -1;
}
}
}
// check for SR
if (sr_tti != -1) {
send_sr_ul_grant();
}
if (dl_rnti != 0) {
log.debug("Searching for RNTI=%d\n", dl_rnti);
// look for DL data to be send in each bearer and provide grant accordingly
for (int lcid = 0; lcid < SRSLTE_N_RADIO_BEARERS; lcid++) {
uint32_t buf_state = rlc.get_buffer_state(lcid);
if (buf_state > 0) {
log.debug("LCID=%d, buffer_state=%d\n", lcid, buf_state);
const uint32_t mac_header_size = 10; // Add MAC header (10 B for all subheaders, etc)
if (tmp_rlc_buffer.get_tailroom() > (buf_state + mac_header_size)) {
uint32_t pdu_size = rlc.read_pdu(lcid, tmp_rlc_buffer.msg, buf_state);
tx_payload_buffer.clear();
mac_msg_dl.init_tx(&tx_payload_buffer, pdu_size + mac_header_size, false);
// check if this is Msg4 that needs to contain the contention resolution ID CE
if (msg3_tti != -1) {
if (lcid == 0) {
if (mac_msg_dl.new_subh()) {
if (mac_msg_dl.get()->set_con_res_id(conres_id)) {
log.info("CE: Added Contention Resolution ID=0x%lx\n", conres_id);
} else {
log.error("CE: Setting Contention Resolution ID CE\n");
}
} else {
log.error("CE: Setting Contention Resolution ID CE. No space for a subheader\n");
}
msg3_tti = -1;
}
}
// Add payload
if (mac_msg_dl.new_subh()) {
int n = mac_msg_dl.get()->set_sdu(lcid, pdu_size, tmp_rlc_buffer.msg);
if (n == -1) {
log.error("Error while adding SDU (%d B) to MAC PDU\n", pdu_size);
mac_msg_dl.del_subh();
}
}
uint8_t* mac_pdu_ptr = mac_msg_dl.write_packet(&log);
if (mac_pdu_ptr != nullptr) {
log.info_hex(
mac_pdu_ptr, mac_msg_dl.get_pdu_len(), "DL MAC PDU (%d B):\n", mac_msg_dl.get_pdu_len());
// Prepare MAC grant for CCCH
mac_interface_phy_lte::mac_grant_dl_t dl_grant = {};
dl_grant.pid = get_pid(tti);
dl_grant.rnti = dl_rnti;
dl_grant.tb[0].tbs = mac_msg_dl.get_pdu_len();
dl_grant.tb[0].ndi_present = true;
dl_grant.tb[0].ndi = get_ndi_for_new_dl_tx(tti);
ue->new_tb(dl_grant, (const uint8_t*)mac_pdu_ptr);
} else {
log.error("Error writing DL MAC PDU\n");
}
mac_msg_dl.reset();
} else {
log.error("Can't fit RLC PDU into buffer (%d > %d)\n", buf_state, tmp_rlc_buffer.get_tailroom());
}
}
}
// Check if we need to provide a UL grant as well
}
} else {
log.debug("Not handling RNTI=%d\n", dl_rnti);
}
}
usleep(1000);
}
log.info("Leaving main thread.\n");
log.console("Leaving main thread.\n");
}
uint32_t get_tti() { return tti; }
void process_pdu(uint8_t* buff, uint32_t len, pdu_queue::channel_t channel) {}
void set_cell_config(std::string name, uint32_t earfcn_, srslte_cell_t cell_, const float power)
{
std::lock_guard<std::mutex> lock(mutex);
// check if cell already exists
if (not syssim_has_cell(name)) {
// insert new cell
log.info("Adding cell %s with cellId=%d and power=%.2f dBm\n", name.c_str(), cell_.id, power);
unique_syssim_cell_t cell = unique_syssim_cell_t(new syssim_cell_t);
cell->name = name;
cell->cell = cell_;
cell->initial_power = power;
cell->earfcn = earfcn_;
cells.push_back(std::move(cell));
} else {
// cell is already there
log.info("Cell already there, reconfigure\n");
}
update_cell_map();
}
// internal function
bool syssim_has_cell(std::string cell_name)
{
for (auto& cell : cells) {
if (cell->name == cell_name) {
return true;
}
}
return false;
}
void set_cell_attenuation(std::string cell_name, const float value)
{
std::lock_guard<std::mutex> lock(mutex);
if (not syssim_has_cell(cell_name)) {
log.error("Can't set cell power. Cell not found.\n");
}
// update cell's power
for (auto& cell : cells) {
if (cell->name == cell_name) {
cell->attenuation = value;
break;
}
}
update_cell_map();
}
// Internal function
void update_cell_map()
{
// Find cell with highest power and select as serving cell
if (not ue) {
log.error("Can't configure cell. UE not initialized.\n");
}
// convert syssim cell list to phy cell list
{
lte_ttcn3_phy::cell_list_t phy_cells;
for (auto& ss_cell : cells) {
lte_ttcn3_phy::cell_t phy_cell = {};
phy_cell.info = ss_cell->cell;
phy_cell.power = ss_cell->initial_power - ss_cell->attenuation;
phy_cell.earfcn = ss_cell->earfcn;
log.info("Configuring cell with PCI=%d with TxPower=%.2f\n", phy_cell.info.id, phy_cell.power);
phy_cells.push_back(phy_cell);
}
// SYSSIM defines what cells the UE can connect to
ue->set_cell_map(phy_cells);
}
// reselect SS Pcell
float max_power = -145;
for (uint32_t i = 0; i < cells.size(); ++i) {
float actual_power = cells[i]->initial_power - cells[i]->attenuation;
if (actual_power > max_power) {
max_power = actual_power;
pcell_idx = i;
log.info("Selecting PCI=%d with TxPower=%.2f as Pcell\n", cells[pcell_idx]->cell.id, max_power);
}
}
}
bool have_valid_pcell() { return (pcell_idx >= 0 && pcell_idx < static_cast<int>(cells.size())); }
void add_bcch_dlsch_pdu(const string cell_name, unique_byte_buffer_t pdu)
{
std::lock_guard<std::mutex> lock(mutex);
if (not syssim_has_cell(cell_name)) {
log.error("Can't add BCCH to cell. Cell not found.\n");
}
// add SIB
for (auto& cell : cells) {
if (cell->name == cell_name) {
cell->sibs.push_back(std::move(pdu));
break;
}
}
}
void add_ccch_pdu(unique_byte_buffer_t pdu)
{
std::lock_guard<std::mutex> lock(mutex);
// Add to SRB0 Tx queue
rlc.write_sdu(0, std::move(pdu));
}
void add_dcch_pdu(uint32_t lcid, unique_byte_buffer_t pdu)
{
std::lock_guard<std::mutex> lock(mutex);
// push to PDCP and create DL grant for it
log.info("Writing PDU (%d B) to LCID=%d\n", pdu->N_bytes, lcid);
pdcp.write_sdu(lcid, std::move(pdu));
}
void add_pch_pdu(unique_byte_buffer_t pdu)
{
std::lock_guard<std::mutex> lock(mutex);
log.info("Received PCH PDU (%d B)\n", pdu->N_bytes);
// Prepare MAC grant for PCH
mac_interface_phy_lte::mac_grant_dl_t dl_grant = {};
dl_grant.pid = get_pid(tti);
dl_grant.rnti = SRSLTE_PRNTI;
dl_grant.tb[0].tbs = pdu->N_bytes;
dl_grant.tb[0].ndi_present = true;
dl_grant.tb[0].ndi = get_ndi_for_new_dl_tx(tti);
ue->new_tb(dl_grant, (const uint8_t*)pdu->msg);
}
srslte::timers::timer* timer_get(uint32_t timer_id) { return timers.get(timer_id); }
uint32_t timer_get_unique_id() { return timers.get_unique_id(); }
void timer_release_id(uint32_t timer_id) { timers.release_id(timer_id); }
void step_timer() { timers.step_all(); }
void add_srb(uint32_t lcid, pdcp_config_t pdcp_config)
{
std::lock_guard<std::mutex> lock(mutex);
pdcp.add_bearer(lcid, pdcp_config);
rlc.add_bearer(lcid, srslte::rlc_config_t::srb_config(lcid));
}
void reestablish_bearer(uint32_t lcid)
{
std::lock_guard<std::mutex> lock(mutex);
log.info("Reestablishing LCID=%d\n", lcid);
pdcp.reestablish(lcid);
rlc.reestablish(lcid);
}
void del_srb(uint32_t lcid)
{
std::lock_guard<std::mutex> lock(mutex);
// Only delete SRB1/2
if (lcid > 0) {
pdcp.del_bearer(lcid);
rlc.del_bearer(lcid);
}
// Reset HARQ to generate new transmissions
if (lcid == 0) {
log.info("Resetting UL/DL NDI counters\n");
memset(last_dl_ndi, 0, sizeof(last_dl_ndi));
memset(last_ul_ndi, 0, sizeof(last_ul_ndi));
}
}
// RRC interface for PDCP, PDCP calls RRC to push RRC SDU
void write_pdu(uint32_t lcid, unique_byte_buffer_t pdu)
{
log.info_hex(pdu->msg, pdu->N_bytes, "RRC SDU received for LCID=%d (%d B)\n", lcid, pdu->N_bytes);
// We don't handle RRC, prepend LCID
pdu->msg--;
*pdu->msg = lcid;
pdu->N_bytes++;
// prepend pcell PCID
pdu->msg--;
*pdu->msg = static_cast<uint8_t>(cells[pcell_idx]->cell.id);
pdu->N_bytes++;
// push content to Titan
srb.tx(std::move(pdu));
}
// Not supported right now
void write_pdu_bcch_bch(unique_byte_buffer_t pdu) { log.error("%s not implemented.\n", __FUNCTION__); }
void write_pdu_bcch_dlsch(unique_byte_buffer_t pdu) { log.error("%s not implemented.\n", __FUNCTION__); }
void write_pdu_pcch(unique_byte_buffer_t pdu) { log.error("%s not implemented.\n", __FUNCTION__); }
void write_pdu_mch(uint32_t lcid, unique_byte_buffer_t pdu) { log.error("%s not implemented.\n", __FUNCTION__); }
void max_retx_attempted() { log.error("%s not implemented.\n", __FUNCTION__); }
std::string get_rb_name(uint32_t lcid)
{
if (lcid < rb_id_vec.size()) {
return rb_id_vec.at(lcid);
}
return std::string("RB");
};
void write_sdu(uint32_t lcid, unique_byte_buffer_t sdu, bool blocking = true)
{
log.info_hex(sdu->msg, sdu->N_bytes, "Received SDU on LCID=%d\n", lcid);
uint8_t* mac_pdu_ptr;
mac_pdu_ptr = mac_msg_dl.write_packet(&log);
log.info_hex(mac_pdu_ptr, mac_msg_dl.get_pdu_len(), "DL MAC PDU:\n");
// Prepare MAC grant for CCCH
mac_interface_phy_lte::mac_grant_dl_t dl_grant = {};
dl_grant.pid = get_pid(tti);
dl_grant.rnti = dl_rnti;
dl_grant.tb[0].tbs = mac_msg_dl.get_pdu_len();
dl_grant.tb[0].ndi_present = true;
dl_grant.tb[0].ndi = get_ndi_for_new_dl_tx(tti);
ue->new_tb(dl_grant, (const uint8_t*)mac_pdu_ptr);
}
bool rb_is_um(uint32_t lcid) { return false; }
int set_as_security(const uint32_t lcid,
std::array<uint8_t, 32> k_rrc_enc,
std::array<uint8_t, 32> k_rrc_int,
std::array<uint8_t, 32> k_up_enc,
const srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo,
const srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo)
{
log.info("Setting AS security for LCID=%d\n", lcid);
pdcp.config_security(lcid, k_rrc_enc.data(), k_rrc_int.data(), k_up_enc.data(), cipher_algo, integ_algo);
pdcp.enable_integrity(lcid);
pdcp.enable_encryption(lcid);
return 0;
}
private:
// SYS interface
ttcn3_ut_interface ut;
ttcn3_sys_interface sys;
ttcn3_ip_sock_interface ip_sock;
ttcn3_ip_ctrl_interface ip_ctrl;
ttcn3_srb_interface srb;
// Logging stuff
srslte::logger_stdout logger_stdout;
srslte::logger_file* logger_file = nullptr;
srslte::logger* logger = nullptr;
srslte::log_filter log;
srslte::log_filter ut_log;
srslte::log_filter sys_log;
srslte::log_filter ip_sock_log;
srslte::log_filter ip_ctrl_log;
srslte::log_filter srb_log;
srslte::log_filter ss_mac_log;
srslte::log_filter ss_rlc_log;
srslte::log_filter ss_pdcp_log;
all_args_t args = {};
srslte::byte_buffer_pool* pool = nullptr;
// Simulator vars
unique_ptr<ttcn3_ue> ue = nullptr;
std::mutex mutex;
bool running = false;
typedef enum { UE_SWITCH_ON = 0, UE_SWITCH_OFF, ENABLE_DATA, DISABLE_DATA } ss_events_t;
block_queue<ss_events_t> event_queue;
uint32_t run_id = 0;
int32_t tti = 0;
int32_t prach_tti = -1;
int32_t rar_tti = -1;
int32_t msg3_tti = -1;
int32_t sr_tti = -1;
uint32_t prach_preamble_index = 0;
uint16_t dl_rnti = 0;
uint16_t crnti = TTCN3_CRNTI;
srslte::timers timers;
bool last_dl_ndi[2 * FDD_HARQ_DELAY_MS] = {};
bool last_ul_ndi[2 * FDD_HARQ_DELAY_MS] = {};
// Map between the cellId (name) used by 3GPP test suite and srsLTE cell struct
typedef struct {
std::string name;
srslte_cell_t cell = {};
float initial_power = 0.0;
float attenuation = 0.0;
uint32_t earfcn = 0;
std::vector<unique_byte_buffer_t> sibs;
} syssim_cell_t;
typedef std::unique_ptr<syssim_cell_t> unique_syssim_cell_t;
std::vector<unique_syssim_cell_t> cells;
int32_t pcell_idx = -1;
srslte::pdu_queue pdus;
srslte::sch_pdu mac_msg_dl, mac_msg_ul;
// buffer for DL transmissions
srslte::byte_buffer_t rar_buffer;
srslte::byte_buffer_t tmp_rlc_buffer; // Used to buffer RLC PDU
srslte::byte_buffer_t tx_payload_buffer; // Used to buffer final MAC PDU
uint64_t conres_id = 0;
// Simulator objects
srslte::rlc rlc;
srslte::pdcp pdcp;
std::vector<std::string> rb_id_vec = {
"SRB0", "SRB1", "SRB2", "DRB1", "DRB2", "DRB3", "DRB4", "DRB5", "DRB6", "DRB7", "DRB8"};
};
#endif // SRSUE_TTCN3_SYSSIM_H