You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

290 lines
11 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "sched_test_common.h"
#include "sched_test_utils.h"
#include "srsenb/hdr/stack/mac/sched.h"
#include "srsran/mac/pdu.h"
using namespace srsenb;
uint32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
/*******************
* Logging *
*******************/
/// RAII style class that prints the test diagnostic info on destruction.
class sched_diagnostic_printer
{
public:
explicit sched_diagnostic_printer(srsran::log_sink_spy& s) : s(s) {}
~sched_diagnostic_printer()
{
auto& logger = srslog::fetch_basic_logger("TEST");
logger.info("[TESTER] Number of assertion warnings: %u", s.get_warning_counter());
logger.info("[TESTER] Number of assertion errors: %u", s.get_error_counter());
logger.info("[TESTER] This was the seed: %u", seed);
srslog::flush();
}
private:
srsran::log_sink_spy& s;
};
/******************************
* Scheduler Tests
*****************************/
sim_sched_args generate_default_sim_args(uint32_t nof_prb, uint32_t nof_ccs)
{
sim_sched_args sim_args;
sim_args.default_ue_sim_cfg.ue_cfg = generate_default_ue_cfg2();
// setup two cells
std::vector<srsenb::sched_interface::cell_cfg_t> cell_cfg(nof_ccs, generate_default_cell_cfg(nof_prb));
cell_cfg[0].scell_list.resize(1);
cell_cfg[0].scell_list[0].enb_cc_idx = 1;
cell_cfg[0].scell_list[0].cross_carrier_scheduling = false;
cell_cfg[0].scell_list[0].ul_allowed = true;
cell_cfg[1].cell.id = 2; // id=2
cell_cfg[1].scell_list = cell_cfg[0].scell_list;
cell_cfg[1].scell_list[0].enb_cc_idx = 0;
sim_args.cell_cfg = std::move(cell_cfg);
/* Setup Derived Params */
sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list.resize(nof_ccs);
for (uint32_t i = 0; i < sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list.size(); ++i) {
sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list[i].active = true;
sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list[i].enb_cc_idx = i;
}
return sim_args;
}
struct test_scell_activation_params {
uint32_t pcell_idx = 0;
};
int test_scell_activation(uint32_t sim_number, test_scell_activation_params params)
{
std::array<uint32_t, 6> prb_list{6, 15, 25, 50, 75, 100};
/* Simulation Configuration Arguments */
uint32_t nof_prb = prb_list[std::uniform_int_distribution<uint32_t>{0, 5}(get_rand_gen())];
uint32_t nof_ccs = 2;
uint32_t start_tti = 0; // rand_int(0, 10240);
/* Internal configurations. Do not touch */
float ul_sr_exps[] = {1, 4}; // log rand
float dl_data_exps[] = {1, 4}; // log rand
float P_ul_sr = randf() * 0.5, P_dl = randf() * 0.5;
const uint16_t rnti1 = 70;
/* Setup Simulation */
uint32_t prach_tti = 1;
uint32_t msg4_size = 40; // TODO: Check
uint32_t duration = 1000;
// Generate Cell order
std::vector<uint32_t> cc_idxs(nof_ccs);
std::iota(cc_idxs.begin(), cc_idxs.end(), 0);
std::shuffle(cc_idxs.begin(), cc_idxs.end(), get_rand_gen());
std::iter_swap(cc_idxs.begin(), std::find(cc_idxs.begin(), cc_idxs.end(), params.pcell_idx));
/* Setup simulation arguments struct */
sim_sched_args sim_args = generate_default_sim_args(nof_prb, nof_ccs);
sim_args.start_tti = start_tti;
sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list.resize(1);
sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list[0].active = true;
sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list[0].enb_cc_idx = cc_idxs[0];
sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list[0].dl_cfg.cqi_report.periodic_configured = true;
sim_args.default_ue_sim_cfg.ue_cfg.supported_cc_list[0].dl_cfg.cqi_report.pmi_idx = 37;
/* Simulation Objects Setup */
sched_sim_event_generator generator;
// Setup scheduler
common_sched_tester tester;
tester.sim_cfg(sim_args);
/* Simulation */
// Event PRACH: PRACH takes place for "rnti1", and carrier "pcell_idx"
generator.step_until(prach_tti);
tti_ev::user_cfg_ev* user = generator.add_new_default_user(duration, sim_args.default_ue_sim_cfg);
user->rnti = rnti1;
tester.test_next_ttis(generator.tti_events);
TESTASSERT(tester.sched_sim->user_exists(rnti1));
// Event (TTI=prach_tti+msg4_tot_delay): First Tx (Msg4). Goes in SRB0 and contains ConRes
while (not tester.sched_sim->find_rnti(rnti1)->get_ctxt().msg3_tti_rx.is_valid() or
srsenb::to_tx_ul(tester.sched_sim->find_rnti(rnti1)->get_ctxt().msg3_tti_rx).to_uint() >
generator.tti_counter) {
generator.step_tti();
tester.test_next_ttis(generator.tti_events);
}
generator.step_tti();
generator.add_dl_data(rnti1, msg4_size);
tester.test_next_ttis(generator.tti_events);
while (not tester.sched_sim->find_rnti(rnti1)->get_ctxt().conres_rx) {
generator.step_tti();
tester.test_next_ttis(generator.tti_events);
}
// Event (20 TTIs): Data back and forth
auto generate_data = [&](uint32_t nof_ttis, float prob_dl, float prob_ul, float rand_exp) {
for (uint32_t i = 0; i < nof_ttis; ++i) {
generator.step_tti();
bool ul_flag = randf() < prob_ul, dl_flag = randf() < prob_dl;
if (dl_flag) {
float exp = dl_data_exps[0] + rand_exp * (dl_data_exps[1] - dl_data_exps[0]);
generator.add_dl_data(rnti1, pow(10, exp));
}
if (ul_flag) {
float exp = ul_sr_exps[0] + rand_exp * (ul_sr_exps[1] - ul_sr_exps[0]);
generator.add_ul_data(rnti1, pow(10, exp));
}
}
};
generate_data(20, 1.0, P_ul_sr, randf());
TESTASSERT(tester.test_next_ttis(generator.tti_events) == SRSRAN_SUCCESS);
// Event: Reconf Complete. Activate SCells. Check if CE correctly transmitted
generator.step_tti();
user = generator.user_reconf(rnti1);
user->ue_sim_cfg->ue_cfg =
*tester.get_current_ue_cfg(rnti1); // use current cfg as starting point, and add more supported ccs
user->ue_sim_cfg->ue_cfg.supported_cc_list.resize(nof_ccs);
for (uint32_t i = 0; i < user->ue_sim_cfg->ue_cfg.supported_cc_list.size(); ++i) {
user->ue_sim_cfg->ue_cfg.supported_cc_list[i].active = true;
user->ue_sim_cfg->ue_cfg.supported_cc_list[i].enb_cc_idx = cc_idxs[i];
}
TESTASSERT(tester.test_next_ttis(generator.tti_events) == SRSRAN_SUCCESS);
auto activ_list = tester.get_enb_ue_cc_map(rnti1);
for (uint32_t i = 0; i < cc_idxs.size(); ++i) {
TESTASSERT(activ_list[i] >= 0);
}
// TEST: When a DL newtx takes place, it should also encode the CE
for (uint32_t i = 0; i < 100; ++i) {
if (not tester.tti_info.dl_sched_result[params.pcell_idx].data.empty()) {
// DL data was allocated
if (tester.tti_info.dl_sched_result[params.pcell_idx].data[0].nof_pdu_elems[0] > 0) {
// it is a new DL tx
TESTASSERT(tester.tti_info.dl_sched_result[params.pcell_idx].data[0].pdu[0][0].lcid ==
(uint32_t)srsran::dl_sch_lcid::SCELL_ACTIVATION);
break;
}
}
generator.step_tti();
TESTASSERT(tester.test_next_ttis(generator.tti_events) == SRSRAN_SUCCESS);
}
// Event: Wait for UE to receive and ack CE. Send cqi==0, which should not activate the SCell
uint32_t cqi = 0;
for (uint32_t cidx = 1; cidx < cc_idxs.size(); ++cidx) {
for (uint32_t i = 0; i < FDD_HARQ_DELAY_UL_MS; ++i) {
tester.dl_cqi_info(tester.tti_rx.to_uint(), rnti1, cc_idxs[cidx], cqi);
generator.step_tti();
}
}
TESTASSERT(tester.test_next_ttis(generator.tti_events) == SRSRAN_SUCCESS);
// The UE should now have received the CE
// Event: Generate a bit more data, it should *not* go through SCells until we send a CQI
generate_data(5, P_dl, P_ul_sr, randf());
TESTASSERT(tester.test_next_ttis(generator.tti_events) == SRSRAN_SUCCESS);
TESTASSERT(tester.sched_stats->users[rnti1].tot_dl_sched_data[params.pcell_idx] > 0);
TESTASSERT(tester.sched_stats->users[rnti1].tot_ul_sched_data[params.pcell_idx] > 0);
for (uint32_t i = 1; i < cc_idxs.size(); ++i) {
TESTASSERT(tester.sched_stats->users[rnti1].tot_dl_sched_data[cc_idxs[i]] == 0);
TESTASSERT(tester.sched_stats->users[rnti1].tot_ul_sched_data[cc_idxs[i]] == 0);
}
// Event: Scheduler receives dl_cqi for SCell. Data should go through SCells
cqi = 14;
for (uint32_t i = 1; i < cc_idxs.size(); ++i) {
tester.dl_cqi_info(tester.tti_rx.to_uint(), rnti1, cc_idxs[i], cqi);
}
generate_data(10, 1.0, 1.0, 1.0);
TESTASSERT(tester.test_next_ttis(generator.tti_events) == SRSRAN_SUCCESS);
uint64_t tot_dl_sched_data = 0;
uint64_t tot_ul_sched_data = 0;
for (const auto& c : cc_idxs) {
tot_dl_sched_data += tester.sched_stats->users[rnti1].tot_dl_sched_data[c];
tot_ul_sched_data += tester.sched_stats->users[rnti1].tot_ul_sched_data[c];
}
TESTASSERT(tot_dl_sched_data > 0);
TESTASSERT(tot_ul_sched_data > 0);
srslog::flush();
printf("[TESTER] Sim%d finished successfully\n\n", sim_number);
return SRSRAN_SUCCESS;
}
int main()
{
// Setup rand seed
set_randseed(seed);
// Setup the log spy to intercept error and warning log entries.
if (!srslog::install_custom_sink(
srsran::log_sink_spy::name(),
std::unique_ptr<srsran::log_sink_spy>(new srsran::log_sink_spy(srslog::get_default_log_formatter())))) {
return SRSRAN_ERROR;
}
auto* spy = static_cast<srsran::log_sink_spy*>(srslog::find_sink(srsran::log_sink_spy::name()));
if (!spy) {
return SRSRAN_ERROR;
}
auto& mac_log = srslog::fetch_basic_logger("MAC");
mac_log.set_level(srslog::basic_levels::debug);
auto& test_log = srslog::fetch_basic_logger("TEST", *spy, false);
test_log.set_level(srslog::basic_levels::debug);
// Start the log backend.
srslog::init();
sched_diagnostic_printer printer(*spy);
printf("[TESTER] This is the chosen seed: %u\n", seed);
uint32_t N_runs = 20;
for (uint32_t n = 0; n < N_runs; ++n) {
printf("[TESTER] Sim run number: %u\n", n);
test_scell_activation_params p = {};
p.pcell_idx = 0;
TESTASSERT(test_scell_activation(n * 2, p) == SRSRAN_SUCCESS);
p = {};
p.pcell_idx = 1;
TESTASSERT(test_scell_activation(n * 2 + 1, p) == SRSRAN_SUCCESS);
}
srslog::flush();
return 0;
}